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Guillaume Rabusseau grabus@iro.umontreal.ca
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Abstract

In this paper we study the approximate minimization problem for language modelling. We
assume we are given some language model as a black box. The objective is to obtain a
weighted finite automaton (WFA) that fits within a given size constraint and which mimics
the behaviour of the original model while minimizing some notion of distance between
the black box and the extracted WFA. We provide an algorithm for the approximate
minimization of black boxes trained for language modelling of sequential data over a one-
letter alphabet. By reformulating the problem in terms of Hankel matrices, we leverage
classical results on the approximation of Hankel operators, namely the celebrated Adamyan-
Arov-Krein (AAK) theory. This allows us to use the spectral norm to measure the distance
between the black box and the WFA. We provide theoretical guarantees to study the
potentially infinite-rank Hankel matrix of the black box, without accessing the training
data, and we prove that our method returns an asymptotically-optimal approximation.

Keywords: Approximate minimization, WFA extraction, Hankel matrices, Recurrent
Neural Networks, language modelling

1. Introduction

Interpretability and high computational cost are two of the main challenges arising from the
use of deep learning models (Doshi-Velez and Kim, 2017). The need to address these issues
is at the root of the increasing number of works focusing on knowledge distillation (Hinton
et al., 2015). In the case of sequential data, particular attention has been given to the prob-
lem of extracting, from a Recurrent Neural Network (RNN) (Hochreiter and Schmidhuber,
1997), a weighted finite automaton (WFA) (Ayache et al., 2018; Rabusseau et al., 2019;
Weiss et al., 2019; Okudono et al., 2020; Eyraud and Ayache, 2020; Theertha Suresh et al.,
2019; Zhang et al., 2021). In fact, WFAs are a less expensive alternative to RNNs, while
still being expressive and suited for sequence modelling and prediction (Denis and Esposito,
2008; Cortes et al., 2004).

The task of knowledge distillation is closely related to the more general approximate
minimization problem, where the objective is to find a model, smaller than the original one,
that imitates its behaviour while minimizing the approximation error. The advantage of
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doing approximate minimization instead of regular extraction is that it allows us to search
for the best WFA among those of a predefined size. Since automata benefit from a graphical
representation, bounding the number of states can help improve interpretability (Hammer-
schmidt et al., 2016). In this paper, we tackle the approximate minimization problem for
black boxes trained for language modelling over a one-letter alphabet. We remark that,
even though this is a very limited setting, it constitutes a first fundamental step towards
developing provable approximation algorithms for black box models.

A key point in solving approximation tasks is to decide how to quantify the error.
We propose to rewrite the problem in terms of Hankel matrices, mathematical objects
related to functions defined on sequential data. In particular, we choose to measure the
error in terms of the spectral norm, because of some of its desirable features. Indeed, the
spectral norm of the Hankel matrix of a WFA can be computed in polynomial time (Balle
et al., 2021) and we show that, similarly, minimizing the approximation error between
a WFA and a black box model can be (asymptotically) solved optimally in a tractable
way. Thus, using our method, we can measure the distance between a given RNN and the
extracted WFA. This is particularly valuable, especially in light of the paper of Marzouk
and de la Higuera (2020), where the authors show that the general equivalence problem
between classes of WFAs and RNNs is at best intractable, if not undecidable. The choice
of this norm has the advantage that it allows us to analyze different models through their
Hankel matrices, independently of the specific architecture considered. This means that
addressing the approximate minimization problem using the spectral norm can facilitate
the comparison between different classes of models, and the development of a distance that
can be precisely computed and minimized. This is possible because Hankel matrices are
at the core of the influential work of Adamyan et al. (1971), which constitutes the main
theoretical background on which we build our analysis. This theory has been applied before
to the approximate minimization problem for WFAs, but the approach relies on the Hankel
matrix considered to have known finite rank, so it cannot be directly generalized (Balle
et al., 2021).

Contributions The main contributions of this paper are the following:

• We present a new theoretical framework for WFA extraction from a black box trained
for language modelling of sequential data over a one-letter alphabet.

• We use tools from control theory and arguments from random matrix theory to extend
the work of Balle et al. (2021) to the case of black boxes having infinite-rank Hankel
matrices.

• We propose an algorithm that, given a black box model M on a one letter alphabet
and a target size k, returns a WFA with k states corresponding to an asymptotically-
optimal spectral approximation of M. We do not assume any knowledge on the
internal structure of the black box, nor on the training data.

• We propose a new way to compute the distance between a black box and the extracted
WFA, based on AAK theory. We provide bounds on the approximation error in terms
of spectral and `2 norm, and strategies to improve precision when the rank is infinite.
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2. Background

2.1. Notation

Let N, Z and R be the set of natural, integer and real numbers, respectively. We use bold
letters for vectors and matrices; all vectors are column vectors unless otherwise specified.
We denote with v(i), M(i, :) and M(:, j) the i-th component of the vector v, and the i-th
row and j-th column of M, respectively. A rank factorization of M ∈ Rp×q of rank n is a
factorization M = PQ, with P ∈ Rp×n, Q ∈ Rn×q, with P, Q of rank n. Let M ∈ Rp×q
of rank n, the compact singular value decomposition (SVD) of M is M = UDV>, where
U ∈ Rp×n, D ∈ Rn×n, V ∈ Rq×n, with U>U = V>V = 1, and D is diagonal. The columns
of U and V are called left and right singular vectors, while the entries σ0 ≥ · · · ≥ σn−1 > 0
of D are the singular values. The Moore-Penrose pseudo-inverse M+ of M is the unique
matrix such that MM+M = M, M+MM+ = M+, with M+M and MM+ Hermitian.

A Hilbert space is a complete normed vector space where the norm arises from an inner
product. Let X, Y be Hilbert spaces. A linear operator T : X → Y is bounded if it has
finite operator norm, i.e. ‖T‖op = sup‖g‖X≤1 ‖Tg‖Y < ∞, while is compact if it is the

limit of finite rank operators in the operator norm. We write T i → T if T is the limit of
the sequence of operators {T i}i≥0. Let T : X → Y compact, the adjoint T ∗ is the linear
operator T ∗ : Y → X such that 〈Tx, y〉Y = 〈x, T ∗y〉X , where 〈·, ·〉 is the inner product of
the corresponding Hilbert space, x ∈ X, y ∈ Y . The singular numbers {σn}n≥0 of T are the
square roots of the eigenvalues of T ∗T , arranged in decreasing order. A singular number
is simple if it is not repeated. Let T be the infinite matrix associated with T by some
canonical orthonormal basis. The Hilbert-Schmidt decomposition generalizes the compact
SVD for the matrix of a compact operator T : Tx =

∑
n≥0 σn〈x, ξn〉ηn (see Zhu (1990)).

The spectral norm ‖T‖ of the matrix of the operator T is the largest singular number, and
corresponds to the operator norm of T . Let T = {z ∈ C : |z| = 1} and D = {z ∈ C : |z| < 1}
be the complex unit circle and disc, respectively. Let p > 1, Lp(T) is the space of measurable
functions on T with the p-th power of their absolute value Lebesgue integrable.

2.2. Hankel Matrix and WFAs

Let Σ be a fixed finite alphabet, Σ∗ the set of all finite strings with symbols in Σ, ε the
empty string, and Σ′ = Σ ∪ {ε}. Given p, s ∈ Σ∗, we denote with ps their concatenation.
Let f : Σ∗ → R be a function defined on sequences, we can consider a matrix Hf ∈ RΣ∗×Σ∗

having rows and columns indexed by strings and defined by Hf (p, s) = f(ps) for p, s ∈ Σ∗.

Definition 1 A (bi-infinite) matrix H ∈ RΣ∗×Σ∗ is Hankel if for all p, p′, s, s′ ∈ Σ∗ such
that ps = p′s′, we have H(p, s) = H(p′, s′). Given a Hankel matrix H ∈ RΣ∗×Σ∗, there
exists a unique function f : Σ∗ → R such that Hf = H.

Weighted finite automata are a class of models defined over sequential data. A weighted
finite automaton (WFA) of n states over Σ is a tuple A = 〈α, {Aa},β〉, where α, β ∈ Rn are
the vector of initial and final weights, respectively, and Aa ∈ Rn×n is the matrix containing
the transition weights associated with each symbol a ∈ Σ. While WFAs can in general be
defined over semirings, we will only consider automata with real weights. In this case, every
WFA A realizes a function fA : Σ∗ → R, i.e., given a string x = x1 · · ·xt ∈ Σ∗, it returns
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fA(x) = α>Ax1 · · ·Axtβ = α>Axβ. We say that f is rational if there exists a WFA A
with f = fA, and the rank of f is the size of the smallest WFA realizing f . We can use the
Hankel matrix Hf to recover information about the WFA.

Theorem 2 (Carlyle and Paz (1971); Fliess (1974)) A function f : Σ∗ → R can be
realized by a WFA if and only if Hf has finite rank n. In that case, n is the minimal number
of states of any WFA realizing f .

Given a Hankel matrix Hf of rank n, we can recover the minimal WFA A realizing f by
using the method proposed in Balle et al. (2014), an efficient spectral algorithm which is
robust to noise. In particular, we can consider a basis B = (P,S), with P,S ⊂ Σ∗, and a
sub-block HB of Hf defined over B. The method can be applied whenever B is prefix-closed
and complete, i.e., when P = P ′ · Σ′ for some P ′, and HB has rank n. In this case, we can
consider the sub-block Ha defined over B by Ha(u, v) = H(u · a, v) for each a ∈ Σ′, and the
vectors hP,ε, hε,S having coordinates hP,ε(u) = H(u, ε) and hε,S(v) = H(ε, v). Then, from
the rank factorization Hε = PS we can compute a minimal WFA A = 〈α, {Aa},β〉 for f :

α> = h>ε,SS
+, β = P+hP,ε, Aa = P+HaS

+. (1)

2.3. Recurrent Neural Networks

Recurrent Neural Networks (Hochreiter and Schmidhuber, 1997), or RNNs, are a class of
neural networks designed to process sequential data. Unlike feedforward neural networks,
RNNs maintain an internal memory based on history information through the hidden states.
At each timestep, a RNN receives an input and returns a new state vector, depending on
the input and on the sequence received so far. There exists several types of architectures
for these models, which makes them well suited for a variety of tasks (Weiss et al., 2018;
Merrill et al., 2020). Analogously to Ayache et al. (2018) and Weiss et al. (2019), we focus
on LM-RNNs, where the RNN is trained for language modelling, and the task is to predict
the next element in a sequence. Thus, a LM-RNN can be seen as computing the probability
associated to a string, and can then be represented by a Hankel matrix.

2.4. AAK Theory

The key idea behind our method is that, since a model computing f : Σ∗ → R corresponds
to a Hankel matrix H = Hf , the minimization problem can be reformulated using Hankel
matrices. The objective becomes to find a Hankel matrix G that approximates H optimally
in the spectral norm, and then extract a WFA from it. This approach has been explored
before by Balle et al. (2021), but their method does not generalize to infinite-rank matrices.
We recall a well known result in low-rank matrix approximation.

Theorem 3 (Eckart and Young (1936)) Let H be a Hankel matrix of rank n, and let
σ0 ≥ · · · ≥ σn−1 > 0 be its singular numbers. Then, if R is a matrix of rank k, we have
‖H−R‖ ≥ σk, and the minimum is attained when R is the truncated SVD of H.

Unfortunately this result does not solve our problem, since truncating the SVD does not
necessarily produce a Hankel matrix, which is required to recover a WFA. When |Σ| = 1, the
issue can be solved using a theory of optimal approximation called Adamyan-Arov-Krein
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(AAK) theory (Adamyan et al., 1971), which allows us to search for the best approximation
directly in the set of finite-rank Hankel matrices. In order to introduce AAK theory, for the
rest of this section we will assume |Σ| = 1. The same assumption will be required in the
contribution (for more details we refer the reader to Section 3.1). When the alphabet only
has one letter, we can denote a string with the number corresponding to how many times
the single character is repeated (e.g. ′aaa′ = 3), and we can identify Σ∗ with N. Let `2 be
the Hilbert space of square-summable sequences over N. We interpret the Hankel matrix
Hf associated to f : N → R as the expression, in terms of the canonical basis, of a linear
Hankel operator Hf : `2 → `2. To reformulate the problem in the setting of AAK theory,
we embed `2 into `2(Z), and apply the Fourier isomorphism to associate a complex function
to each sequence in `2(Z). In fact, a function φ(z) ∈ L2(T) in the complex variable z can be
represented by its Fourier expansion φ(z) =

∑
n∈Z φ̂(n)zn, and identified with the sequence

of its Fourier coefficients φ̂(n) =
∫
T φ(z)z̄ndz, n ∈ Z using the orthonormal basis {zn}n∈Z.

Then we partition the function space L2(T) into two subspaces.

Definition 4 For 0 < p ≤ ∞ , the Hardy space Hp and the negative Hardy space Hp−
on T are the subspaces of Lp(T) defined as:

Hp = {φ(z) ∈ Lp(T) : φ̂(n) = 0, n < 0}, Hp− = {φ(z) ∈ Lp(T) : φ̂(n) = 0, n ≥ 0}.

Since the elements of Hp can be canonically identified with the set of p-integrable functions
analytic in D, we will make no difference between these functions in the complex unit disc
and their boundary value on the complex unit circle (Nikol’Skii, 2002).

It is possible to characterize Hankel operators using Hardy spaces (more details can be
found in Nikol’Skii (2002)). Let P− : L2(T) → H2

− be the orthogonal projection on the
negative Hardy space.

Definition 5 Let φ(z) be a function in L2(T). A Hankel operator is an operator Hφ :
H2 → H2

− defined by Hφf(z) = P−φf(z). The function φ(z) is a symbol for Hφ.

From now on, Hankel operators will always be interpreted in Hardy spaces. We recall
that a complex function φ(z) is rational if φ(z) = p(z)/q(z), with p(z) and q(z) polynomials,
and it is strictly proper if the degree of p(z) is strictly smaller than that of q(z). Finite rank
Hankel operators are closely related to the theory of rational functions.

Theorem 6 (Kronecker (1881)) Let Hφ be a bounded Hankel operator with matrix H.
Then H has finite rank if and only if P−φ is a strictly proper rational function. Moreover
the rank of H is equal to the number of poles in D (counted with multiplicities) of P−φ.

We remark an important property of Hankel matrices (see Appendix A for an example).

Remark 7 On the one hand we can consider the matrix H with respect to the basis of `2,
and associate H with the function f : N → R. In this case H(i, j) = f(i + j) for i, j ≥ 0.
On the other hand, we can look at H with respect to the standard orthonormal bases of H2

and H2
−. Now, H is associated with φ(z) ∈ L2(T), and we have H(j, k) = φ̂(−j − k − 1).

Note that f and φ are related through the Fourier isomorphism, with f(n) = φ̂(−n− 1).

The core of AAK theory is that, when minimizing a compact Hankel operator, the con-
straint of preserving the Hankel property does not affect the quality of the approximation.
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Theorem 8 (Adamyan et al. (1971)) Let H be a compact Hankel operator, with matrix
H of rank n and singular numbers σ0 ≥ · · · ≥ σn−1 > 0. Then, there exists a unique Hankel
operator Gk of rank k < n such that ‖H−Gk‖ = σk , i.e. Gk is the optimal approximation.

Using the following theorem, based on the proof of Theorem 8, we can find a symbol for
the best approximation. We recall that a σ-Schmidt pair {ξ,η} for H is a couple of vectors
such that: Hξ = ση and H∗η = σξ.

Theorem 9 (Chui and Chen (1997)) Let {ξk,ηk} be any σk-Schmidt pair for H. We
consider a bi-infinite upper triangular matrix T, having zeros on the main diagonal, first row
T(0, k) = H(0, k− 1) for k > 0, and remaining entries defined by T(j, k) = T(j+ 1, k+ 1).

Let z =
(
1 z z2 . . .

)>
where z is the complex variable. Then, the rational function r(z)

corresponding to the symbol of the best approximation of rank k is:

r(z) = P−
(

z>Tξ

z>ξ

)
. (2)

For an example of the matrix T, we refer the reader to Equation 6.
We conclude emphasizing the important relation between matrix and operator.

Remark 10 A Hankel matrix H can be seen as the representation of a Hankel operator
H by means of a canonical basis. As noted in Remark 7, H can be viewed as acting between
sequences or between Hardy spaces, depending on the basis used. While we are interested
in matrices, most of the results are stated for operators. Working with the basis of the
Hardy space let us alternate between matrix and operator, transferring results from one
interpretation to the other. Moreover, we recall that ‖H−G‖ = ‖H−G‖, where on the left
we have operators and operator norm, and on the right matrices and spectral norm. While
we keep the notation distinct to remain faithful to definitions ( e.g., compactness is defined
for H, not for H), for an intuition of the results one can think in terms of Hankel matrices.

3. Asymptotically-Optimal Approximate Minimization

We are now ready to introduce the main contribution of this paper.

3.1. Problem Formulation

We recall that a bounded operator H is compact if and only if there exists a sequence of
finite rank operators {H i}i≥0 converging to it, i.e. if H i → H. Let Gk and Gik be the rank
k optimal approximations to H and H i, respectively, according to Theorem 8. We say that
the sequence of matrices {Gi

k}i≥0 is an asymptotic sequence for Gk, if the corresponding
sequence of operators {Gik}i≥0 converges to the operator Gk, i.e., if Gik → Gk. Note that,
if {σj}j≥0 are the singular numbers of H, for an asymptotic sequence we have:

lim
i→∞
‖H −Gik‖ = σk. (3)

We can now formally define the approximation problem. Let |Σ| = 1, Σ∗ = N. We
consider a LM-RNN computing a function f : N→ R, with Hankel matrix H corresponding
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to the operator H. Let k be the target size of the approximation, and n > k. We denote
with Gk the optimal rank k approximation of H. We say that a WFA Ânk with k states is
an asymptotically-optimal (n, k)-approximation for the LM-RNN if the Hankel matrix Gn

k

of Ânk belongs to an asymptotic sequence for Gk.
Intuitively, we can consider a sequence of finite rank matrices {Hi}i≥0 converging to H,

and associate to each of them a WFA (Theorem 6). This means that we have a sequence
of WFAs of increasing size that “converges” to the LM-RNN. The matrix Gk of rank k
corresponds to the optimal approximation for H, i.e., it is the WFA Âk with k states that
best approximate the LM-RNN. Now, from the sequence of matrices Gi

k of optimal rank k

approximations, we obtain a second sequence of WFAs Âik, all having size k. When {Gi
k}i≥0

is an asymptotic sequence for Gk, the corresponding sequence of WFAs “converges” to Âk.
We will study the convergence of asymptotic sequences in the next section. In particu-

lar, we will prove that a solution for the asymptotically-optimal problem can be obtained
from Theorem 8, but it is not unique, since different sequences {Hi}i≥0 lead to different
approximations. Nonetheless, we will show that we can get arbitrarily close to the optimum.

We briefly remark that it is possible to consider an alternative formulation of the approx-
imate minimization problem (Kung and Lin, 1981). In this case, instead of fixing the size
of the approximation, we set the tolerance allowed for the approximation error. Thus, the
objective becomes to find the smallest possible WFA such that the spectral norm of the ap-
proximation error is smaller than a fixed constant ρ of choice. In this case, if ρ ∈ (σk, σk−1),
then the best approximation has size at least k − 1, and can be found following the same
solution we will present for the standard approximation problem.

Assumptions The main limitation of this approach is that the results outlined in Sec-
tion 2.4 can be applied only if |Σ| = 1. In this case, Σ∗ can be identified with N, and
canonically embedded into Z. This fundamental step allows us to use the Fourier iso-
morphism to reformulate the problem in the Hardy space, where it can be solved using
Theorem 8. If |Σ| > 1, Σ∗ is a free non-abelian monoid, therefore it cannot be embedded
into Z. Therefore, for the rest of the paper we will assume |Σ| = 1, and identify Σ∗ = N.

We remark that the proof of Theorem 8 is constructive only for compact operators. We
will show that compactness is automatically respected by LM-RNNs (Theorem 12) and that
the necessary condition is actually less restrictive. In fact, if f is the function computed by
the black box considered, it is enough that f ∈ `1. Thus, even though we mainly refer to
LM-RNNs, the proposed algorithm can be applied to any black box for language modelling
on a one-letter alphabet, for example transformers (Vaswani et al., 2017).

3.2. Compactness of the Hankel Matrix

To apply the results of Section 2.4, we need to find a way to test for compactness. This is
the main theoretical challenge addressed by the paper. In fact, with matrices of known finite
rank, like in the case of WFAs, compactness is achieved by requiring f ∈ `2 (Balle et al.,
2019). Then, the problem can be rewritten in terms of finite matrices, the Gramians, and it
is possible to find an algorithm returning the parameters of the unique best approximating
WFA (Balle et al., 2021). Instead, in the case of LM-RNNs we don’t have access to the full
bi-infinite Hankel matrix H, and the unknown rank might not be finite. Therefore, there is
no guarantee that the problem can be solved algorithmically.
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As noted before, the operator H is compact if and only if there is a sequence of finite
rank operators {H i}i≥0, with H i → H. Given such converging sequence, the key idea is
to find the best approximation of rank k for each of its element. Note that every H i has
known finite rank, so the approximation problem can be solved algorithmically. It remains
to ensure the continuity of the approximation: if Gk and Gik are the optimal approximations
of H and of H i, respectively, we want {Gi

k}i≥0 to be an asymptotic sequence for Gk, so
that Gik → Gk. This problem has been analyzed, for signal processing, in the fundamental
work of Chui et al. (1991) and Chui and Li (1994). We recall the following result.

Theorem 11 (Chui and Li (1994)) Let H be a bounded Hankel operator, {σi}i≥0, its
singular numbers. Suppose to have a sequence {H i}i≥0 of bounded Hankel operators such
that H i → H. Let Gk and Gik be the unique optimal approximations of rank k of H and of
H i for any i, respectively. If σk−1 6= σk, then the sequence {Gik}i ≥ 0 converges to Gk.

This theorem gives us the conditions under which we can solve the approximation problem
(at least asymptotically) for the matrix H(i, j) = f(i+ j) of the LM-RNN.

The first step is to find a converging sequence of operators (matrices). We can define
one by truncation: let t ≥ 0, we consider the sequence of matrices defined as:

Ht(i, j) =

{
f(i+ j) if i+ j ≤ t
0 otherwise

(4)

(see Equation 6 for an example). We have the following theorem:

Theorem 12 Let |Σ| = 1. Let f : N → R be the function computed by a black box for
language modelling, H the Hankel matrix. Let {Ht}t≥0 as in Equation 4. Then, since
f ∈ `1, we have that Ht → H.

We remark that the proof, that can be found in Appendix B, relies only on f ∈ `1. Note
that we have found a sequence of finite rank operators converging to H, thus H is compact.

The second step is to ensure that the property σk−1 6= σk on the singular numbers of
H holds when k is the size of the best approximation. This condition cannot be tested
experimentally, since we don’t have access to the infinite Hankel matrix H. Instead, we
can address the problem by using arguments from random matrix theory. In fact, up to
at worst a small perturbation, we can view any Ht for t > 0 as a random matrix having
only simple singular values with probability one, and this property holds (in limit) also for
H (von Neumann and Wigner, 1993; Tao and Vu, 2014). Note that compact operators have
simple spectrum after arbitrarily small perturbations, which do not have a big effect on the
quality of the result since the spectrum of symmetric matrices is very stable (Hörmander
and Melin, 1994; Kato, 2013; Tao, 2012). In practice, for most settings the Hankel matrix
H will satisfy the condition of Theorem 11 with probability one. This is the case, for
example, of RNNs trained using a gradient based method with a random initialization.
On the other hand, to keep our analysis general, we also need to consider an adversarial
setting, in which the black box to approximate is specifically chosen to have σk−1 = σk. To
avoid this kind of situation we can add some random noise to H post training. To preserve
compactness, it is important to choose the Hankel matrix of noise N appropriately. For
instance, N can be a Hankel matrix, with first row N(0, j) sampled uniformly in the interval
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[−(j + 2)−p, (j + 2)−p], with p ≥ 2 fixed, so that the operator N is compact. Moreover, for
every ε > 0, we can find an exponent p ≥ 2 such that ‖N‖ ≤ ε, so the perturbation can
be chosen to be arbitrarily small. Note that H + N is then a random matrix corresponding
to a compact Hankel operator, and satisfies the conditions of Theorem 11 with probability
one. We will address the additional error due to small perturbations in Section 4.

We are finally ready to show that if Hn belongs to the sequence of bi-infinite truncation
matrices {Ht}t≥0 introduced in Equation 4, an asymptotically-optimal (n, k)-approximation
can be found by solving the problem described by Theorem 8 for Hn (proof in Appendix B).

Theorem 13 Let H and Hn be as above, and assume σk 6= σk−1. If Gn
k is the optimal

approximation of Hn according to Theorem 8, then a WFA having Hankel matrix Gn
k is an

asymptotically-optimal (n, k)-approximation, and we have:

σk ≤ ‖H−Gn
k‖ ≤ σk + 2

(
1−

n∑
i=0

f(i)

)
. (5)

The bound clearly shows that, as n increases, we approach the optimal approximation.

3.3. Algorithm

When the rank r of H is finite and known, it is possible to find directly the optimal approx-
imation. This can be done by first extracting a WFA of size r from the LM-RNN (Ayache
et al., 2018), and then applying the algorithm of Balle et al. (2021) to obtain the unique
optimal WFA. Therefore, in our algorithm we focus on the case in which the rank r is un-
known, and look for an asymptotically optimal approximation. This entails assuming that
the truncation Hn has full rank: if this was not the case, since Hn is the leading principal
submatrix of H, we would have r = rank(Hn) (Al’pin, 2017).

To simplify the notation across this section, we set fi = f(i). We recall the two bi-infinite
matrices necessary to find the best approximation:

Hn =



f0 f1 . . . fn−1 0 . . .

f1 . .
.

. .
. ...

... . .
.
. .
. ...

fn−1 . .
. ...

0 . . . . . . . . . 0
...

. . .


, T =



0 f0 . . . fn−1 0 . . .
...

. . .
. . . fn−1

...
. . .

. . .
...

...
. . . f0

0 . . . . . . . . . 0
...

. . .


. (6)

The key to successfully implement Theorem 8, which applies only to infinite matrices, is in
the definition of the truncation. In fact, this allows us to discard the zero-part and work
only with the n × n sub-block of Hn, which we will still denote with Hn for the sake of
simplicity. Analogously, if z and T are the infinite vector and matrix defined in Theorem 9
for H, in the algorithm we will consider the truncations associated to Hn:

zn(i) = z(i), Tn(i, j) = T(i, j) for i, j < n, zn ∈ Rn×1,Tn ∈ Rn×n (7)

where the discarded entries are irrelevant, being multiplied by zeros in the infinite case.
We can finally analyze the building blocks of Algorithm 1.
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Algorithm 1: AAKmethod

input : A trained LM-RNN M of unknown rank, a target number of states k
the size of the truncation n > k, a perturbation matrix Nn as in Section 3.2

output: A WFA Ânk of size k

Let H̃n ← GetHankel(M, n,Nn)

Let σnk , ξn ← ComputeEigenpair(H̃n)

Let Tn, zn defined as in Equation 7

Let ψ(z) = (zn)>Tnξn

(zn)>ξn

Let r(z)← ExtractRational(ψ(z))
Let Gn

k ← RecoverMatrix(r(z),k + 1)

Let Ânk ← SpectralMethod(Gn
k,B)

return Ânk

Filling the Matrix Following Ayache et al. (2018), we consider a trained LM-RNN, and
use it to fill the entries of a Hankel matrix Hn. We obtain a n × n Hankel matrix Hn,
having entries fn on the first n anti-diagonals, and zeroes everywhere else. As mentioned in
Section 3.2, we add a perturbation to Hn, i.e. a random Hankel matrix of noise Nn, which
can be set to zero when the singular numbers σk and σk−1 of H are known to be distinct.
The output of GetHankel is the perturbed matrix H̃n = Hn + Nn.

Computing a Schmidt Pair The function ComputeEigenpair returns the singular num-
ber σnk of H̃n, and a corresponding singular vector. Since H̃n has finite rank and is sym-
metric, its singular numbers are the absolute values of the corresponding eigenvalues, i.e.
σnk = |λk|. Analogously, given the eigenvalue λk and a corresponding eigenvector vnk , a
Schmidt pair is given by (ξn,ηn), with ξn = vnk , ηn = sgn(λk)v

n
k , and sgn(λk) = λk/|λk|.

Rational function From Theorem 6 we know that finite rank Hankel matrices correspond
to strictly proper rational functions, with all the poles inside the complex unit disc. In order
to find the best approximation, we apply Equation 2 from Theorem 9, and obtain a function
ψ(z) = a(z)

b(z) . Note that we are interested in keeping only r(z) = P−ψ(z), as ψ(z) might

contain poles outside the unit disc. Since the poles of ψ(z) correspond to the zeros of b(z),
we can isolate the part of the function with poles inside the unit disc using partial fraction
decomposition. This method allows us to rewrite the rational function ψ(z) = a(z)

b(z) as:

ψ(z) =
a(z)

b(z)
= c(z) +

∑
i

ai(z)

bi(z)
(8)

where each ai(z)
bi(z)

is a strictly proper rational function, and each factor bi of the denominator
is a power of an irreducible polynomial. Now, we analyze the zero of each bi: if it is outside or
on the complex unit disc, then we discard the term ai(z)

bi(z)
. The output of ExtractRational

is the sum of the remaining terms, corresponding to the component in H2
− of ψ(z). We

remark that the partial fraction decomposition can be computed efficiently, with the naive
implementation having complexity O(n3) for a fraction with n poles (Kung and Tong, 1977).
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Recovering the Matrix In the previous step we have obtained a strictly proper rational
function r(z) = p(z)

q(z) , where p(z) =
∑k

i=1 piz
k−i and q(z) = zk +

∑k
i=1 qiz

k−i are relatively

prime, and q(z) has degree k. As seen in subsection 2.4, if r(z) =
∑

n≥0 gnz
−n−1, then

Gn
k(j, k) = gj+k. The coefficients gi of the Hankel matrix can be recovered from the following

set of equations, obtained from the constructive proof of Theorem 6 (Chui and Chen, 1997):
g0 = p1

. . .

gk−1 = pk − gk−2q1 − · · · − g0qk−1


gk +

∑k
i=1 qigk−i = 0

gk+1 +
∑k

i=1 qigk+1−i = 0

. . .

. (9)

These equations form a linear system, which can be easily solved to derive the matrix Gn
k

of rank k having entries Gn
k(i, j) = gi+j . Note that to extract a WFA using the spectral

method we don’t actually need to compute all the coefficients of G. In fact, we will show
in the next paragraph that the first k + 1 coefficients are enough to retrieve the WFA.

Extracting the WFA We can finally recover the minimal WFA Ânk = 〈α,A,β〉 with k
states realizing the function g : Σ∗ → R such that Gn

k(i, j) = gi+j . We use the spectral
method outlined in subsection 2.2. The key point of the algorithm is to select a prefix-closed
and complete basis B. As noted before, since we are working with a one-letter alphabet, the
Hankel matrix G is symmetric. In this case, if Gn

k has rank k, then the size of the biggest
leading principal submatrix is k × k (Al’pin, 2017). Consequently, the natural choice for
B = (P,S) is to have P = S, with P containing all the strings having size strictly smaller
than k. Following the notation of Section 2.2, Hε corresponds to the k×k leading principal
submatrix of Gn

k , and hP,ε, hε,S are its first column and row, respectively. Finally, Ha is
the sub-block of Gn

k having the same rows as Hε, and the columns obtained by shifting

each individual column of Hε by one column. Using Equation 1 we obtain the WFA Ânk .

4. Error and Convergence

If the matrix of the LM-RNN has finite rank, the unique optimal approximation of size k
can be recovered, and the error, which can be computed using Gramian matrices, is given
by σk (Balle et al., 2021). Moreover, due to the ordering of the singular numbers, the
error is guaranteed to decrease when the size of the approximation gets closer to the actual
rank of the matrix. On the other hand, if the rank is not finite we can only recover an
asymptotically-optimal solution, and a bound for the error. As seen in Theorem 13, we can
estimate how far we are from the optimal error σk:

‖H−Gn
k‖ ≤ σk + 2

(
1−

n∑
i=0

f(i)

)
. (10)

We know that f ∈ `1, so f(n) → 0, meaning that “little” probability is allocated to very
long strings. Thus, a direct way to reduce the error is to select the biggest possible n. An
estimate for σk in terms of σnk can be obtained using Lemma 17 in Appendix B:

|σk − σnk | ≤ 1−
n∑
i=0

f(i). (11)
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An alternative way to reduce the error when additional information is available is to explore
other types of truncations, to try to improve the convergence rate (Chui and Li, 1994).

If a matrix of noise N is added to H (see Section 3.2), we need to consider its effect on
the error. Given the infinite matrix N, we consider the matrix Nn obtained by truncation
in a way analogous to Equation 4. We obtain the following bound (proof in Appendix B).

Theorem 14 Let Nn be defined as above, and let G̃n
k be an asymptotically-optimal (n, k)-

approximation of H̃n = Hn + Nn. Then the error is bounded by:

‖H− G̃n
k‖ ≤ ‖H−Gn

k‖+ 2‖Nn‖. (12)

This means that the additional error depends only on the norm of the matrix of noise. As
already noted, this can be chosen to be arbitrarily small, and since only a finite sub-block
of Nn is different from zero, its norm can be precisely computed.

Finally, as noted by Balle et al. (2021), the `2-norm is bounded by the spectral norm.

Theorem 15 Let f : N → R, H and Hn as before. Let Ânk be an asymptotically-optimal
(n, k)-approximation computing g : N→ R, with matrix Gn

k . Then: ‖f − g‖`2 ≤ ‖H−Gn
k‖.

A point deserving further investigation is to understand how our approximation method
performs with respect to other metrics (such as word error rate or normalized discounted
cumulative gain). This could help evaluate how meaningful it is to use the spectral norm
in an experimental setting, but the comparison is possible only for multi-letter alphabets.

5. Related Work

Several works in the literature analyze the relation between RNNs and WFAs. The work
of Rabusseau et al. (2019) highlight a structural correspondence between WFAs and second
order RNNs with linear activation function, showing that they are expressively equivalent.
Weiss et al. (2019) propose a method to extract probabilistic deterministic finite automata
from RNNs, based on conditional probabilities and on a local tolerance to compare observa-
tions. Analogously, Okudono et al. (2020) use spectral learning and regression methods to
extract a WFA from a RNN trained on rational languages. Ayache et al. (2018) and Eyraud
and Ayache (2020) propose a spectral algorithm to extract a WFA from a black box model
for language modelling, without accessing the training samples.

The approximate minimization problem has been studied also for other types of models.
For finite state machines, Balle et al. (2015, 2019) and Balle and Rabusseau (2020) present
a technique based on the canonical expressions of weighted and weighted tree automata,
respectively. Balle et al. (2021) use AAK theory to address the optimal spectral-norm
approximate minimization problem for a large class of WFAs over a one-letter alphabet.
The control theory community has studied this problem in the context of linear time-
invariant systems (Antoulas, 2005). A first approximation algorithm is due to Kung (1980);
Kung and Lin (1981), followed by state-space solutions from Glover (1984) and from Gu
(2005); Ball and Ran (1987); Chui and Chen (1997) for optimal continuous and sub-optimal
discrete case, respectively. The fundamental work of Chui et al. (1991, 1992); Chui and Li
(1994), that provides some of the theoretical results we used, analyzes the continuity of
approximation and truncation methods in signal processing.
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6. Conclusion

In this paper we studied the approximate minimization problem for black boxes trained for
language modelling of sequential data over a one-letter alphabet. To solve this problem, we
applied the AAK theory for Hankel operators (Adamyan et al., 1971) and continuity results
from the control theory literature (Chui and Li, 1994; Chui et al., 1991). This allowed us to
extended the contribution of Balle et al. (2021) to the case of infinite-rank Hankel matrices.
Given a language model and a target size as input, we provided an algorithm to extract a
WFA corresponding to an asymptotically-optimal approximation in the spectral norm. The
algorithm can be applied to black box models like RNNs or transformers.

The use of approximate minimization over regular extraction has the advantage that it
allows us to choose the size of the approximation and search the optimal WFA within this
constraint. This is particularly useful when the extracted WFA is used for interpretability.
In fact, every WFA has a graphical representation, but this is helpful only when the number
of states is small enough to actually make it readable. Moreover, approximate minimization
can be used to reduce the computational cost of the task considered, as the new model is
smaller and easier to compute than the original one.

While the choice of the spectral norm to evaluate the approximation deserves further
investigation, we think that it constitutes an interesting way to approach the problem of
approximating black boxes with WFAs. In particular, it allows us to precisely compute
the distance between different classes of models, for example RNNs and WFAs, and to
(asymptotically) find the optimal approximation of a given size.

The one-letter setting is certainly restrictive, but it is a first step towards developing
provable approximation algorithms for black box models. In fact, it allows us to introduce
AAK techniques in the context of black boxes for language modelling. The application of
this rich mathematical theory has shown to be very effective in areas like control theory or
signal processing, and our work highlights fruitful connections with these fields. Moreover,
one-letter alphabets have proven to be of independent interest when dealing with automata,
as in this case the classes of regular and of context-free languages collapse (Pighizzini, 2015).

The natural next step for future work is to extend our result to larger alphabets. This
cannot be done directly, since the correspondence with Hardy spaces holds only in the
one-letter case. Even though a non-commutative version of AAK theory has been recently
studied (Popescu, 2003), adapting this extension to functions on sequential data remains
challenging. Nonetheless, the strong theoretical foundations of this work, together with a
provable algorithm for the approximate minimization problem and the possibility to com-
pute the distance between different models, make this direction worth pursuing.
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1974.

Keith Glover. All Optimal Hankel–Nnorm Approximations of Linear Multivariable Sys-
tems and their L∞–Error Bounds. International Journal of Control, 39(6):1115–
1193, 1984. doi: 10.1080/00207178408933239. URL https://doi.org/10.1080/

00207178408933239.

Guoxiang Gu. All Optimal Hankel–Norm Approximations and their Eerror Bounds in
Discrete–Time. International Journal of Control, 78(6):408–423, 2005. doi: 10.1080/
00207170500110988.

Christian Albert Hammerschmidt, Sicco Verwer, Qin Lin, and Radu State. Interpreting
Finite Automata for Sequential Data, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

106

https://doi.org/10.1137/S0363012992232245
https://doi.org/10.1137/S0363012992232245
https://doi.org/10.1007/BF01211976
https://doi.org/10.1007/BF01211976
http://www.cs.nyu.edu/~mohri/postscript/jmlr.pdf
https://doi.org/10.1007/BF02288367
https://doi.org/10.1007/BF02288367
https://arxiv.org/abs/2009.13101
https://arxiv.org/abs/2009.13101
https://doi.org/10.1080/00207178408933239
https://doi.org/10.1080/00207178408933239


Extracting WFAs for Approximate Minimization

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735–1780, 1997.
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M. Krĕın and I. Gohberg. Introduction to the Theory of Linear Nonselfadjoint Operators
in Hilbert Space, volume 18 of Translations of Mathematical Monographs. American
Mathematical Society, 1969.

L. Kronecker. Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichun-
gen. Montasber. Königl. Preussischen Acad Wies, pages 535 – 600, 1881.

H. T. Kung and D. M. Tong. Fast Algorithms for Partial Fraction Decomposition. SIAM J.
Comput., 6(3):582–593, 1977. doi: 10.1137/0206042. URL https://doi.org/10.1137/

0206042.

Sun-Yuan Kung. Optimal Hankel-Nnorm Model Reductions: Scalar Systems. In Proceedings
of the 1980 Joint Automation Control Conference,San Francisco, CA, page Paper FA8.A,
1980.

Sun-Yuan Kung and David W. Lin. Optimal Hankel-Norm Model Reductions: Multivariable
Systems. IEEE Transactions Automation Control, 26:832–852, 1981.

Reda Marzouk and Colin de la Higuera. Distance and equivalence between finite state
machines and recurrent neural networks: Computational results, 2020.

William Merrill, Gail Weiss, Yoav Goldberg, Roy Schwartz, Noah A. Smith, and Eran
Yahav. A formal hierarchy of RNN architectures. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 443–
459. Association for Computational Linguistics, 2020. doi: 10.18653/v1/2020.acl-main.43.
URL https://doi.org/10.18653/v1/2020.acl-main.43.

Zeev Nehari. On Bounded Bilinear Forms. Annals of Mathematics, 65(1):153–162, 1957.

Nikolai K. Nikol’Skii. Operators, Functions and Systems: An Easy Reading, volume 92 of
Mathematical Surveys and Monographs. American Mathematical Society, 2002.

Takamasa Okudono, Masaki Waga, Taro Sekiyama, and Ichiro Hasuo. Weighted Au-
tomata Extraction from Recurrent Neural Networks via Regression on State Spaces. In

107

http://www.jstor.org/stable/24491887
http://www.jstor.org/stable/24491887
https://doi.org/10.1080/00029890.2004.11920060
https://doi.org/10.1137/0206042
https://doi.org/10.1137/0206042
https://doi.org/10.18653/v1/2020.acl-main.43


Extracting WFAs for Approximate Minimization

The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 5306–5314. AAAI Press, 2020. URL
https://aaai.org/ojs/index.php/AAAI/article/view/5977.

G. Pighizzini. Investigations on Automata and Languages Over a Unary Alphabet. Int. J.
Found. Comput. Sci., 26:827–850, 2015.

Gelu Popescu. Multivariable Nehari Problem and Interpolation. Journal of Functional
Analysis, 200:536–581, 2003. ISSN 0022-1236. doi: 10.1016/S0022-1236(03)00078-8.
URL https://doi.org/10.1016/S0022-1236(03)00078-8.

Guillaume Rabusseau, Tianyu Li, and Doina Precup. Connecting Weighted Automata
and Recurrent Neural Networks through Spectral Learning. In Kamalika Chaudhuri and
Masashi Sugiyama, editors, The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, volume 89 of
Proceedings of Machine Learning Research, pages 1630–1639. PMLR, 2019. URL http:

//proceedings.mlr.press/v89/rabusseau19a.html.
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Appendix A. Example

In this section we show an illustrative example, analogous to the one presented by Balle
et al. (2021).

We consider the function f : N→ R, computing a probability, defined as:

f(k) =

{
0 if k is odd
8
93−k if k is even

The corresponding Hankel matrix is:

H =


f(0) f(1) f(2) . . .
f(1) f(2) f(3) . . .
f(2) f(3) f(4) . . .
...

...
...

. . .

 =


8
9 0 8

81 . . .
0 8

81 0 . . .
8
81 0 8

729 . . .
...

...
...

. . .

 . (13)

If we consider the Hankel matrix with respect to the basis of the Hardy space, since
H(j, k) = φ̂(−j − k − 1), we have:

H =


8
9 0 8

81 . . .
0 8

81 0 . . .
8
81 0 8

729 . . .
...

...
...

. . .

 =


φ̂(−1) φ̂(−2) φ̂(−3) . . .

φ̂(−2) φ̂(−3) φ̂(−4) . . .

φ̂(−3) φ̂(−4) φ̂(−5) . . .
...

...
...

. . .

 .

and the rational component of a symbol for H is:

P−φ =
∑
n≥0

φ̂(−n− 1)z−n−1 =
∑
n≥0

8

9
9−nz−2n−1 =

8z

9z2 − 1
.

Appendix B. Proofs

Proof of Theorem 12

We briefly recall the following theorem, due to Nehari (1957), which will be used in the
proof of Theorem 12.

Theorem 16 (Nehari (1957)) Let φ ∈ L2(T) be a symbol of the Hankel operator on
Hardy spaces Hφ : H2 → H2

−. Then, Hφ is bounded on H2 if and only if there exists

ψ ∈ L∞(T) such that ψ̂(m) = φ̂(m) for all m < 0. If the conditions above are satisfied,
then:

‖Hφ‖ = inf{‖ψ‖∞ : ψ̂(m) = φ̂(m), m < 0}. (14)

We can now prove Theorem 12.
Proof Let f : N→ R be the function computed by the black box. We have:

‖H −Ht‖ ≤

∥∥∥∥∥
∞∑
i=0

f(i)z−i−1 −
t∑
i=0

f(i)z−i−1

∥∥∥∥∥
∞

≤

∥∥∥∥∥
∞∑

i=t+1

f(i)z−i−1

∥∥∥∥∥
∞

≤
∞∑

i=t+1

|f(i)| (15)
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where the first inequality follows from Theorem 16. Since the black box is trained for
language modelling, we have that

∑
k≥0 |f(k)| = 1. Thus, f ∈ `1, and it follows directly

that Ht → H.

Proof of Theorem 13

We recall the following result from Riesz and Szökefalvi-Nagy (1955) (see Krĕın and Gohberg
(1969) for the proof and for a more general version of this theorem), as it constitutes a
fundamental step in the proof of Theorem 13.

Lemma 17 (Riesz and Szökefalvi-Nagy (1955)) Let T, S be two self-adjoint compact
operators, and let σTk , σSk for k ≥ 0 be their singular numbers. Then:

|σTk − σSk | ≤ ‖S−T‖. (16)

We can now prove Theorem 13.
Proof Let σnk be the singular number k+ 1 of the operator Hn, and let Gn

k be the optimal
approximation described by Theorem 8, i.e. ‖Hn −Gn

k‖ = σnk . We have:

‖H−Gn
k‖ ≤ ‖H−Hn‖+ ‖Hn −Gn

k‖ = ‖H−Hn‖+ σnk .

From Theorem 3 we know that ‖H−Gn
k‖ ≥ σnk . On the other hand, using Lemma 17 and

Cauchy’s interlace theorem (Hwang, 2004), we obtain σnk ≤ σk +‖H−Hn‖. It follows that:

σk ≤ ‖H−Gn
k‖ ≤ σk + 2‖H−Hn‖. (17)

Now, Hn belongs to the sequence of truncating matrices {Ht}t≥0, and Ht → H (Theo-
rem 12). Since σk 6= σk−1, the conditions of Theorem 11 hold. Therefore, the sequence of
matrices of best approximations {Gt

k}t≥0 is an asymptotic sequence for Gk, and Gk
n belongs

to it. Thus, the WFA having matrix Gk
n is an asymptotically-optimal (n, k)-approximation,

and Equation 3 holds. Moreover, from Equation 15, we have:

‖H−Gn
k‖ ≤ σk + 2‖H−Hn‖ ≤ σk + 2

∞∑
i=n+1

f(i) = σk + 2

(
1−

n∑
i=0

f(i)

)
. (18)

Proof of Theorem 14

Proof Let G̃n
k and σ̃nk be the optimal approximation and the (k + 1)-th singular number

of Hn + Nn, respectively. From Theorem 8 we have:

‖Hn + Nn − G̃n
k‖ = σ̃nk . (19)

Then:

‖H− G̃n
k‖ ≤ ‖H−Hn −Nn‖+ ‖Hn + Nn − G̃n

k‖
≤ ‖H−Hn‖+ ‖Nn‖+ σ̃nk

≤ ‖H−Hn‖+ 2‖Nn‖+ σnk

≤ σk + 2‖H−Hn‖+ 2‖Nn‖

111



Extracting WFAs for Approximate Minimization

where we used Equation 19 for the second step, and we used Lemma 17 for the last two
(first with σnk and σ̃nk , then with σnk and σk).

Proof of Theorem 15

Proof Let e0 =
(
1 0 · · ·

)>
, f : N → R, g : N → R with Hankel matrices H and Gn

k ,
respectively. Let Hn be the truncation of H. We have:

‖f − g‖`2 =

( ∞∑
n=0

|fn − gn|2
)1/2

= ‖(H−Gn
k)e0‖`2

≤ sup
‖x‖`2=1

‖(H−Gn
k)x‖`2

≤ ‖H−Gn
k‖

≤ σk + 2

(
1−

n∑
i=0

f(i)

)
.

The second equation follows by definition and by observing that matrix difference is always
computed entry-wise, while the last inequality is a consequence of Equation 5.
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