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Abstract

The notion of process equivalence of probabilistic processes is sensitive to the exact prob-
abilities of transitions. Thus, a slight change in the transition probabilities will result in two
equivalent processes being deemed no longer equivalent. This instability is due to the quan-
titative nature of probabilistic processes. In a situation where the process behaviour has a
quantitative aspect there should be a more robust approach to process equivalence. This paper
studies a metric between labelled Markov processes. This metric has the property that processes
are at zero distance if and only if they are bisimilar. The metric is inspired by earlier work on
logics for characterizing bisimulation and is related, in spirit, to the Kantorovich metric.

1 Introduction

Probability, like nondeterminism, is an abstraction mechanism used to hide inessential or unknown
details. Statistical mechanics — originated by Boltzmann, Gibbs, Maxwell and others — is the
fundamental successful example of the use of the probabilistic abstraction. What makes it success-
ful is that an intractable number of exact mechanical equations are replaced by a much smaller,
tractable number of relations between suitable averages of mechanical quantities.

Similarly, in our models we use probabilities to average over, and thus abstract away, the effects
of a myriad details - some of which may be impossible to observe in practice - that would have
made the transition systems determinate. Our investigations are concerned with the development
of contextual reasoning principles for concurrent interacting probabilistic systems. Consider the
following paradigmatic examples.
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Example 1.1 A paper by by Alur et. al. [AJKvO97] analyzes a component of the Lucent Tech-
nologies’ 5ESS eR telephone switching system that is responsible for detecting malfunctions on the
hardware connections between switches. This component responds to alarms generated by another
complicated system that is only available as a black-box. A natural model to consider for the black-
box is a stochastic one, representing the timing and duration of the alarm by random variables with
a given probability distribution. The paper [AJKvO97] shows that the desired properties hold with
high probability, showing that the component being analyzed approximates the idealized behavior
with sufficient accuracy.

Example 1.2 Consider model-based diagnosis settings. Often information about failure models
and their associated probabilities is obtained from field studies and studies of manufacturing prac-
tices. Failure models can be incorporated by assigning a variable, called the mode of the component,
to represent the physical state of the component, and associating a failure model with each value
of the mode variable. Probabilistic information can be incorporated by letting the mode vary ac-
cording to the given probability distribution [dKW89]. The diagnostic engine computes the most
probable diagnostic hypothesis, given observations about the current state of the system.

These examples illustrate the modes of contextual reasoning that interest us. In the first example,
we are interested in exploring whether the analyzed component c can substitute for the idealized
behavior i in arbitrary program contexts; i.e. for some context C[·], does C[c] continue to approxi-
mate C[i]. Similarly, in the second example, we are looking to see the extent to which systems with
similar failure behaviors are inter-substitutable. Such a question perforce generalizes the study of
congruences elaborated by the theory of concurrency. The theory of concurrency performs a study
of “exactly inter-substitutable” processes with temporal behavior. In the probabilistic context, the
extant notions of bisimulation (or any process equivalence for that matter) are too sensitive to
the probabilities; a slight perturbation of the probabilities would make two systems non-bisimilar.
The examples motivate a shift to the study of the more robust notion of “approximately inter-
substitutable”.

The next example illustrates a deeper interaction of the temporal and probabilistic behavior of
processes.

Example 1.3 Consider a producer and a consumer process connected by a buffer, where the
producer is, say, a model of a network. Examples of this kind are studied extensively in the
performance modelling of systems. In a model of such a system, probability serves to abstract
the details of the producer (resp. consumer) process by considering rates of production (resp.
consumption) of data based on empirical information. This model can be analyzed to calculate the
number of packets lost as a function of the probabilities and the buffer size. The analysis aids in
tuning system parameters, e.g. to optimize the buffer size. These studies are often couched in terms
of asymptotic/stationary behavior to abstract over the transient behavior associated with system
initialization (such as large bursts of communication) evident when the system begins execution.

Such examples motivate the study of equality notions based on “eventually approximately inter-
substitutable” processes.

1.1 Our results

Partial labelled Markov processes are the probabilistic analogs of labelled transition systems; they
have state spaces that might be continuous. In this model “internal choice” is modelled prob-
abilistically and the so-called “external choice” is modelled by the indeterminate actions of the
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environment. The starting point of our investigation is the study of strong bisimulation for pro-
cesses. This study was initiated by Larsen and Skou [LS91] for discrete processes in a style similar
to the queueing theory notion of “lumpability.” This theory has been extended to continuous-state
spaces and continuous distributions [DEP98, DEP02]. These papers provided a characterization of
bisimulation using a negation-free logic L.

In the context of the earlier discussion, we note that probabilistic bisimulation is too “exact” for
our purposes — intuitively, two states are bisimilar only if the probabilities of outgoing transitions
match exactly, motivating the search for a relaxation of the notion of equivalence of probabilistic
processes. Giacalone, Jou and Smolka [GJS90] note that the idea of saying that “processes that
are close should have probabilities that are close” does not yield a transitive relation, as illustrated
by an example due to van Breugel [vBa]. This leads them to propose that the correct formulation
of the “nearness” notion is via a metric.

A metric d is a function that yields a real number distance for each pair of processes. It
should satisfy the usual metric conditions: d(P,Q) = 0 implies P is bisimilar to Q1, d(P,Q) =
d(Q,P) and d(P,R) ≤ d(P,Q) + d(Q,R). Inspired by the Kantorovich metric2 on probability
measures [Kan40, Hut81], we demand that d obey a certain “contractivity” property, an idea best
conveyed via a concrete example.

Example 1.4 Consider the family of processes {Pε | 0 ≤ ε < r} where Pε = ar−ε.Q, i.e. Pε
is the process that does an a with probability r − ε and then behaves like Q. We demand that:
d(Pε1 ,Pε2) ≤ |ε1 − ε2|. This implies that Pε converges to P0 as ε tends to 0.

Metrics on processes The basic intuition behind our metrics is as follows. In view of our earlier
results on the logical characterization of bisimulation, we know that if two processes are not bisimilar
there will be a formula that distinguishes them. We measure the distance between processes in
terms of the smallest formula required to distinguish them. If the formula is very large then only a
long sequence of observations will distinguish the processes. This view, as stated, does not take into
account the fact that the processes might differ immediately but do so with probabilities that are
very close. Thus we need some quantitative analogue of the notion of logical formula. Our technical
development of these intuitions is based on an idea expounded by Kozen [Koz85] to generalize logic
to handle probabilistic phenomena.

Classical logic Generalization
Truth values {0, 1} Interval [0, 1]

Propositional function Measurable function
State Measure

The satisfaction relation |= Integration
∫

Just as the satisfaction relation, |=, links states and formulas to give truth values so the integral
links measures (generalized states) with measurable functions (generalized formulas) to give real
numbers (generalized truth values).

Following these intuitions, we consider a class F of functions that assign a value in the interval
[0, 1] to states of a process. These functions are inspired by the formulas of L — the result of

1Actually this is a pseudo-metric, in a metric we would have to insist that d(P,Q) = 0 implies that P = Q. On
the bisimulation equivalence classes we have a metric. We will continue to say “metric” in this paper rather than the
more accurate “pseudo-metric.”

2In previous drafts we called this the “Hutchinson metric” but a careful historical search by Franck van Breugel
reveals far earlier work by Kantorovich and also Vaserstein.
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evaluating these functions at a state corresponds to a quantitative measure of the extent to which
the state satisfies a formula of L. The identification of this class of functions is a key contribution
of this paper, and motivates a metric d:

d(P,Q) = sup{|f(p0)− f(q0)| | f ∈ F}.

In Section 5, we formalize the above intuitions to define a family of metrics {dc | c ∈ (0, 1]}.
These metrics support the spectrum of possibilities of relative weighting of the two factors that
contribute to the distance between processes: the complexity of the functions distinguishing them
versus the amount by which each function distinguishes them. The metric d1 captures only the
differences in the probabilities; probability differences at the first transition are treated on par with
probability differences that arise very deep in the evolution of the process. In contrast, dc for c < 1
give more weight to the probability differences that arise earlier in the evolution of the process, i.e.
differences identified by simpler functions. As c approaches 0, the future gets discounted more.

As is usual with metrics, the actual numerical values of the metric are less important than
properties like the significance of zero distance, relative distance of processes, contractivity and the
notion of convergence3.

Example 1.5 Consider the process P with two states, and a transition going from the start state
to the other state with probability p. Let Q be a similar process, with the probability q. Then in
Section 5, we show that dc(P,Q) = c|p − q|. Now if we consider P ′ with a new start state, which
makes a b transition to P with probability 1, and similarly Q′ whose start state transitions to Q
on b with probability 1, then dc(P ′,Q′) = c2|p− q|, showing that the next step is discounted by c.

Each of these metrics agree with bisimulation:

dc(P,Q) = 0, iff P and Q are bisimilar.

For c < 1, we show how to compute dc(P,Q) to within ε.

An “asymptotic” metric on processes. The dc metric (for c < 1) is more heavily influenced
by the initial transitions of a process — processes which can be differentiated early are far apart.
For each c ∈ (0, 1], we define a dual metric dc∞ (Section 8) on processes to capture the idea that
processes are close if they have the same behavior “eventually”, thus disregarding their initial
behavior. Informally, we proceed as follows. Let P after s stand for the process P after exhibiting
a trace s; of course this is not uniquely defined. Then, the j’th distance dcj between P,Q after
exhibiting traces of length j is defined by

sup{dc(P after s,Q after s) | length(s) = j}

where the sup is computed over all possible processes that might result after P andQ have exhibited
the trace s. The asymptotic distance between P,Q is given by the appropriate limit of the dcj ’s:

dc∞(P,Q) = lim sup
i→∞ j>i

dcj(P,Q).

3See, however, the recent paper by van Breugel and Worrell [vBW01b] for a contrasting view.
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A process algebra of probabilistically determinate processes In order to illustrate the
properties of the metrics via concrete examples, we use an algebra of probabilistically determinate
processes and a (bounded) buffer example coded in the algebra (Section 7). This process algebra has
input and output prefixing, parallel composition and a probabilistic choice combinator. We do not
consider hiding since this paper focuses on strong (as opposed to weak) probabilistic bisimulation.

We show that bisimulation is a congruence for all these operations. Furthermore, we generalize
the result that bisimulation is a congruence, by showing that process combinators do not increase
distance in any of the dc metrics. Formally, let dc(Pi,Qi) = εi. For every n-ary process combinator
C[X1, . . . , Xn], we have

dc(C(P1, . . . ,Pn), C(Q1, . . . ,Qn)) ≤
∑
i

εi.

Prefixing and parallel composition combinators do not increase dc∞. However, the probabilistic
choice combinator is not contractive for dc∞.

Organization of this paper The rest of this paper is organized as follows. First, in Section 2,
we review the notions of process and probabilistic bisimulation and associated results to make the
paper self-contained. We next present (Section 4) an alternate way to study processes using real-
valued functions and show that this view presents an alternate characterization of probabilistic
bisimulation. In Section 5, we define a family of metrics and illustrate with various examples.
The following section 7 describes a process algebra of probabilistically determinate processes. We
conclude with a section 8 on the asymptotic metric.

2 Background

This section on background recalls definitions from previous work on partial labelled Markov pro-
cesses [BDEP97, DEP98, LS91] and sets up the basic notations and framework for the rest of the
paper.

We define discrete and continuous processes separately. A reader interested only in the discrete
case can safely skip the section on continuous systems though the proofs are usually carried out for
the general case of continuous processes. The first section recalls the definition of labelled Markov
chains and bisimulation for them. We then give the extension of these definitions to continuous
state-space systems and finally we recall the logic and the logical characterization of bisimulation.

2.1 Labelled Markov chains

Definition 2.1 A labelled Markov chain with a label set A is a structure (S, s0, {τa | a ∈ A}),
where S is a countable set of states, s0 is the start state, and ∀a ∈ A.τa : S × S −→ [0, 1] is a
transition function such that ∀s ∈ S.

∑
t τa(s, t) ≤ 1.

A labelled Markov chain is finite if S is finite. There is no finite branching restriction; τa(s, t) can
be non-zero for countably many t’s. τa is extended to a function S × P(S) −→ [0, 1] by defining:
τa(s,X) =

∑
t∈X τa(s, t). We will assume a fixed finite set of labels A. We will often use the

expression finite process to mean labelled Markov chain.
We could have alternatively presented a labelled Markov chain as a structure (S, µ, {τa | a ∈ A})

where µ is an initial distribution on S. Given a labelled Markov chain with initial distribution µ,
one can construct an essentially equivalent4labelled Markov chain S ′ with initial state s′0 as follows.

4We do not mean bisimilar.
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S′ = S ∪ {s′0} where s′0 is a new state not in S; τ ′a(s
′, t′) = τa(s′, t′) if s′, t′ ∈ S; τ ′a(s

′, s′0) = 0, and
τ ′a(s

′
0, t

′) =
∑
τa(s′, t′)µ(s′).

We will freely move between the notions of initial state and initial distribution. For example,
when a transition on label l occurs in a labelled Markov chain S, there is a new initial distribution
given by µ′(t) =

∑
τa(s, t)× µ(s).

We recall the definition of bisimulation on labelled Markov chains from [LS91]. This notion
captures the idea that processes are equivalent if they react exactly the same way to all external
interactions in terms of accepting or rejecting actions. Thus we do not see the “internal dynamics”,
i.e. the state transitions but we do see whether an action is accepted or rejected and with what
probability.

Definition 2.2 A bisimulation between two processes S and S ′ is an equivalence relation R, on
S ] S′ such that whenever two states s ∈ S and s′ ∈ S′ are R-related, then for any label a and any
R-equivalence class of states C ⊆ S ∪ S′, τa(s, C) = τa(s′, C).

Two states are bisimilar if they are related by a bisimulation relation. We say that S and S ′
are bisimilar if their initial states are.

2.2 Continuous processes

We now turn to the general case of continuous processes. A labelled Markov process is a labelled
Markov chain with a continuous state space.

The extension to continuous state systems introduces some measure-theoretic subtleties. For
instance, we cannot ask for the transition probability to any set of states — we need to restrict
ourselves to measurable sets. In fact we need to assume metric space structure on the state space.
The classical theory of Markov processes is typically carried out in the setting of Polish spaces
rather than on abstract measure spaces. We work with analytic spaces which generalize Polish
spaces.

Definition 2.3 A labelled Markov process S with label set A is a structure (S, s0,Σ, {τa | a ∈
A}), where S is the set of states, s0 is the initial state, and Σ is the Borel σ-field on S, and

∀a ∈ A, τa : S × Σ −→ [0, 1]

is a transition sub-probability function, i.e., the set function τa(s, ·) is a (sub-)probability measure
for each fixed s ∈ S, and for each fixed X ∈ Σ the function τ(·, X) is a measurable function.

One interprets τ(s,X) as the probability of the process starting in state s making a transition into
one of the states in X. The transition probability is a conditional probability ; it gives the probability
of the process being in one of the states of the set X after the transition, given that it was in the
state s before the transition. In general the transition probabilities could depend on time, in the
sense that the transition probability could be different at every step (but still independent of past
history); we always consider the time-independent case.

We will work with sub-probability functions; i.e. with functions where τ(s, S) ≤ 1 rather than
τ(s, S) = 1. The mathematical results go through in this extended case. We view processes where
the transition functions are only sub-probabilities as being partially defined. The stochastic systems
studied in the literature are usually only the very special version where τ(s, S) is either 1 or 0. We
call such processes total and the general processes are called partial. We capture the idea that an
action is rejected by setting τ(s, S) to be 0. We will fix the label set to be A once and for all. The
resulting theory is not seriously restricted by this. We will write (S, s0,Σ, τ) for labelled Markov
processes, instead of the more precise (S, s0,Σ, {τa | a ∈ A}).
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Example 2.4 We give a simple example, taken from [DEP02], to illustrate the ideas. Consider a
process with two labels {a, b}. The state space is the real plane, R2. When the process makes an
a-move from state (x0, y0), it jumps to (x, y0), where the probability distribution for x is given by
the density Kα exp(−α(x− x0)2), where Kα =

√
α/π is the normalizing factor. When it makes a

b-move it jumps from state (x0, y0) to (x0, y), where the distribution of y is given by the density
function Kβ exp(−β(y − y0)2). The meaning of these densities is as follows. The probability
of jumping from (x0, y0) to a state with x-coordinate in the interval [s, t] under an a-move is∫ t
s Kα exp(−α(x−x0)2)dx. Note that the probability of jumping to any given point is, of course, 0.

In this process the interaction with the environment controls whether the jump is along the x-axis
or along the y-axis but the actual extent of the jump is governed by a probability distribution. If
there were just a single label we would have an ordinary (time-independent) Markov process.

The fundamental process equivalence that we consider is strong probabilistic bisimulation or
just “bisimulation” for the present paper. Probabilistic bisimulation means matching the moves
and probabilities — thus each system must be able to make the same transitions with the same
probabilities as the other. The definition that we use is an adaptation of the definition presented in
the previous section. In an earlier paper [BDEP97] we had introduced a version of this definition
based on categorical ideas but in the present paper we use a version much closer in form to that
of Larsen and Skou that we introduced in [DGJP00]. We also recapitulate the result on logical
characterization of bisimulation.

Let R be a relation on a set S. We say a set X ⊆ S is R-closed if R(X) = {t|∃s ∈ X, sRt} is a
subset of X. If R is reflexive, this becomes R(X) = X.

Definition 2.5 A bisimulation relation between two labelled Markov processes S = (S, s0,Σ, τ)
and S ′ = (S′, s′0,Σ

′, τ ′) is an equivalence relation R on S ]S′ such that, for s ∈ S and s′ ∈ S′, with
sRs′, for every R-closed set X ⊆ S ] S′ such that X ∩ S ∈ Σ and X ∩ S′ ∈ Σ′, we have

τa(s,X ∩ S) = τ ′a(s
′, X ∩ S′)

for every a ∈ A. Two states are bisimilar if they are related by a bisimulation relation. We say
that S and S ′ are bisimilar if their initial states are.

The intuition behind this definition is that the relation R relates those states that can be
“lumped” together. Bisimulation is obviously reflexive and symmetric. The logical characterization
of bisimulation shows that it is transitive.

2.3 Logical Characterization of Bisimulation

One can define a simple modal logic and prove that two states are bisimilar if and only if they satisfy
exactly the same formulas. Indeed for finite-state processes one can decide whether two states are
bisimilar and effectively construct a distinguishing formula in case they are not [DEP98, DEP02].

As before we assume that there is a fixed set of “actions” A. The logic is called L and has the
following syntax:

L := T | φ1 ∧ φ2 | 〈a〉qφ

where a is an action and q is a rational number. This is the basic logic with which we establish
the logical characterization. We introduce also a logic with disjunction, L∨, and its infinite version,
L∨:

L∨ := L | φ1 ∨ φ2
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Figure 1: Two processes which cannot be distinguished without negation in HML.

L∨ := L |
∞∨
i=1

φi.

Given a labelled Markov process S = (S, s0,Σ, τ) we write s |=S φ to mean that the state s
satisfies the formula φ in S, and we write JφKS for the set of states that satisfy φ. The definition
of the relation |= is given by induction on formulas – and one can prove along the way that JφKS is
always in Σ. The definition is obvious for the propositional constant T, conjunction and disjunction.
We say s |= 〈a〉qφ if and only if τa(s, JφKS) > q. In other words, the process in state s can make
an a-move to a state, that satisfies φ, with probability strictly greater than q5. We often omit the
subscript in JφKS and |=S when no confusion can arise.

The following example helps to illustrate some of the key aspects of the logic.

Example 2.6 (Example from [DEP98]) Consider the processes shown in Figure 1. They are both
nonprobabilistic processes. It is well known that they cannot be distinguished by a negation-free
formula of Hennessy-Milner logic; the process on the left satisfies 〈a〉¬〈b〉T while the process on
the right does not. However, for no assignment of probabilities are the two processes going to be
bisimilar. Suppose that the two a-labelled branches of the left hand process are given probabilities
p and q, assume that the b-labelled transitions have probability 1. Now if the right hand process
has its a-labelled transition given a probability anything other than p + q, say r > p + q we can
immediately distinguish the two processes by the formula 〈a〉p+qT which will not be satisfied by
the left hand process. If r = p+ q then we can use the formula 〈a〉r′〈b〉1/2T, where q < r′ < r. The
left hand process cannot satisfy this formula but the right hand one does unless p = 0 in which
case the processes are bisimilar.

The logic that Larsen and Skou used in [LS91] has more constructs than L, including disjunction
and some negative constructs. They show that for finitely branching systems6, two states of the
same process are bisimilar if and only if they satisfy the same formulas of their logic.

The main theorem relating the logic and bisimulation is the following. This was proved
in [DEP98, DEP02] for the categorical presentation of bisimulation and in [DGJP00] for the rela-
tional presentation.

Theorem 2.7 Let (S, s0,Σ, τ) be a labelled Markov process. Two states s, s′ ∈ S are bisimilar if
and only if they satisfy the same formulas of L.

A corollary to this theorem is that bisimulation is an equivalence relation.
5In our earlier work we had used ≥ instead of >.
6They actually use a stronger property, the “minimum deviation condition” which uniformly bounds the degree

of branching everywhere.
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The fact that a logic without negation and without infinitary conjunction is sufficient for pro-
cesses with infinite branching was somewhat of a surprise based on what we expect from the
nonprobabilistic case. It is even more surprising that this logical characterization goes through
even in the continuous case.

We now prove that every formula satisfied in a state of a countable process is witnessed by a
finite sub-process.

Definition 2.8 S = (S, s0,Σ, τ) is a sub-process of S ′ = (S′, s′0,Σ
′, τ ′) if (S,Σ) ⊆ (S′,Σ′) (this

means that the inclusion map S ⊆ S′ is measurable), s0 = s′0 and for every a ∈ A, s ∈ S, X ∈ Σ
we have τa(s,X) ≤ τ ′a(s,X).

Thus, a sub-process has fewer states and lower probabilities than the original process.

Lemma 2.9 Let P be a labelled Markov chain, p ∈ P and φ ∈ L∨ such that p |=P φ. Then there
exists a finite sub-process of P, Qp

φ, such that p ∈ Qpφ, and p |=Qp
φ
φ.

Proof The proof is by induction on φ. For T, the one state process containing p suffices. For
φ = φ1 ∧ φ2, we take the union of the finite processes, Qp

φ1
,Qp

φ2
given by the induction hypothesis,

which ensures that p |=Qp
φ
φ1 ∧ φ2. For disjunction,

∨∞
i=1 φi, we take Qp

φ1
(or any other Qp

φi
).

Let p |=P 〈a〉rψ. Then, since τa(p, JψKP) > r, there is a finite subset U = {p1, . . . , pn} ⊆ JψKP ,
such that τa(p, U) > r. The required finite process, Qp

〈a〉r.ψ is now constructed by taking the unions
of the finite processes, Qp1

ψ , . . . ,Q
pn

ψ , adding state p and the transitions from p to pi for i = 1 . . . n.

2.4 Simulation and Strict Simulation

This discussion of this subsection is taken from our paper on approximation [DGJP00, DGJP03].
The notion of simulation is the natural one-directional version of the definition of bisimulation.
Normally, the fact that the definition of bisimulation is coinductive means that, in general, two-way
simulation is not bisimulation. However, in the case of our reactive systems, two-way simulation is
bisimulation; this is in contrast with the usual situation with indeterminate processes. Furthermore,
when we make contact with domain-theoretic ideas the notion of simulation will correspond to the
domain ordering. Thus when we say S approximates S ′ we mean that S ′ simulates S. We also
introduce a concept called strict simulation which will correspond to the “way-below” relation.

Our definition of simulation follows [Des99b, DGJP03].

Definition 2.10 Let S = (S, i,Σ, τ) be a labelled Markov process. A reflexive and transitive rela-
tion (a preorder) R on S is a simulation if whenever sRs′, with s, s′ ∈ S, we have that for all
a ∈ A and every R-closed measurable set X, τa(s,X) ≤ τa(s′, X). We say s is simulated by s′ if
sRs′ for some simulation relation R.

R is a strict simulation if there is an ε > 0 such that for all R-closed X ∈ Σ, we have
τa(s,X) < τa(s′, X) − ε whenever τa(s,X) > 0. If we wish to emphasize the role of ε we will say
that R is an ε-strict simulation, and we will write Rε. We say s is simulated (strictly simulated)
by s′ if sRs′ for some simulation (resp. strict simulation) relation R.

Let S = (S, i,Σ, τ) and S ′ = (S′, i′,Σ′, τ ′) labelled Markov processes. S is simulated (strictly
simulated) by S if there is a simulation (resp. strict simulation) relation on some process U of which
S and S ′ are direct summands, relating i and i′ in U .
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Alternately, simulation on the states of a labelled Markov process can be viewed as the maximum
fixed point of the following (monotone) functional G on the lattice of preorders on (S × S,⊆),
defined as follows:

sG(R) t if for all a ∈ A, for all R-closed C ∈ Σ, τa(s, C) = τa(t, C)

We do not require U to be exactly S + S ′ but rather a sum of a number of processes, of which
are S and S ′. The proof of transitivity of simulation (resp. strict simulation) follows the transitivity
proof for bisimulation.

The logic L∨ - since it does not have negation - satisfies a basic monotonicity property with
respect to simulation.

Proposition 2.11 If s is simulated (or strictly simulated) by s′, then for all formulas φ ∈ L∨,
s |= φ implies s′ |= φ.

The converse of this result is also true and was proven in [DGJP00].

3 Approximating Labelled Markov Processes

In a recent paper [DGJP00, DGJP03] we developed a theory of approximation of labelled Markov
processes. Using this theory we can extend our results about the metric for the discrete case reported
in [DGJP99] to the continuous case. Defining the metrics for processes that have continuous state
spaces does not require the approximation theory, however showing certain properties of a class of
functions (that they characterize bisimulation) does use the approximation theory to lift the result
from the discrete case to the continuous case. Readers who are not interested in all the fine points
of the continuous case can skip this section without jeopardizing their understanding of the rest of
the paper.

In [DGJP00, DGJP03] we give an explicit concrete construction of the approximants and also a
deeper domain-theoretic analysis of the notion of the approximants. In the present summary we will
entirely skip the domain theory and talk about the explicit construction only. In a short section
after the introduction of the metric we show that these approximants converge to the original
process being approximated in the metrics of the present paper. In the approximants paper we
justified the notion of approximation by establishing that the approximants form a directed set in
a suitable ordering and the sup of the approximants gives back the labelled Markov process being
approximated.

The key tool in our analysis is the construction of some approximants via an “unfolding”
construction. As the approximation is refined there are more and more transitions possible. There
are two parameters to the approximation, one is a natural number n, and the other is a positive
rational ε. The number n gives the number of successive transitions possible from the start state.
The number ε measures the accuracy with which the probabilities approximate the transition
probabilities of the original process.

Given a labelled Markov process S = (S, i,Σ, τ), an integer n and a rational number ε > 0, we
define S(n, ε) to be an n-step unfolding approximation of S. Its state-space is divided into n + 1
levels which are numbered 0, 1, . . . , n. At each level, say n, the states of the approximant are the
elements of a partition of S; these partitions correspond to the equivalence classes corresponding to
the level n approximation to bisimulation. The initial state of S(n, ε) is at level n and transitions
only occur between a state of one level to a state of one lower level. Thus, in particular, states of
level 0 have no outgoing transitions. In the following we omit the curly brackets around singletons.
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Definition 3.1 Let (S, i,Σ, τ) be a labelled Markov process, n ∈ N and ε a positive rational. We
denote the finite-state approximation by S(n, ε) = (P, p0, ρ) where P is a subset of Σ×{0, . . . , n}. It
is defined as follows, for n ∈ N and ε > 0. S(n, ε) has n+ 1 levels. States are defined by induction
on their level. Level 0 has one state (S, 0). Now, given the sets from level l, we define states of
level l+ 1 as follows. Suppose that there are m states at level l, we partition the interval [0, 1] into
intervals of size ε/m. Let (Bj)j∈I stand for this partition; i.e. for {{0}, (0, ε/m], (ε/m, 2ε/m], . . . }.
States of level l + 1 are obtained by the partition of S that is generated by the sets τa(·, C)−1(Bj),
for every set C corresponding to state at level l and every label a ∈ {a1, . . . , an}, i ∈ I. Thus, if a
set X is in this partition of S, (X, l + 1) is a state of level l + 1. Transitions can happen from a
state of level l + 1 to a state of level l, and the transition probability function is given by

ρa((X, k), (B, l)) =

{
inf
t∈X

τa(t, B)
)

if k = l + 1,

0 otherwise.

The initial state p0 of S(n, ε) is the unique state (X,n) such that X contains i, the initial state
of S.

If B = ∪Bj , is a (finite and disjoint) union of sets at the same level (i.e. (Bj , l) ∈ S(n, ε)), we
will write ρa((X, l + 1), (B, l)) to mean

∑
j∈I ρa((X, l + 1), (Bj , l)). If s ∈ S, we denote by (Xs, l)

the unique state at level l such that s ∈ Xs.

Proposition 3.2 ([DGJP03]) Every labelled Markov process S simulates all its approximants
S(n, ε). More precisely, every state (X, l) of S(n, ε) (l ≤ n) is simulated by every state s ∈ X of S.

The next theorem is a key result about our concrete approximations.

Theorem 3.3 If a state s ∈ S satisfies a formula φ ∈ L∨, then there is some approximation S(n, ε)
such that (Xs, n) |= φ.

This result can be used to prove that the space of all labelled Markov processes has a countable
subset, the rational trees, which serves to approximate all labelled Markov processes. For brevity
we will just say “rational tree” when we mean a finite-state process with a tree-like transition graph
and rational transition probabilities. Moreover, this countable family of rational trees capture all
properties of L∨ of labelled Markov processes

Theorem 3.4 ([DGJP03]) Given any labelled Markov process S there is a directed set of rational
trees Ti with each Ti being strictly simulated by S and such that any logical formula satisfied by S
is satisfied by some Ti.

4 A real-valued logic on labelled Markov processes

In this section, following Kozen [Koz85], we present an alternate characterization of probabilistic
bisimulation using functions into the reals instead of the logic L. We define a set of functions which
are sufficient to characterize bisimulation. It is worth clarifying our terminology here. We define
a set of functional expressions by giving an explicit syntax. A functional expression becomes a
function when we interpret it in a system. Thus we may loosely say “the same function” when
we move from one system to another. What we really mean is the “same functional expression”;
obviously it cannot be the same function when the domains are different. This is no different from
having syntactically defined formulas of some logic which become boolean-valued functions when
they are interpreted on a structure.
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Definition 4.1 For each c ∈ (0, 1], we consider a family Fc of functional expressions generated by
the following grammar.

f := 1 | 1− f | 〈a〉f | min(f1, f2) | sup
i∈N

fi | f � q,

where q is a rational. Fc
+ is the sub-collection of Fc that does not use the negation functional 1−f

and Finc+ is the sub-collection of Fc
+ that uses finite sup.

The interpretation is as follows. Let S = (S, s0,Σ, τ) be a labelled Markov process. We write
fS : S −→ [0, 1] for the interpretation of f ∈ Fc on S and drop the subscript when no confusion can
arise. Let s ∈ S. Then

1(s) = 1,
(1− f)(s) = 1− f(s),

〈a〉f(s) = c

∫
S
f(t)τa(s, dt),

(f � q)(s) = max(f(s)− q, 0),

and min and sup are defined in the obvious way.

In the interpretation of 〈a〉f , the c refers to the constant in Fc; this is the only place where
an explicit mention of c occurs. It is useful to emphasis concisely the semantics we want to use,
since we never work with functionals that have different parameters. The role of c is to discount
the effect of future actions. For c = 1 all transitions are counted equally even if they are far into
the future.

Note that in [DGJP99], f�q was written bfcq and that we had an additional functional written
dfeq = min(f, q). The latter is not necessary since it can be represented by using the functional
min and the constant function q := 1 � (1 − q). We use 〈a〉nf to represent 〈a〉 · · · 〈a〉f where 〈a〉
appears n times.

One can informally associate functional expressions with every connective of the logic L in the
following way. T is represented by the functional 1 and conjunction by min. The contents of the
connective 〈a〉q is split up into two expressions: 〈a〉f , which intuitively corresponds to prefixing,
and f � q, which captures the “greater than q” idea.
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Figure 2: Labelled Markov chains

Example 4.2 Consider the finite processes A1 and A2 of Figure 2. The functional expression
(〈a〉1) of Fc evaluates to c at states s0, s2 of both A1 and A2; it evaluates to 0 at states s1, s3 of
A1 and s3, s4 of A2, and it evaluates to c/2 at state s1 of A2. The functional expression (〈a〉.〈a〉1)
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evaluates to 3c2/4 at states s0 of A1, A2 and to 0 elsewhere. The functional expression (〈a〉(〈a〉1� c
2))

evaluates to 3c2/8 at state s0 of A1 and to c2/4 at state s0 of A2. This example shows the need for
the connective � in the functional expressions. Without it there would be no way of distinguishing
these two. Note, however, that this example relies on the fact that one can have subprobability
distributions associated with a labelled transition. If we insisted that all probability distributions
had to be normalized then functional expressions without � would suffice[dA].

s0

a[1]

��
s0

a[0.4]

��

A3 A4

Figure 3: Labelled Markov chains

Example 4.3 Consider the finite process A3 of Figure 3 and functionals of Fc. A functional
expression of the form (〈a〉n.1) evaluates to cn at state s0. On state s0 of process A4 the same
functional expression evaluates to (c× 0.4)n.

A routine induction on the structure of the functional expression f ∈ Fc
+, shows:

Lemma 4.4 If S is simulated by S ′, then ∀s, s′ such that s and s′ are related by the simulation
relation we have

(∀f ∈ Fc
+) [fS(s) ≤ fS′(s′)].

The next several lemmas and their corollaries - from 4.5 to 4.8 - are aimed at proving that the
functional expressions characterize bisimulation. The proof below uses our earlier results [DEP98]
on logical characterization of bisimulation. It is also possible to proceed directly, essentially using
the same techniques readapted to functional expressions. However, we will not pursue such a proof
here because the proof below also shows how the functional expressions and the logical formulas
are related.

For any finite process P and any formula, there is a functional from Fc
+ which distinguishes

between states of P that do or do not satisfy the formula. This functional furthermore gives a zero
value to any state of any process that does not satisfy the formula.

Lemma 4.5 Given φ ∈ L∨, a finite process P, and c ∈ (0, 1], there is a functional expression
f ∈ Fc

+ such that

1. ∀p ∈ P we have fP(p) > 0 iff p |=P φ;

2. for any state s of any labelled Markov process S, we have fS(s) > 0 ⇒ s |=S φ.

Proof The proof is by induction on the structure of φ. The key case is φ = 〈a〉qψ, let g be the
functional expression corresponding to ψ yielded by induction. Let x = min{g(t) | t ∈ JψKP}. By
induction hypothesis, x > 0. Recall that a constant function 1 − q on processes can be obtained
with the functional 1 � q: consequently we can legitimately use the notation min(g, x) to mean
min(g,1 � (1 − x)). Consider the functional expression f given by (〈a〉min(g, x)) � cxq. For all
t ∈ JψKP , min(g, x)(t) = x. Now for any state p ∈ P ,

〈a〉min(g, x)(p) = cx
∑

t∈JψKP

τa(p, t) = cxτa(p, JψKP).
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Now the last expression is > cxq if and only if p ∈ J〈a〉q.ψKP . Thus f satisfies the first condition.
The second condition holds because for any s ∈ S, 〈a〉min(g, x)(s) ≤ cxτa(s, JψKS), so if s 6|= φ

then τa(s, JψKS) ≤ q and hence f(s) = 0.

Note that if the formula is finite, then the corresponding functional lies in Finc+. The previous
lemma can be partially extended to arbitrary labelled Markov processes. In this case, the functional
corresponding to a formula does not work for every state of the process. The functional will depend
on the states and the formula must be finite. We give different proofs for the two cases.

Corollary 4.6 Given φ ∈ L∨, a labelled Markov chain P, c ∈ (0, 1] and a state p ∈ P , if p |=P φ,
then there exists f ∈ Finc+ such that

1. fP(p) > 0 and

2. for any state s of any labelled Markov process S, we have fS(s) > 0 ⇒ s |=S φ.

Proof Let p be a state in P such that p |=P φ. By Lemma 2.9, there is a finite sub-process Qp
φ

of P such that p |=Qp
φ
φ. By Lemma 4.5, ∃f ∈ Finc+ such that fQp

φ
(p) > 0 and for any process

S, ∀s ∈ S, fS(s) > 0 ⇒ s |= φ. By Lemma 4.4, fP(s) > fQp
φ
(s) > 0, so f satisfies the conditions

required by the lemma.

Corollary 4.7 Given φ ∈ L∨, a labelled Markov process S, c ∈ (0, 1] and a state s ∈ S, if s |= φ,
then there exists f ∈ Finc+ such that

1. fS(s) > 0;

2. for any state s′ of any other labelled Markov process S ′, we have fS′(s′) > 0 ⇒ s′ |= φ.

Proof Let S be an arbitrary process and φ ∈ L∨. Let s be a state in S such that s |= φ. By
Theorem 3.3 there is a finite approximation P of S and a state ps ∈ P such that ps |= φ. By
Lemma 4.5, ∃f ∈ Finc+ such that fP(ps)0 and for any process S ′, ∀s′ ∈ S′.s′ 6|= φ ⇒ fS′(s′) = 0.
By Lemma 4.4, fS(s) > fP(ps) > 0, thus f satisfies above conditions 1. and 2.

Corollary 4.8 Given φ ∈ L∨ and c ∈ (0, 1], there exists fφ ∈ Fc
+ such that for every state s of

any labelled Markov process S,
fφ(s) > 0 ⇔ s |= φ.

Proof Recall from Theorem 3.4 that approximations can be replaced by a countable family of finite
trees. Take the sup of the functions given by Lemma 4.5 corresponding to φ for the (countably
many) rational trees. This function has the desired property for every state of the rational trees
and hence, by Lemma 4.4, it also works for every state of every labelled Markov process.
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Example 4.9 fφ satisfies:

• fT = 1

• For any state s in process S, f〈a〉qT(s) = max(τa(s, S)− q, 0).

• fφ∧ψ = min(fφ, fψ)

• fφ∨ψ = max(fφ, fψ)

The next result says that functions are sound and complete for bisimulation.

Theorem 4.10 For any labelled Markov processes S, S ′, ∀c ∈ (0, 1],

s ∈ S and s′ ∈ S′ are bisimilar iff (∀f ∈ Finc+) [fS(s) = fS(s′)]

Note that the left-to-right direction is also true for any functional of Fc but Finc+ is enough for
the other direction.

Proof (⇒) : We show that for any bisimulation R, sRs′ implies that (∀f ∈ Fc) [fS(s) = fS′(s′)].
The proof proceeds by induction on the structure of the functional expression f . The key case is
when f is of the form (〈a〉g). Then we would like to show that

∫
t∈S g(t)τa(s, dt) =

∫
t∈S′ g(t)τ

′
a(s

′, dt).
Consider any simple function h approximating g, with values vi, i = 1 . . . n, defined by h(s) =
max{vi | vi ≤ g(s)}. Then the set Si = h−1(vi) ⊆ S ∪ S′ is measurable because it is g−1([vi, vi+1))
and it is R-closed because if t ∈ Si and tRt′ then by induction g(t) = g(t′), so t′ ∈ Si. Thus
τa(s, Si) = τ ′a(s

′, Si), which shows the result.
(⇐) : Assume that s and s′ are not bisimilar. Then there is a formula φ of L such that s |= φ

and s′ 6|= φ (or the converse). ByCorollary 4.7,there is a functional expression f ∈ Finc+ such that
fS(s) > 0 and fS′(s′) = 0.

Given that we now know that functional expressions characterize bisimulation and that logical
formulas also characterize bisimulation we immediately get:

Corollary 4.11 For any process S, (∀c ∈ (0, 1]), ∀s, s′ ∈ S

[(∀φ ∈ L) s |=S φ⇔ s′ |=S′ φ] ⇔ (∀f ∈ Fc) [fS(s) = fS′(s′)].

Note that for the L sub-fragment of the logic, the resulting function is in Finc+.
The following example shows that the conditional functional expressions are necessary.

Example 4.12 Consider the processes A1, A2 of Figure 2. The calculations of Example 4.2 show
that the s0 states of A1, A2 are distinguishable. Furthermore, the states are indistinguishable if
we use only the functionals 1,1− f, 〈a〉f,min(f1, f2), supi∈N fi. Thus, Example 4.2 shows that the
functional expression f � q is indeed necessary.

So far we have shown that functional expressions are just as good for characterizing bisimulation
as were logical formulas. We are now in a position to use the extra information in the functions to
define a metric.

15



5 Metrics on Processes

In the present section we introduce the notion of metrics between processes. Intuitively the metrics
measure how “visibly” different the processes are. In terms of logic one can say that two processes
are very close if the formulas that tell them apart are very complex. To capture this intuition
quantitatively we use the functions introduced in the last section. There is now a second notion of
how far apart processes are; the distinguishing functions could have values which are very different
or only slightly different. We actually study a family {dc | c ∈ (0, 1] of definitions which assign
different weights to these differences7. The main results of this section are:

• We show that each dc, c ∈ (0, 1] is a metric. In particular, processes at 0 distance are bisimilar.
The finite representation results of [DGJP00, DGJP03] show that the space of processes is a
separable metric space for each of these metrics.

• We describe some perturbation results — informally, we show that small perturbations of the
probabilities in a process yields a process that is within a small distance of the unperturbed
process.

• The definition of the metric has a quantification over all functional expressions. To ease
working with metrics, we show that for c < 1, there is a single function that characterizes the
ε balls around a given state.

• For c < 1, we show that that the problem d(S,S ′) < ε is decidable.

Definition 5.1 Each collection Fc of functional expressions induces a distance function as follows:

dc(P,Q) = sup
f∈Fc

|fP(p0)− fQ(q0)|.

Theorem 5.2 For all c ∈ (0, 1], dc is a metric.

Proof The transitivity and symmetry of dc are immediate. dc(S,S ′) = 0 iff S and S ′ are bisimilar
follows from Theorem 4.10.

This definition is close in form to the definition of the Kantorovich metric [Hut81] which is
used in the theory of optimal transport problems and also in the theory of fractals by Hutchinson.
The difference is in the class of functions used. In the Kantorovich metric one uses the family of
Lipschitz8 functions. In our case the underlying state space is not a metric space9 so we cannot
really talk about Lipschitz functions. However - in a sense - these functions are really close to being
Lipschitz. In suitable situations, one can show that our functions are dense in the class of Lipschitz
functions.

We study the family of metrics {dc | c ∈ (0, 1]}. These metrics support the spectrum of possibil-
ities of relative weighting of the two factors that contribute to the distance between processes: the
complexity of the functions distinguishing them versus the amount by which each function distin-
guishes them. d1 captures only the differences in the probability numbers; probability differences
at the first transition are treated on par with probability differences that arise very deep in the
evolution of the process. In contrast, dc for c < 1 give more weight to the probability differences

7There are other interesting notions of metric that we do not address here.
8With Lipschitz constant 1 these are just the contractive functions.
9It is of course metrizable being analytic.
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that arise earlier in the evolution of the process, i.e. differences identified by simpler functions. As
c approaches 0, the future gets discounted more.

As is usual with metrics, the actual numerical values of the metric are less important than
the notions of convergence that they engender. Thus, we take the uniformity view of metrics,
e.g. see [Ger85]10, and will view the metric via properties like the significance of zero distance,
relative distance of processes, contractivity and the notion of convergence rather than a detailed
justification of the exact numerical values.

Example 5.3 The analysis of Example 4.12 yields dc(A1, A2) = c2/4. This is witnessed by the
functional 〈a〉min(〈a〉1, (1− 〈a〉1) � (1− c)).

Example 5.4 (Analysis of Example 1.4) Consider the family of processes {Pε | 0 ≤ ε < r} where
Pε = ar−ε.Q, i.e. Pε is the process that does an a with probability r − ε and then behaves like Q.
The function expression (〈a〉1) evaluates to (r − ε)c at Pε. This functional expression witnesses
the distance between any two P’s (other functions will give smaller distances). Thus, we get
d(Pε1 ,Pε2) = c|ε1 − ε2|. This furthermore ensures that Pε converges to P0 as ε tends to 0.
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Figure 4:

Example 5.5 (from [DEP98]) Consider processes s and t of Figure 4. t is just like s except that
there is an additional transition to a state which then has an a-labelled transition back to itself.
The probability numbers are as shown. If both processes have the same values on all functional
expressions we will show that q∞ = 0, i.e. it really cannot be present. The functional expression
(〈a〉1) yields c(

∑
i≥0 pi) on s and c(q∞ +

∑
i≥0 qi) on t. The functional expression (〈a〉〈a〉1) yields

c2(
∑

i≥1 pi) on s and c2(q∞ +
∑

i≥2 qi) on t. Thus, we deduce that p0 = q0. Similarly, considering
functional expressions (〈a〉〈a〉〈a〉1) etc, we deduce that pn = qn. Thus, q∞ = 0.

6 Metric Convergence of the Approximants

In this section we show that - in our metric - the approximants introduced in Section 3 converge
to the labelled Markov process being approximated.

In order to prove convergence of the approximants we start with the following lemma. All
lemmas for which we do not provide proofs here are proved in Desharnais’ Ph.D. thesis [Des99a].

10Intuitively, a uniformity captures relative distances, eg. is x is closer to z than y; it does not tell us what the
actual distances are. For example, a uniformity on a metric space M is induced by the collection of all ε balls Sε

where Sε = {{y | d(x, y) < ε} | x ∈ M}.
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Lemma 6.1 If S involves a finite number of labels, S(n, cn/n) converges to S in the metric dc
with c < 1.

The condition c < 1 is important in the calculation. However, it has been pointed out to us that the
restriction to finite action sets could be weakened to countable sets if we adapted the semantics for
〈an〉f to be 〈an〉f(s) = cn

∫
S f(t)τan(s, dt). The approximation algorithm does capture every label

of a countable set thanks to parameter n, which not only refers to the depth of the approximant
but also to the labels that are considered in approximation, a1, . . . , an.

Lemma 6.2 Given any process of the form S(n, ε) we can construct a sequence of rational trees Ti
such that Ti is strictly simulated by Ti+1 and all of them are strictly simulated by S(n, ε) and with
limi→∞ d(Ti,S(n, ε)) = 0.

Proof Given a finite acyclic process like S(n, ε) we can construct a finite depth tree, say T , that is
bisimilar to it by duplicating states as necessary. The transition probabilities of this tree will not
necessarily be rational numbers. We can construct out required family of trees by making all the
Ti have the same shape as T but by choosing the transition probabilites in the Ti to be rational
numbers converging to the corresponding transition probabilities of T . Since these proabilities are
all strictly increasing we get the desired strict simulation. The convergence is immediate from the
definition of the metric.

The result that we want can be stated as follows.

Theorem 6.3 For all c ∈ (0, 1], the metric dc yields a separable metric space.

Proof We show that the rational trees form a countable dense subset. Given any process S we
have a countable family of finite approximations given by S(n, 2−n). For each of these finite
approximations we have a countable sequence of rational trees, T (n)

j that converge to it by the
previous lemma. This doubly indexed family of rational trees forms a directed set so we can
extract a countable sequence of rational trees that converge to S.

Thus we have a situation analogous to the rationals where there is a countable family that serves
to aproximate all the processes as limits of Cauchy sequences. What we do not know is whether
the metric space is complete; in other words we do not know whether we have a Polish space.

7 Examples of metric reasoning principles

In this section, we use a process algebra and an example coded in the process algebra to illustrate
the type of reasoning provided by our study. We also show that small perturbations of a process
results in a nearby process.

7.1 A process algebra

The process algebra describes probabilistically determinate processes. The processes are input-
enabled [LT89, Dil88, Jos92] in a weak sense ((∀p ∈ P ) (∀a ∈ A) τa?(p, P ) > 0) and communication
is via CSP style broadcast. The process combinators that we consider are parallel composition,
prefixing and probabilistic choice. We do not consider hiding since this paper focuses on strong
probabilistic bisimulation. Though we do not enforce the fact that output actions do not block,
this assumption can safely be added to the algebra to make it an IO calculus [Vaa91].
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We assume an underlying set of labels A. Let A? = {a? | a ∈ A} be the set of input labels, and
A! = {a! | a ∈ A} the set of output labels. Every process P is associated with a subset of labels:
PO ⊆ A!, the set of relevant output labels. This signature is used to constrain parallel composition.

Prefixing P = a?r.Q where r is a rational number, is the process that accepts input a and then
performs as Q. The number r is the probability of accepting a?. With probability (1 − r) the
process P = a?r.Q will block on an a? label. P is given by adding a new initial state, p0 to Q. Add
a transition labelled a? from p0 to the start state of Q with probability r. For all other labels l,
add a l? labelled self-loop at p0 with probability 1.

Output prefixing, P = a!r.Q, where r is a rational number, the process that performs output
action a! and then functions as Q, is defined analogously. In this case, PO = QO ∪ {a!}. For both
input and output prefixing, we have: dc(ar.P, au.P) ≤ c | r − u |.

Probabilistic Choice P = Q+rQ′ is the probabilistic choice combinator [JP89] that chooses Q
with probability r and Q′ with probability 1−r. PO = QO∪Q′

O. P = Q]Q′. Now τPa (q,X]X ′) =
τa(q,X) if q ∈ Q, and τPa (q,X ] X ′) = τ ′a(q,X

′) if q ∈ Q′. We define an initial distribution µ:
µ({q0}) = r, µ({q′0}) = 1 − r, referring the reader to Section 2 for a way to convert to an initial
state format.

We have: dc(P +r Q,P +u Q) ≤| r − u | dc(P,Q); dc(P +r Q,P ′ +r Q) ≤ rdc(P,P ′).

Parallel Composition P = Q || Q′ is permitted if the output actions of Q,Q′ are disjoint, i.e.
QO ∩ Q′

O = ∅. The parallel composition synchronizes on all labels in QL ∩ Q′
L. PO = QO ] Q′

O.
P = Q×Q′. The τPa definition is motivated by the following idea. Let s (resp. s′ ) be a state of Q
(resp. Q′). We expect the following synchronized transitions from the product state (s, s′).

s
c?−−→ t s′

c?−−→ t′

(s, s′) c?−−→ (t, t′)
s

c!−−→ t s′
c?−−→ t′

(s, s′) c!−−→ (t, t′)
s

c?−−→ t s′
c!−−→ t′

(s, s′) c!−−→ (t, t′)
.

The disjointness of the output labels of Q,Q′ ensures that there is no non-determinism. Formally,
if l = a! ∈ QO, then τPa?((s, s

′), (t, t′)) = τPa! ((s, s
′), (t, t′)) = τa!(s, t) × τ ′a?(s

′, t′). The case when
a! ∈ Q′

O and l = a? is similar.
To fix terminology, let us use the same symbol P to stand for the syntactic expression for a

process and for the labelled transition system generated by P. When a process, say P, has an
a-transition we cannot say that it results in a process P ′; instead, we must say that it results in
some distribution of possible states of P - these states are, of course, denoted in the syntax by
derivatives of the syntactic expression for P.

Definition 7.1 Let P be a process. Then P after a is the same process but with start distribution
given by ν(t) = τa(p0, t). We perform some normalization based on the total probability of the
resulting initial configuration ν(P ): If ν(P ) > 0, it is normalized to be 1; if ν(P ) = 0, it is left
untouched. This definition extends inductively to P after α, where α is a finite sequence of labels
(a0, a1, a2, . . . , ak).

Note that P after α is identical to P - i.e. it denotes the same labelled transition system - except
that its initial configuration may be different.

Lemma 7.2 Let h ∈ Fc, let P be a process and let a ∈ A. Then

〈a〉h(p0) = c× h(P after a).

Here h(P after a) means h(p′0) where p′0 is the initial state of P after a.
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?>=<89:;
put![p]

�� ?>=<89:;
get![q]

�� ?>=<89:;0

get?[1−r]
�� put?[r]

** ?>=<89:;1
get?[1−r]
jj

put?[r]
** ?>=<89:;2

put?[ε]




get?[1−r]
jj

(a) Producer (b) Consumer (c) Buffer of size 2

?>=<89:;0

get[q(1−r)]
�� put[pr]

++ ?>=<89:;1
get[q(1−r)]
kk

put[pr]
++ ?>=<89:;2

put[pε]




get[q(1−r)]
kk

(d) Producer || Consumer || Buffer2

Figure 5: The producer consumer example

Theorem 7.3 (Contractivity of process combinators)

• d(lr.P, lr.Q) ≤ cd(P,Q) for any label l

• d(P +r R,Q+r R) ≤ d(P,Q) for any R

• d(P || R,Q || R) ≤ d(P,Q) for any R for which P || R,Q || R are defined.

Proof The proof proceeds by induction on functional expressions. Let f−(P,Q) mean |f(p0) −
f(q0)| where p0 (q0) is the initial state of P (Q). We show that for any f , there exists a g
such that f− of the LHS is less than or equal to some g− of the RHS. We omit the detailed
calculations and prove the result for the key case where f is 〈a〉h, for parallel composition. Let
P ′ = P after b?, Q′ = Q after b? and R′ = R after b!. By induction, we know that there is some
functional g such that h−(P ′ || R′,Q′ || R′) ≤ g−(P ′,Q′). Now suppose a = b!, and b! ∈ RO, then
P || R after a = P ′ || R′. Now we calculate as follows:

(〈a〉h)−(P || R,Q || R) = c× h−((P || R) after a, (Q || R) after a)
= c× h−(P ′ || R′,Q′ || R′)
≤ c× g−(P ′,Q′)
= (〈a〉g)−(P,Q).

Thus,Theorem 4.10 allows us to conclude that bisimulation is a congruence with respect to these
operations.

7.2 A bounded buffer example

We specify a producer consumer process with a bounded buffer (along the lines of [PS85]). The
producer is specified by the 1 state finite automaton shown in Figure 5(a) — it outputs a put,
corresponding to producing a packet, with probability p. To keep the figure uncluttered, we omit
the input-enabling arcs, all of which have probability 1. The consumer (Figure 5(b)) is analogous
— it outputs a get with probability q, corresponding to consuming a packet. The buffer is an
n-state automaton, the states are merely used to count the number of packets in the buffer, while
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the probabilities code up the probability of scheduling either the producer or the consumer (thus
the producer gets scheduled with probability r, and then produces a packet with probability p).
Upon receiving a put in the last state, the buffer accepts it with a very small probability ε, modeling
a blocked input. The parallel composition of the three processes is shown in Figure 5(d). Notice
that the behavior of this process is very similar to a random walk — the process moves to the next
state with probability r = p(1 − q)/(p + q − pq), corresponding to a put, and the previous state
with probability 1− r, corresponding to a get — we ignore the transitions back to the same state,
regarding them as no-ops. It is easy to show that in any run of this process with a large number of
put actions, the expected fraction of discarded packets is approximately (1−r/r)−n — we compute
the stationary distribution for this process, and since it is ergodic, this stationary distribution is
reached after a large number of steps. Then the put actions in the last state result in lost packets.

As the buffer size increases, the distance between the bounded buffer and the unbounded buffer
decreases to 0. Let Pk = Producer || Consumer || Bufferk, where Bufferk denotes the process
Buffer with k states. Then by looking at the structure of the process, we can compute that
d(Pk,P∞) ∝ (cpr)k. Thus we conclude the following:

• As the bounded buffer becomes larger, it approximates an infinite buffer more closely: if
m > k then dc(Pk,P∞) > dc(Pm,P∞).

• As the probability of a put decreases, the bounded buffer approximates an infinite buffer
more closely. Thus if p < p′, dc(Pp,Pp∞) < dc(Pp′ ,Pp

′
∞), where the superscripts indicate the

producer probability.

• Similarly, as the probability of scheduling the Producer process (r) decreases, the buffer
approximates an infinite buffer more closely.

7.3 Perturbation

One of the major criticisms of process equivalences is that they are not robust. The results of this
section show that if one slightly perturbs the probabilities in a process the result is close.

Definition 7.4 Let S = (S, s0,Σ, τ) be a labelled Markov process. Define S ′ = (S, s0,Σ, τ ′) to be
an ε-perturbation of S if for all labels a,

∀s ∈ S. ∀X ∈ Σ. |τa(s,X)− τ ′a(s,X)| < ε.

Our metric accommodates the notion of small perturbations of probabilities.

Proposition 7.5 If c < 1, and S ′ is an ε-perturbation of S, then dc(S,S ′) < kε where k =
supn ncn.11

Proof The proof is by induction on the formulas. The sole non-trivial case is 〈a〉f . We write f for
fS and f ′ for fS′ . Let depth(f) = n, and |f(t)− f ′(t)| < εncn. Then f(s) ≤ cn and

11e.g. k = 1 for c ≤ 1/2.
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c[
∫
t
f(t)τa(s, dt)−

∫
t
f ′(t)τ ′a(s, dt)]

= c

∫
f(t)[τa(s, dt)− τ ′a(s, dt)] + c

∫
τ ′a(s, dt)[f(t)− f ′(t)]

< cn+1|τ(s,X)− τ ′(s,X)|+ ncn+1ε

∫
τ ′a(s, t)

< cn+1ε+ ncn+1ε

= (n+ 1)cn+1ε.

Here X is the set on which the measure τa(s, .)− τ ′a(s, .) is positive.

For c = 1, ncn increases without limit, and Example 4.3 shows that the above lemma does not
hold for c = 1. However in this case we can still perturb the process S in the following way —
let S be unfolded, so it has no loops. Let εi, i ∈ N be non-negative rationals such that

∑
i εi =

ε < 1/3. Now we obtain S ′ by taking the same state set as S, and for each state s at depth n,
|τa(s,X ′) − τ ′a(s,X

′)| < εn for each label a and each measurable set X ′. Then we can show by a
similar calculation as above that d1(S,S ′) < 1− e−2ε, thus as ε −→ 0, d1(S,S ′) −→ 0.

Example 7.6 Consider “straight line” formulas generated by

φ ::= T | 〈a〉qφ

Consider one such φ = 〈a1〉q1 . . . 〈an〉qnT . Let P be a finite-state process unfolded to the depth of
the formula such that p0, the start state of P, satisfies the formula. An easy induction, using the
proof of Lemma 4.5, shows that

fφ(p0) ≥ cn
∏
i

(ri − qi)

where ri = infs∈Xi τai(s,Xi+1) and Xi+1 is the set of all the states in level i + 1 which satisfy
the suffix formula 〈ai+1〉qi+1

. . . 〈an〉qnT. Note that this bound is achieved by the n-length chain
automaton which has transition probabilities ri.

The form of the expression f(p0) ≥ cn
∏
i(ri − qi) tells us that if f(p0) > ε, we can perturb

the probabilities at some level by up to ε
1
n /c, and the resulting process will continue to satisfy the

formula.

Finally we close with an important example that shows the importance of the connectivity of
the transition graph.

Example 7.7 Consider the systems shown in Fig. 6. The states s0 and t0 appear to be very similar
and are clearly metrically close - or are they? In system (A) there is no steady state distribution
(the Markov chain fails to be aperiodic) whereas in system (B) there is a steady state, namely all
the mass eventually leaks into state t2 and stays there. How is it that the asymptotic behaviour
can be so drastically different when the state are so close?

The short answer is that the states are not at all close. If one computes the distance a routine
calculation shows that the states s0 and t0 are at distance 1 for the metrics with c = 1 - the
maximum possible distance! Even with c < 1 the distance is large though less than 1.
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1

++ ?>=<89:;s1
1

kk ?>=<89:;t0
1−ε

++

ε

��

?>=<89:;t1
1

kk

?>=<89:;t2
(a) System A (b) System B

Figure 6: The effect of topology change

8 The asymptotic metric

Define the j distance between P,Q, dcj(P,Q) = sup{dc(P after α,Q after α) | length(α) = j}.
We define the asymptotic distance between processes P and Q, dc∞(P,Q) to be

dc∞(P,Q) = lim sup
i→∞ j>i

dcj(P,Q).

The fact that dc∞ satisfies the triangle inequality and is symmetric immediately follows from the
same properties for d.

Example 8.1 For any process P, dc∞(aq.P, ar.P) = 0, where q, r > 0. Consider A3 from Figure 3.
Without the normalization in the definition of A3 after α, we would have got dc∞(aq.A3, ar.A3) =
c|q − r|

?>=<89:; put[p+s] // ?>=<89:; put[p+s/2] // ?>=<89:; put[p+s/4] // ?>=<89:; put[p+s/8] //

Figure 7: A producer with transient behavior

Example 8.2 Consider the producer process P2 shown in Figure 7. This is similar to the pro-
ducer P1 in Figure 5, except that initially the probability of producing put is more than q, however
as more put’s are produced, it asymptotically approaches q. If we consider the asymptotic dis-
tance between these two producers, we see that dc(P2 after putn,P1 after putn) ∝ 2−(n+1). Thus
dc∞(P1,P2) = 0. Now by using the compositionality of parallel composition (see below) , we see that
dc∞(P1 || Consumer || Bufferk,P2 || Consumer || Bufferk) = 0, which is the intuitively expected
result.

Asymptotic equivalence is preserved by parallel composition and prefixing.

Theorem 8.3 1. dc∞(lr.P, lr.Q) ≤ dc∞(P,Q) for any label l.

2. dc∞(P || R,Q || R) ≤ d∞(P,Q).

For the key case of parallel composition, the proof is based on:

(P || Q) after α = (P after α1) || (Q after α2),

where α1 has the a! labels of α replaced by a? where a! 6∈ PO, and similarly for α2.
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9 Related work

The study of the interaction of probability and concurrency - largely in the context of exact equiv-
alences of probabilistic processes - has been explored extensively in the context of different mod-
els of concurrency. Probabilistic process algebras add a notion of randomness to the standard
process algebra model and have been studied extensively in the traditional framework of seman-
tic theories of process algebras. A representative sample of such work are the following papers:
[HJ90, JY95, LS91, HS86, BBS95, vGSS95, CSZ92]. These papers study concepts like probabilis-
tic bisimulation [LS91]probabilistic testing [JY95] and the relationship with (probabilistic) modal
logics [HS86]. Probabilistic Petri nets [Mar89, VN92] add Markov chains to the underlying Petri
net model. This area has a well developed suite of algorithms for performance evaluation. Investi-
gations into the behaviour of probabilistic systems have also been carried out in the context of IO
Automata [Seg95, WSS97].

In contrast to the above body of research the primary theme of this paper is the study of inter-
substitutivity of approximately equivalent processes. As a minor theme we have also initiated the
study of asymptotic approximate equivalence. The ideas of approximate substitutivity in this paper
are inspired by the work of Jou and Smoka [JS90] and also to the ideas in the area of performance
modeling as exemplified in on the work on process algebras for compositional performance modeling
(see for example [Hil94]). The extension of the methods of this paper to systems which have both
probability and traditional nondeterminism remains open and is the subject of active research at
the moment.

The verification community has been active in developing model checking tools for probabilistic
systems, for example [BLL+96, BdA95, BCHG+97, CY95, HK97]. Approximation techniques in
the spirit of those of this paper have been explored for hybrid systems [GHJ97]. Since the first
appearance of the present work [DGJP99] we have developed a theory of approximation for labelled
Markov processes [DGJP00, DGJP03].

Before we discuss work specifically related to metrics for probabilistic processes it is worth dis-
cussing work from the probability theory community on metrics on spaces of measures. An excellent
mathematical resource is “Probability Measures on Metric Spaces” by K. R. Parthasarathy [Par67]
which deals with the dual topic i.e. measures on metric spaces rather than metrics on spaces of
measures. Various measures of “distance” have appeared in the pattern theory and statistics com-
munities - see [DGL96, Chapter 3] for a survey - but most of these are not metrics i.e. they do not
obey the triangle inequality. Perhaps the most interesting of these is the relative entropy [CT91]
which measures how much uncertainty about a random variable exists when another one is known.

The Kantorovich metric [Kan40] was introduced by Kantorovich in his study of the transship-
ment problem and was also used later by Hutchinson [Hut81, Edg98] to analyze fractals. His
definition is

d(µ, ν) := sup
f∈L

|
∫
fdµ−

∫
fdν|

where L is the class of bounded Lipschitz functions. This is a metric as opposed to just being a
“distance” function.

Metrics for probabilistic processes have been investigated by a few researchers: deVink and
Rutten [dVR99], Kwiatkowska and Norman [KN96, KN98] and very recently by van Breugel and
Worrell [vBW01b, vBW01a]. As remarked before, the suggestion that one should look for a metric
is due to Giacalone, Jou and Smolka [GJS90]. DeVink and Rutten use ultrametrics as a technical
tool for defining probabilistic transition systems as coalgebras. Their main interest is in bisimilarity
and they did not investigate the idea of using the metric as an alternative to bisimulation. The work
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of Kwiatkowska and Norman is very interesting but more motivated by semantical considerations.
They are also not interested in using the metric to capture an approximation to bisimulation. For
example, there are distance zero processes that are not bisimilar.

The work closest to ours in aim and techniques is that of van Breugel and Worrell. Their metric
appears to be the same as our metric for c < 1 but the way in which it is defined is quite different.
Their construction is based on finding a final coalgebra for a certain functor on the category of
metric spaces and nonexpansive maps. This final coalgebra comes with a metric and thus naturally
gives a metric on the state spaces of any labelled Markov process through the unique map induced
by finality. Their functor is closely based on the Kantorovich metric.

There are a host of topologies that seem to be relevant. First of all the metrics with c < 1 and
with c = 1 are clearly different. Consider the family of processes {Pn|n ∈ N} where Pn is defined
as the process that makes n transitions, each with probability 1, and then terminates. The process
P is defined as a countable-state process with the states labelled by natural numbers. There is a
transition in P from n to n + 1 with probability 1. Using the metrics with c < 1, the processes
Pn form a Cauchy sequence converging to P . Using the metric with c = 1 the Pn do not form a
Cauchy sequence. In our study of approximation [DGJP03] we defined a domain of processes. This
domain comes equipped with the Scott topology and the Lawson topology. Recently van Breugel
at. al. [vBMOW03] have shown that the Lawson topology coincides with the weak topology and
with the metric topology for c < 1. The Scott topology is, of course, not even metrizable.

A very important contribution of van Breugel and Worrell [vBW01a] is the discovery of a
polynomial-time algorithm for the metric. The algorithm makes clever use of linear programming
ideas - the transshipment problem - and is actually implemented. Note that their algorithm works
for the metrics with c < 1. For c = 1 we do not know if the metric is decidable; though there
is strong experimental evidence [vBb] and heuristic arguments suggesting that it is decidable. In
the conference version of this paper we published a decision procedure for the metric when c < 1.
This was a very crude algorithm and had exponential running time. The beautiful algorithm of
van Breugel and Worrell renders our old algorithm obsolete.

Since that time we have developed a metric analogue of weak bisimulation [DGJP02]. This is
essentially based on the c = 1 metric of the present paper and uses a fixed-point approach mimicking
- at the lattice level - the categorical construction of van Breugel and Worrell [vBW01b]. We also
use linear programming ideas in a crucial way in that construction.

Our work on the asymptotic metric is closely related to, at least in spirit, the work of Lincoln,
Mitchell, Mitchell and Scedrov [LMMS98] in the context of security protocols. Both [LMMS98] and
this paper consider the asymptotic behavior of a single process, rather than the limiting behavior
of a probabilistically described family of processes as is performed in some analysis performed in
Markov theory.

10 Conclusions and Future Work

In this paper, we deal with probabilistic nondeterminism. In a probabilistic analysis, quantitative
information is recorded and used in the reasoning. In contrast, a purely qualitative nondeterministic
analysis does not require and does not yield quantitative information. In particular, when one has no
quantitative information at all, one has to work with indeterminacy — using a uniform probability
distribution is not the same as expressing complete ignorance about the possible outcomes or their
distribution. Thus nondeterminism is more appropriate for a specification formalism where certain
probabilities are left unspecified by the system designer. In cases - such as experimental statistics
or performance evaluation - where one is comparing a model against experimental data or analyzing
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a system, the probabilistic model is more appropriate.
Our main contribution has been to come up with metric definitions that serve as a weakening

of the usual notion of bisimulation. The move was partly inspired by Kozen’s work on viewing
measurable functions as the formulas of a “quantitative” logic. We have shown that our functions
characterize bisimulation in the same way that modal logics do [DEP02]. The metrics based on these
functions have the important property that when the distance is zero the processes are bisimilar.
We also showed that - for our simple process algebra - the metrics are contractive. This allows us
to use the metric for compositional reasoning.

We are working in two different directions. In the first we are looking at the mixture of probabil-
ity and nondeterminism. This leads naturally to think about weak bisimulation and to characterize
weak bisimulation in metric terms. The second direction that we are investigating is trying to un-
derstand the quantitative significance of the metric in terms of information flow. It seems plausible
that there should be a strong correlation between the behaviours of “close” processes. To make
this more concrete we are thinking about information flow in the context of probabilistic processes
and the role of relative entropy or channel capacity. It would be fascinating if the distance between
processes were linked to information theory notions. In recent work [DGJP02] we have been able
to make such links and apply it to the notion of secure substitution.
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