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We analyze the relative expressive power of variants of the indeterminate fair 
merge operator in the context of static dataflow. We establish that there are three 
different, provably inequivalent, forms of unbounded indeterminacy. In particular, 
we show that the well-known fair merge primitive cannot be expressed with just 
unbounded indeterminacy. Our proofs are based on a simple trace semantics and 
on identifying properties of the behaviors of networks that are invariant under 
network composition. The properties we consider in this paper are all generaliza- 
tions of monotonicity. ‘1” 1992 Academic Press. Inc 

1. INTRODUCTION 

The study of indeterminate computing systems is motivated by seeking 
to understand the theory underlying what is commonly called “distributed 
systems” programming. In such systems indeterminacy is introduced when 
one abstracts away from low level hardware or timing details. The subject 
receives further impetus from recent interest in parallel and distributed 
computing. From the purely theoretical point of view the subject is 
interesting because of the presence of new fundamental concerns, for 
example, deadlock and fairness, that have no analogue in sequential, 
determinate programming. 

The foundational work in the theory of determinate distributed systems 
is due to Gilles Kahn (1977). His model of distributed systems is as follows. 
A system is viewed as a collection of autonomous computing agents com- 
municating by one-way, unbounded data channels. Each computing agent 
executes its own program and, from time to time, may communicate with 
other agents by sending data tokens along the channels or reading tokens 
from incoming channels. If an agent attempts to read a token from an 
incoming channel that has no data it suspends until data becomes 
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available. Under these conditions an agent computes a continuous function 
from input token streams to output token streams. One can thus model 
agents as functions. If one has a network of such agents then one can write 
down a system of equations to model the behavior of the network. If the 
network has feedback loops the system of equations will be recursive. Such 
systems of equations can be solved using elementary fixed-point theory. 

Much of the research in indeterminate dataflow is aimed at developing 
a theory of comparable elegance and utility as Kahn’s was for determinate 
dataflow. The contribution of this paper can be seen as a step towards such 
a goal as it provides a classification of the types of indeterminate primitives 
available and shows that monotonicity properties may be violated by 
common indeterminate primitives. 

In this paper we analyze fairness properties of indeterminate dataflow 
networks. Fairness has been the paradigmatic liveness property and has 
been studied extensively in a variety of formalisms with several different 
definitions; see, for example, the recent book by Francez (1986). It is 
known that fairness introduces unbounded indeterminacy (or countable 
nondeterminism); the proof is by a simple Koenig’s lemma argument. 
Plotkin’s pioneering study of powerdomains for indeterminacy included the 
observation that the powerdomain that he introduced had been specifically 
designed for bounded indeterminacy and therefore excluded the study of 
fair systems (1976). Several people have worked on generalizations of 
powerdomain techniques that would apply to unbounded indeterminacy 
(Abramsky, 1983; Apt and Plotkin, 1986; Broy, 1983; Park, 1980, 1982; 
Plotkin, 1982). 

Till recently fairness had been identified with unbounded indeterminacy 
(Apt and Olderog, 1983). Considerable effort had been expended in for- 
malizing semantics of dataflow networks that would include a satisfactory 
treatment of the fair merge primitive (Broy, 1983; de Bakker et al., 1989; 
Keller and Panangaden, 1985; Panangaden, 1985; Park, 1982). All these 
efforts seemed to take the view that this was the next natural step after 
Plotkin’s work. In the present paper we demonstrate that there are in fact 
three “levels” of expressive power all embodying unbounded indeterminacy. 
(Recent work has shown that there are, in fact, even more (McAllester, 
Panangaden, and Shanbhogue, 1988).) More importantly, from a seman- 
ticist’s point of view, we show that there are fundamentally different order- 
theoretic properties corresponding to these levels of expressive power. Thus 
different semantic theories may be appropriate at these levels. Fair merge, 
in particular, violates basic monotonicity properties. An important conse- 
quence of our proof is that fair merge cannot be viewed as being a deter- 
minate process with some inputs concealed-a so-called “oracle driven” 
primitive. Some of the expressiveness results reported here were announced 
earlier by Panangaden and Stark (1988) using an operational approach. 
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Many of the results, particularly those relating to monotonicity problems, 
were observed by Broy (1983), though he did not provide proofs. Smyth 
had earlier observed that McCarthy’s amb is not monotone when viewed 
as a function on the Plotkin powerdomain (Plotkin, 1990). 

The three levels that we consider in this paper are expressed as fairness 
properties of dataflow merges. A merge consists of two input ports and a 
single output port. Tokens arriving at the input ports are transmitted 
unaltered to the output port; the relative ordering of tokens on the input 
port is preserved on the output port but tokens arriving at different input 
ports may be output in either order at the output port. A fair merge will 
transmit all the tokens that appear at its input ports. An angelic merge will 
transmit all the tokens at a given port if the sequence of tokens appearing 
at the other port is finite. Thus an angelic merge will behave like a fair 
merge if both input sequences are finite. An infinity-fair merge has the dual 
property. If the sequence of tokens at one of the input ports is infinite all 
the tokens at the other port will be transmitted. Thus an infinity-fair merge 
will behave like a fair merge if both input sequences are infinite. The main 
expressiveness result is that fair merge cannot be implemented by angelic 
merge and that angelic merge cannot be implemented by infinity-fair 
merge. It is easy to implement angelic merge with fair merge and a con- 
struction by Eugene Stark (1990) shows how to implement infinity-fair 
merge with angelic merge. Precise definitions of all these primitives and of 
“implements” will be given in later sections. The terminology for the merge 
primitives is due to Park (1982). 

Our entire analysis is based on the description of a process as a set of 
possible behaviors. We use traces as abstractions of process behavior. By 
traces we simply mean sequences of events on the ports of the processes 
forming a dataflow network. Traces have been studied at various levels of 
mathematical rigor and have a rich mathematical theory (Aalbersberg and 
Rozenberg, 1988). The order-theoretic properties that we alluded to above 
are formulated in terms of traces rather than in terms of relations. It would 
have been preferable if we could have used purely extensional properties 
such as the input-output relation, but the well-known BrockkAckerman 
example shows that the inputtoutput relation computed by a network is 
not compositional (Brock and Ackerman, 1981). 

It turns out that traces not only are compositional but are fully ahsrract. 
In the first half of the paper we describe an operational semantics for 
networks and use it to show that traces do indeed give rise to a composi- 
tional semantics of dataflow networks. The operational semantics that we 
describe is closely modeled on work of Stark (1989a, 1989b, 1990; see also 
Panangaden and Stark, 1988) and also on the IO automata formalism of 
Lynch and Tuttle (1987). Our expressiveness results do not require that 
traces be fully abstract, so we do not present a proof here, but a proof of 
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this result for a slightly different operational semantics may be found in 
Jonsson’s paper that used the suggestions (Jonsson, 1989) of Joost Kok 
(1987). It is important to be aware that we (and Kok and Jonsson) view 
the complete output in response to a given (possibly infinite) input stream 
as observable. This is, of course, a rather liberal view of observability. 
It is only with this rather strong notion of observability that we can 
say interesting things about fairness. There is a fascinating study, by 
Rabinovich and Trakhtenbrot (1988) of the semantics of dataflow 
networks with only finite observations permitted. 

We emphasize that three abstractions of processes are used in this 
paper-(a) the automata, which describe the operational semantics, (b) 
trace sets, which are compositional and on which the monotonicity proper- 
ties are defined, and (c) input-output relations, that fail to be composi- 
tional. In fact, our proofs based on trace sets do not rely on the specific 
operational semantics, once the connection between automata and trace 
sets has been established. We have included the details of the operational 
semantics here in order to make the paper more self-contained. 

2. OPERATIONAL SEMANTICS OF DATAFLOW PROCESSES 

The operational semantics of dataflow networks is given in an automata 
theoretic formalism in which the notion of causal independence between 
concurrent events is taken to be primitive. This is based on the work of 
Lynch and Tuttle (1987), Lynch and Stark (1987), and Stark (1987, 
1989a). Each process has a set of events associated with it. We represent 
concurrency by a binary relation on events, that tells us when two events 
are independent. This is the abstraction of describing when two commands 
in a program can be executed in parallel. This binary relation, which is 
called the concurrency relation, is axiomatized via equations that express 
the fact that the order of execution of concurrent events can be permuted, 
thus capturing the causal independence of concurrent events. 

2.1. Port Automata 

We first describe computing agents as automata, that can receive values 
at “input ports” and transmit values at “output ports.” We use the term 
“port” instead if “channel” to emphasize that this is where an automaton 
interfaces with its environment. The set of events of an automaton comes 
equipped with a concurrency relation as mentioned above. 

DEFINITION 1. A concurrent alphabet is a set E, equipped with a 
symmetric, irreflexive binary relation 1) E, called the concurrency relation. 
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This concept is used in trace theory (Aalbersberg and Rozenberg, 1988; 
Mazurkiewicz, 1986) to obtain an algebraic theory of traces. We call events 
related by the concurrency relation concurrent. Let V be a set of data values 
called the value alphabet. Throughout this paper, we assume a fixed count- 
able value alphabet. We refer to V” as the domain of streams. We use the 
term “stream” interchangeably with the term “value sequence.” 

We now describe the notion of an automaton that can execute events. 
The input and output events are described as (port, value) pairs. The rest 
of the events need not be of this form. 

DEFINITION 2. A port automaton is a tuple 

where 

. E is a concurrent alphabet of eoents, and Inp and Out are disjoint 
subsets of E, called the sets of input events and output events, respectively. 
Inp = Pin x V, and Out = PO”’ x V, for some disjoint finite sets Pin and Pout. 
The elements of P”’ are called input ports, and the elements of PO”’ are 
called output ports. The elements of E\(Inp u Out) are called internal 
events. 

. Q is a set of states, and q’ E Q is a distinguished initial state. 
. A is a transition function that maps each pair of states q, r in Q 

to a subset A(q, r) of Eu {E}. E, a special event not in E, is called the 
identity event. 

satisfying the following conditions: 

(Disambiguation) r # r’ implies A(q, r) n A(q, r’) = 0. 

(Identity) E E A(q, r) iff q = r. 

(Receptivity) For any state q and any input event a, there exists a 
state r such that LIE A(q, r). 

(Commutatiuity) For any state q and any events a, 6, if a )I b, 
aeA(q, r) and bEA(q, s), then there exists a state p such that a~A(s, p) 
and b E A(r, p). 

This definition is similar to the definitions of a port automaton and an 
input-output automaton due to Lynch and Stark (1989) and Panangaden 
and Stark (1988), and is closely related to the input-output automata of 
Lynch and Tuttle (1987). 

The intuitive significance of these conditions is as follows. Disambigua- 
tion states that from a particular state, an event cannot take the automaton 
to two different states. A basic property of systems is that they cannot 
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control what their inputs are. They may, of course, ignore their inputs but 
they cannot determine their inputs, which are supplied by the external 
environment. The receptivity property makes this precise. If two events are 
concurrent, and if both of them are enabled in a particular state, then the 
execution of any one of these two events does not disable the other, and 
moreover, the execution of these events in either order results in the same 
final state. This is captured by commutativity. 

The transitions of an automaton are the tiples (q, a, r) with a~ A(q, r). 
We denote the transition (q, a, Y) by q * r. The transition q L q is 
called an identity transition, and is denoted by id,. 

DEFINITION 3. A computation sequence y is a finite or infinite sequence 
of transitions of the form 

The domain dam(y) of y is the state ql. A computation sequence is said to 
be initial if dam(y) is the distinguished start state q’. Two computation 
sequences y and 6 are coinitiul if dam(y) = dam(6). 

In earlier work (Panangaden and Stark, 1988), automata in which inputs 
cannot disable other events were considered. These are called monotone 
automata, and these are port automata satisfying the following additional 
property. 

DEFINITION 4 (Non-Disabling Inputs). If e is an input event at an input 
port, then e 11 e’ for any event e’ that is not an input event at the same port. 

As Example 2 below shows, not all automata satisfy this property, and 
since we would like to be able to represent automata as in Example 2, 
we will not restrict our discussion to monotone automata in this paper. 
The fact that networks of monotone automata cannot implement non- 
monotone automata in general is the essential content of one of the 
expressiveness results stated operationally. 

We now give two examples of automata. We use A as an infix operator 
for representing concatenation of sequences. 

EXAMPLE 1 (Buffer). This automaton has one input port and one 
output port. It reads values and outputs them, guaranteeing to read and 
output all values that arrive on the input port. 

Let the set of states Q be V*. A state represents the contents of the input 
port. The initial state is /i. Let the set of input events Inp be {i} x V and 
the set of output events Out be (o} x V. Then the set of events E is 
Inp u Out. 
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We now define the transition relation, using u to represent a member of 
V. A(q, r)= {(i, 21)) iff r=q Au. A(q,r)={(o,u)} iff q=uhr. A(q,q)={EJ. 

Every event in Inp is concurrent with every event in Out, and E is 
concurrent with any other event. 

EXAMPLE 2 (Poll). This automaton has one input port and one output 
port. It repeatedly checks its input port for data. If a data value is present, 
then it is read and output. If not, a special value * is output. 

Let Q and Inp be the same as for the previous example. Let the set of 
output events Out be the set in the previous example, together with an 
extra event (0, *). 

Besides the transitions in the previous example, there is an extra 
transition, and we redefine A(q, q). A(q, q)= {E, (0, *)I if q=.4, and 
A(q, q) = {c:> otherwise. The only new thing added to the concurrency 
relation of the previous example is that E is concurrent with the new event 
(0, *I. 

Note that input events are not concurrent with (0, A), so that arrival of 
input disables the output of a Sr. So the input here has the power to inter- 
rupt already enabled output. This automaton is therefore not monotone. It 
turns out that poll has the expressive power of fair merge. 

We end this subsection with some notation. We refer to events of the 
form (p, t.) as p-events. We denote the value component u of an event 
e = (p, u) by value(e). We also extend the definition of value to 
sequences-value( (p, u 1 )( p, u2) . ) is u I u2 . f .. For any computation 
sequence 

a=q,L, q2/!..+ 

we define eu(a), the sequence of events of O, to be a, a2 . . We use the sym- 
bol ZZ as a projection operator on sequences of events. Given any sequence 
t of events and a set S of ports, we use n,(r) to represent the subsequence 
of t consisting of the p-events in t for all ports p in S. If S is a singleton 
set (p}, then we use the notation U,(t) instead of 17{,,(t). If t is the 
sequence of events of a computation sequence (T, then we also write n,(a) 
to mean the same thing as n,(t), and Z7Ja) to mean the same thing as 
H,(t). To project out the p-events of a sequence t, we define n,,,(r) to be 
the subsequence of t consisting of all the events of t except the p-events. 
When we compare the projections of a sequence of events onto different 
ports, we follow the convention of implicitly applying uafue to the projec- 
tions. We use the notation t[i] to represent the ith event in a sequence t 
of events, and the notation y[i] to represent the ith transition in a com- 
putation sequence y. 
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2.2. Completed Computations and the Input-Output Relation 

In this subsection, we describe which computation sequences of 
automata we view as “completed,” i.e., cannot be extended further. Once 
we establish this, we then show how we can abstract the input&output 
behaviour of an automaton from its completed computation sequences. 

We first describe the notion of a history. Let P be the set of input ports 
and output ports of an automaton. A history ooer P is defined to be a func- 
tion from P to V”. Then for any computation sequence B, we can define 
a history H, by letting H,(p) be value(H,,(a)). Similarly, for any sequence 
iE(PX V)“. we can define a history H, by letting H,(p) be value(U,(t)). 
We denote the restriction of H, to the input ports by H r, and call it the 
input port history corresponding to IS. We denote the restriction of H, to 
the output ports by Ho,U’, and call it the output port history corresponding 
to CT. 

We now describe the computation sequences that we consider as “com- 
pleted.” To do this, we extend the prefix ordering on computation sequen- 
ces to include the concurrency information in the concurrency relation. A 
finite computation sequence y is a prefix of a computation sequence 6, and 
we write y < 6, iff there exists a computation sequence 5 with rl= 6. We 
define permutation equivalence to the least congruence -- respecting con- 
catenation, on the set of finite computation sequences of an automaton 
such that whenever a 11 h, the computation sequences q A r -% p and 
q & s A p are --related. We define the permutation preorder relation 
5 on finite computation sequences of A as the transitive closure of < u -. 
Define ‘v = 5 n 2. We can now extend the permutation preorder relation 
to infinite computation sequences by defining ;’ 2 6 iff for every finite 
)” < y, there exists a finite 6’ < 6, such that ;” 5 6’. We define rr = 6 n 2 
for infinite computation sequences also. 

We would like a notion “completed” computation sequence, in which all 
events that could happen at any state have either happened or been 
disabled. This is a weak fairness condition, and we formalize it as follows. 

DEFINITION 5. A computation sequence y is called completed if either it 
is finite and no non-input event is enabled at its end, or it is infinite and 
there is no event e enabled at every state in y[i..] and concurrent with 
every event in y[i..] for some i. 

This turns out to be identical to &-maximality for a particular input 
(Shanbhogue, 1990). 

For the port automata considered by Panangaden and Stark (1988), no 
two non-input events were concurrent. In this paper, the notion of a fair 
initial computation sequence was introduced. For single automata, this 
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notion is equivalent to our notion of completion. We will consider 
networks of automata presently, and for the networks of monotone 
automata considered by Panangaden and Stark (1988), the fair computa- 
tion sequences coincide with the completed computation sequences, which 
coincide with the L-maximal computation sequences. Moreover, the 
projections of maximal computation sequences onto individual automata 
in the network are themselves maximal. When we consider networks of 
general port automata as in this paper, this is no longer the case. So, as we 
discuss in the next subsection, we give a different notion of completion for 
networks of automata. For networks of monotone automata, however 
(Panangaden and Stark, 1988; Stark, 1990), the projections of a maximal 
computation sequence onto individual automata are again maximal. This 
means that even though our above notion of completion is equivalent to 
maximality for general automata, this notion can be extended to networks 
of monotone automata but not to networks of general automata. This is 
unfortunate, but unavoidable. 

We could think of the preorder G as the prefix ordering in which con- 
current information has been encoded. It is quite pleasant to be able to 
state completedness as a maximality property of computation sequences. 

EXAMPLE 3. Consider an automaton with one output port o and only 
two internal events e, and e2. There are only three states, ql, q2, q3. q1 is 
the initial state. The transitions are completely described by A(q,, q,) = 

1 E, e, ), A(q,, q2) = {e,}, A(q,, q3) = { (0, II)], where u is some fixed value, 
A(q,, q2)= {E}, and A(q,, q3)= {E}. There is an infinite sequence y of 
e,-transitions from the initial state, and the event e, is continuously 
enabled, following which an output would be enabled. But the event e2 is 
not concurrent with e,, and the automaton is really making an indeter- 
minate choice at each step without any fairness constraints. So we would 
accept y as a completed computation sequence. 

This example makes clear the distinction between completion and 
continuous enabling. 

Now we can describe the input-output relation of an automaton. This 
describes the input-output behaviour and corresponds to the observable 
aspect of network behavior. 

DEFINITION 6. The input-output relation of an automaton is the set of 
all pairs (Hz, H$‘) with 0 being a completed computation sequence of the 
automaton. 

We can also equivalently consider the input-output relation to be a set 
of pairs of tuples of streams, the first tuple of each pair consisting of 
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streams at the input ports and the second tuple consisting of streams at the 
output ports. We refer to the input-output relation as the IO-relation. 

If the IO-relation turns out to be the graph of a function then the 
automaton is said to compute that function. We now describe a subclass of 
the class of automata that compute functions. The following definition is 
due to Stark (1987). 

DEFINITION 7. An automaton is deterministic if it satisfies the following 
condition: b 11 b’ whenever b, b’ are distinct non-input events both enabled 
at some state. 

Intuitively, a determinate automaton does not exhibit “internal indeter- 
minacy.” These are the automata that correspond to the computing agents 
that Kahn considered in his treatment of networks, in view of the following 
theorem of Stark (1987). 

THEOREM 1. A function f is computed by a determinate automaton iff f 
is a continuous function. 

2.3. Networks of Automata 
We now describe how we can build networks of automata. We consider 

three operations-aggregation, feedback, and output hiding. Ordinary 
sequential composition of programs can be described in terms of these 
operations. Thus these operations cover the normal intuitions of forming 
networks from individual components. 

Aggregation involves taking two networks with disjoint sets of ports and 
“keeping them side by side” to obtain a new network. Feedback (see Fig. 1) 
involves identifying an output port p, of the network with an input port p2 
of that network, so that the port p2 can no longer be observed by the 
environment and can no longer serve as an input port. The values 
appearing at p2 will be those that are output at pl. One stipulation that 

FIG. 1. Feedback. 
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we make is that the output port p1 and the input port p2 not be ports of 
the same automaton in the network. Our last operation, output hiding, 
removes an output port, so that the environment can no longer observe 
values at this hidden port. 

We can define the first two operations as special cases of the composition 
of a finite compatible set of automata. 

DEFINITION 8. If I is a finite index set, then a set Y = { Mi:iE Z} of 
automata is said to be compatible if 

l for all i, j E I such that i # j we have (E,\(Inp, u Out,)) n 
(Ej\(Inpj u Out,)) = a, that is, the sets of internal events of any pair of 
automata are disjoint, and, 

l for any port name, at most two automata may have that name in 
common, and in that case, it must be the name of an output port of one 
automaton and an input port of the other automaton, 

where Mi = (Ei, Q,, A;), and Inp, is the set of input events of M,, and Out, 
is the set of output events of Mi. 

The shared port names represent ports that get connected when the set 
of automata are composed together. We then obtain a network automaton. 
The input ports of the network are all the input ports of the M;s, excluding 
those that are shared. The output ports of the network are all the output 
ports of the M;s. 

DEFINITION 9. The composition of a compatible set Y of automata is 
the automaton n Mi= (E, Q, A), where 

l E=UE,,witha~~biffa~~,bforalli~Zsuchthatbothaandbare 
in Ei. 

l Out = (u Out), and Inp = (u Inp,)\( lJ Outi), 

l Q=Ilic,Qi 

l ql= (4:: iEZ) 
. e E A( (qi : i E Z), (ri : i E Z)) iff for all i E Z, either e 4 Ei and ri = qi, or 

else e E Ei and e E Ai(qi, ri). 

The definition of )/ above implies that events of distinct automata, that 
do not share any ports, are concurrent, because they are not both in the 
event set of any single automaton. We now note that the above definition 
includes the definition of aggregation, which is what happens when two 
automata do not share any ports, and the definition of feedback, which is 
what happens when two automata share a port name and it is the output 
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port of one automaton and an input port of the other automaton. We now 
explicitly define output hiding. 

DEFINITION 10. If d is an automaton with input ports Pin and output 
ports Pout, and Y is a subset of Pout, then the output hiding of Y in d 
results in the automaton with input ports Pi” and output ports Pout\9 
with exactly the same sets of events and states and the same transition 
relation as d. 

When we compose two automata with a shared port name p, p must be 
an output port of one automaton and an input port of the other 
automaton. The two automata connected in this manner may execute a 
single event in the composed automaton. It is important to remember that 
this corresponds to two different events in the original collection of 
automata. By defining composition in this way, we do not have to worry 
about liveness conditions, to ensure that values output onto p will 
eventually arrive at the input port of the other automaton. 

We can define history, input port history, and output port history, corre- 
sponding to computation sequences of networks, just as we did for com- 
putation sequences of single automata. We recall that, for a single 
automaton, the completed computation sequences were the 5 -maximal 
ones. We could now define permutation equivalence and the permutation 
preorder 5 as we did for single automata, and then talk about the 
L-maximal computation sequences. But we argue that this maximality 
condition is not a reasonable definition of completion for networks in 
general. We illustrate this point of view by an example. 

EXAMPLE 4. Consider the network in Fig. 2, consisting of a buffer 
automaton, as in Example 1, and a poll automaton, as in Example 2. Sup- 
pose we took maximality of computation sequences as defining completion. 
Then the computation sequence starting with an input event at the input 
port of the buffer, followed by an infinite sequence of * outputs by the poll, 
is a maximal computation sequence, because even though the output event 
for buffer (input event for poll) is enabled at every state following the read 
event of the buffer, it does not commute with a + output. But this com- 
putation sequence does not really make sense as a completed sequence, 
because we want the buffer to output all its input values. In other words, 

FIG. 2. A buffer and a poll. 
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the projection of the network computation sequence onto the ports of the 
buffer is not a completed computation sequence for the buffer. 

The following definition, however, captures the proper notion of 
completion. 

DEFINITION 11. A computation sequence y for a network of automata is 
completed if, for every automaton A4 in the network, the restriction of y to 
M is a completed computation sequence for M. 

Intuitively, this definition makes sense, because we would like to call 
those computation sequences of the network “completed,” in which every 
component automaton gets chances to execute and exhibits a completed 
computation sequence in every computation of the network. 

Just as we defined the input-output relation for a single automaton 
earlier, we can now define the following: 

DEFINITION 12. The input-output relation of a network of automata is 
the set of all pairs (H’,“, HE”‘) with 0 being a completed computation 
sequence of the network, H’,” being the input port history corresponding to 
[r, and Hzut being the output port history corresponding to g. 

2.4. Observability, Buffering, and Processes 

It is clear that, for an “external” observer of an automaton, all that can 
be observed is a sequence of input events at each input port of the 
automaton, and a sequence of output events at each output port of the 
automaton. Due to the asynchronous nature of communication between 
automata, there may be an arbitrary delay between the emission of a value 
at an output port and the observation of that value. So it is not possible 
for an observer to determine the order of emission of values on different 
ports. 

To reason about processes, we abstract away from computation sequen- 
ces by considering only the input events and output events, as these are the 
events that interface the process with the external world. But the definition 
of automata do not allow any two events on different ports to be com- 
muted. That means that if there is a computation sequence y with event e 
on output port p occurring before an event e’ on some other output port 
p’, then there may be no computation sequence with e’ preceding e and the 
rest of y unchanged. But, as far as the external observer is concerned, he 
should not be able to distinguish the automaton in which e always occurs 
before e’ from the automaton in which e may precede e’, or e’ may precede 
e. So, as far as the external observer is concerned, these two automata 

643/98/l-8 
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should have the same set of “traces-abstractions from computation 
sequences. 

For this reason, we describe processes as automata with buffers attached 
to each of the input and output ports. As we shall see, this will allow us 
to commute events on different ports. A buffer was described as a specific 
automaton in Example 1. Having buffers in the description of a process will 
also make the arbitrary delay between the emission of a value and its 
observation explicit in computation sequences of the network. 

We now formally describe what we mean by a “buffered automaton.” 

DEFINITION 13. A process is the composition of 

(i) an automaton, called the central automaton of the process, with 
input ports i,, i,, . . . i, and output ports or, 02, . . . o,, and 

(ii) m + n buffers, called the process buffers, n of them having output 
ports i, , i,, . . . i,, respectively, and the remaining m of them having input 
ports o,, 02, o,, respectively. The rest of the ports of the buffers are 
disjoint from the set (ir, i,, . . . i,, o,, 02, . . . o,), 

with the ports {i,, i,, . . . i,, or, 02, . . . 0,) hidden. 

Figure 3 shows a process; we may also refer to this as a buffered 
automaton. 

By our definition of completed computation sequences, we ensure that 
every value input to the process will arrive at an input port of the central 
automaton, and every value output by the central automaton will be 
output by the process. 

Just as we defined a compatible set of automata in the previous section, 
we can similarly define a compatible set of processes-the set consisting of 
the automata that make up these processes must be compatible. The 
composition of a compatible set of processes is the network obtained by 

FIG. 3. The structure of a process. 
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composing the set of network automata representing the individual 
processes. A network of processes may also be obtained by hiding some of 
the output ports of the composition of a compatible set of processes. 

We can now talk about notions of implementability and non-implemen- 
tability. 

DEFINITION 14. A set S of processes can implement a relation R if there 
is a finite network N, built out of copies of processes in S, such that R is 
the input-output relation of N. 

DEFINITION 15. A set S of processes can implement a process or a 
network M if there is a finite network N, built out of copies of processes 
in S, such that N and M have the same input-output relation. 

In this paper, we differentiate between classes of processes, as exemplified 
by the merge processes, by proving non-implementability results between 
these classes. 

3. TRACE SETS 

We can describe the behaviour of a network by describing its input- 
output behaviour. The input-output relation of a network of processes is 
the input-output relation of the associated network of automata. Since 
“buffering” an automaton does not affect the input-output relation, we 
have a process with the input-output relation of poll (Example 2). But note 
that we do not consider “arbiters,” which can distinguish between the order 
of arrival of values at distinct input ports. This is because, for the processes 
we consider, we cannot distinguish between the order of arrival of values 
at distinct input ports, because the central automaton of the process may 
see the values in either order, as the buffers at the input ports of the process 
may produce the corresponding output events in either order. 

The input-output relation semantics for processes and networks fails to 
be compositional. The reason for this is that the input-output relation 
describes which sequences of values can be obtained at the output ports for 
given sequences of values at the input ports. So this view describes the 
entire output when given the entire input. It does not describe which par- 
ticular values in the output sequences really depended on the presence of 
which particular values in the input sequences. Briefly, there is no causality 
information between events encoded in the input-output relation. One way 
to express causality information is to consider sequences of input and 
output events. 
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DEFINITION 16. If y is a computation sequence, then we define tr(y) to 
be the subsequence of ev(y), consisting of all the input and output events 
in ev(y). 

DEFINITION 17. A trace of a network N of processes is a sequence t of 
input events and output events of N, such that t = tr(y) for some completed 
computation sequence y of N. We write Trset(N) for the set of traces of a 
network N. 

In an earlier discussion of network semantics, trace sets were called 
archives (Keller and Panangaden, 1986). Presented in this way, the traces 
appear as an abstraction of computation sequences that were defined using 
an operational formalism. The important point is that we can define com- 
position rules directly on trace sets, and this allows us to build up trace sets 
of complex networks structurally. If t is a sequence of events and P is a 
process or a network, n,(t) will represent the subsequence of t consisting 
of all the events on the input and output ports of P in t. 

We emphasize here that due to the description of processes as automata 
with buffers, the trace set of a process satisfies natural closure conditions 
-if two events e, and ez are adjacent in a trace t, and either (i) both are 
input events at different ports, or (ii) both are output events at different 
ports, or (iii) e, is an output event and e, is an input event, then flipping 
these two events gives us a trace of the process. This property of trace sets 
of processes is natural, as discussed in the subsection on observability 
earlier. 

We would like to prove a theorem that the trace set of a network may 
be described in terms of the trace sets of its subnetworks. In order to do 
this we need to formalize some preliminary notions. We define the notion 
of corresponding events in a trace or a computation sequence. 

DEFINITION 18. In a trace or computation sequence of a network with 
two of its ports being pi and p2, a p,-event occurrence e, and a p,-event 
occurrence e, are said to be corresponding events if e, is the ith event on 
port pl, and e2 is the ith event on port p2 for some i > 0. 

We use the predicate “precedes” to indicate precedence between events in 
a trace. 

DEFINITION 19. precedes(p, , pz, t) = def for every finite prefix of t, 
value(l;l,,(t)) is a prefix of value n,,(t)). 

Informally, this means that every p,-event occurrence is preceded by a 
corresponding pi-event occurrence with the same value. This predicate is 
useful for defining the trace sets of networks built using feedback. 

The following theorem states that traces are compositional. 
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THEOREM 2. Consider any decomposition of a network N into sub- 
networks (Ni} for i in some finite index set I, where the Ni are not 
necessarily individual processes. Then the set of traces Trset(N) of the 
network is exactly the set of sequences n,(r), such that 

(i) t is a sequence of events at the input and output ports of the N,‘s 
distinguishing between an output port and an input port even if they have 
the same name p by calling them pout and pin respectively, 

(ii) for all iE Z, I7,( t) is a trace of Ni, and 

(iii) for every port p that is an output port of Nj, as well as an input 
port of N;, i not necessarily distinct from j, precedes(p,,,, p,,, t) and 
Up,,,(‘) = flAn(f). 

Proof Let t be a sequence of events, satisfying conditions (i), (ii), and 
(iii) above. We show that n,(t) is a trace of N. Let t, = n,(t). For each 
t;, there is a completed computation sequence yi of N;, such that ti= tr(y,). 
Then we can dovetail among the computation sequences {yi : i E I) to 
obtain a computation sequence y, such that t is the subsequence of ev(y) 
consisting of all the input and output events of the Ni. Now, using condi- 
tion (iii) in the statement of the theorem, and by the property of non- 
disabling inputs of processes, we obtain a new computation squence y” in 
which for every shared port p, the output events at pout immediately 
precede the corresponding input events at p,“. Replacing each such adja- 
cent pair of events at pout and p,, by a single p-event, we obtain a computa- 
tion sequence y’ of the network N in which the output events on the shared 
port are also the input events on the shared port. Any automaton M in the 
network is in one of the subnetworks, say Ni, and so the restriction of y’ 
to M is the same as the restriction of y, to M. Since the latter is completed, 
because 11, is a completed computation sequence of N;, so is the restriction 
of y’ to M. Therefore y’ is a completed computation sequence of the whole 
network, and so tr(y’) is a trace and it is exactly the restriction of t to the 
events on the input and output ports of the network. 

Let t’ be a trace of N corresponding to the completed computation 
sequence y of the network, composed of subnetworks N,. The restriction y, 
of y onto any subnetwork Nj is then a completed computation sequence of 
N, by the definition of a completed computation sequence of a network. 
Let t” be the subsequence of ev(y) consisting of all the input and output 
events of the N; in ev(y). Now, for every port that is shared by an N, and 
an N,, i not necessarily distinct from j, replace an event on that port in t” 
by two events-an output event on the output port followed by an input 
event on the input port. The new event sequence t is a sequence of events 
such that its restriction to the events of any subnetwork Ni is a trace of 
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that subnetwork, and moreover, the restriction of t to events on the input 
and output ports of the network is the same as the trace t’ = tr(y). 1 

It is possible to have processes with different sets of traces, but the same 
IO-relation. Brock and Ackerman (1981) have such an example, but their 
example uses a powerful primitive, fair merge. There are other examples 
using only finite indeterminacy (Russell, 1989). 

We use vector notation to talk about collections of ports. We project 
traces onto vectors of ports and assume that we get a vector of event 
sequences. Thus, we may write, “a trace t when projected onto ports a 
produces the sequences a.” This notation allows us to write many projec- 
tions at once and also allows us to name the components of the vectors as 
the need arises. 

We described the construction of networks in the previous section. We 
use the notation Nil M to represent the network built by aggregation from 
the two subnetworks N and M. We use the notation loop(p,, p2, N) to 
represent network built by identifying an output port p, of the network N 
with the input port p2 of N. (See Fig. 4.) Last the traces of a network built 
by hiding some output ports of another network are obtained by simply 
taking the traces of the original network and projecting out the events on 
the hidden output ports. We use the notation N\S for the network N with 
the ports S of N hidden. 

THEOREM 3. 

Trset(NIIM)= {tE(Px V)” In,(t)~Trset(N) A n,(t)ETrset(M)}, 

where P is the set of input and output ports of N and M. 

THEOREM 4. Trset(loop(p,, p2, N)) consists of every sequence n-,,,(t) 
such that t E Trset(N) and precedes(p,, p2, t) and (n,,(t) = U,,(t)). 

FIG. 4. Loop formation. 
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The statement of the theorem expresses the idea that in the network with 
the feedback, the events on p2 arise from events on p,. 

Let us define a predicate similar to precedes, that captures “immediate 
precedence” of events. 

DEFINITION 20. immprecedes(p,, pz, t) = def precedes(p,, p2, t) A (every 
p,-event is immediately preceded by the corresponding p,-event in t). 

Then it follows by monotonicity (Definition 4) that for any trace 
t’ of loop(p,, pz, N), there is a trace t E Trset(N) such that 
immprecedes(p,, p2, t) A (n,,(t)=n,,,(t)). 

THEOREM 5. Suppose S, is a subset of the set of output ports qf a 
network N. Then 

Trset(N\S,)= {n,,(t)ItETrset(N)) 

All these proofs follow directly from Theorem 2 that establishes composi- 
tionality of trace sets. 

The fact that we have a compositional description of network behavior 
allows one to prove properties of networks by structural induction on the 
network. 

4. THE MERGE PRIMITIVES 

In this section, we describe the merge primitives fair merge, angelic 
merge, and infinity-fair merge. We describe both their input-output 
behavior and their trace sets. The point of introducing these primitives is 
to study and compare the interesting classes of processes in which they lie. 
We emphasize that we wish to make interesting distinctions between the 
input-output relations of these primitives. We use the compositionality of 
trace sets to make these distinctions. Informal descriptions of the merge 
primitives were given in the introduction. Now we formally describe their 
input-output relations, and specific trace sets. 

We first describe angelic merge. Intuitively, angelic merge can avoid 
getting stuck at input ports with no input, but need not be fair on 
infinite input streams. The input-output relation of angelic merge consists 
of triples (si, si,, s,) of value sequences, such that s, can be broken up into 
two subsequences sr, sz such that 

(i) s1 is a prefix of si and s2 is a prefix of sI,, 
(ii) if s, is finite, then s2 = s,., and if s? is finite, then s, = s,. 
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We now give a specific trace set that has the above IO-relation 
associated with it. If the angelic merge process has input ports i, i’ and 
output port o, then the trace set consists of all event sequences 
te({i, i’, o} x V)” such that n,(t) can be broken up into two sub- 
sequences s,, s2 such that 

(i) value(s,) is a prefix of value(l;li(t)) and value(s,) is a prefix of 
value(Di(t)), 

(ii) if n,(t) is finite, then value(s,) = value(Z7Jt)), 

(iii) if L!,.(t) is finite, then value(s,) = value(lirj(t)), and 

(iv) for every prefix t’ of t, the prefix of si in t’ is a prefix of Z7,(t’), 
and the prefix of s2 in t’ is a prefix of n,(t). 

Before describing infinity-fair merge, we first describe a primitive anyints 
that embodies unbounded indeterminacy. It has one input port and one 
output port. It consumes any value on the input port and produces any 
positive integer on the output port. In particular, we could feed it an 
infinite stream of zeros and have it produce an infinite stream of arbitrary 
positive integers on its output port. With any&s we can easily program a 
merge process that is fair if both its input streams are infinite. We use the 
anyints to produce an arbitrary stream of integers. We can then use this as 
an “oracle” for a determinate process that has three input ports and a 
single output port. The determinate process uses the arbitrary stream of 
integers to determine how many tokens to read off each of its input ports 
before switching to the other input port. The adjective infinity-fair was 
coined by Park (1982) for such a process. 

The intuition behind infinity-fair merge is captured by the above simula- 
tion. If both input sequences are infinite, then it reads both of them com- 
pletely and outputs an interleaving of them. The process will however get 
stuck at an input port with no more values left to read, if either of the 
input sequences is finite. The input-output relation of infinity-fair merge 
consists of triples (s,, s,,, s,) of value sequences, such that s, can be broken 
up into two subsequences s,, s2 such that 

(i) s1 is a prefix of si and s2 is a prefix of sic, 
(ii) if si is infinite, then s2 = s,,, and if s1 is infinite, then si = si. 

We now give a specific trace set that has the above IO-relation 
associated with it. If the infinity-fair merge process has input ports i, i’ and 
output port o, then the trace set of the process consists of all sequences 
tE({i, i’, o} x V)” such that n,(t) can be broken up into two sub- 
sequences si, s2 such that 
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(i) value(s,) is a prefix of value(l;l,(t)) and value(s,) is a prefix of 
value(H,,(t)), 

(ii) if n,(t) is infinite, then value(s,) = value(U,(t)), 
(iii) if n,.(t) is infinite, then value(s,) = value(Z7,(t)), 
(iv) if either of ni( t) or n,.(t) is finite, then Z7,,( t) is finite, and either 

value(s,) = value(n,(t)) or value(s,) = value(Z7,.(t)), and 
(iv) for every prefix t’ of t, the prefix of s, in t’ is a prefix of n,(r’), 

and the prefix of s, in t’ is a prefix of n,(t). 

It is also true that infinity-fair merge can implement anyints. To exhibit 
this, we use an infinity-fair merge with fixed input sequences 0’” and 1 X. 
Since the output must contain infinitely many O’s and infinitely many l’s, 
we can read off the lengths of the blocks of l’s and the blocks of O’s, and 
make the output of anyints be the sequence consisting of these lengths. 
Therefore anyints and infinity-fair merge can implement each other, and we 
can use either one interchangeably in implementability and non-implemen- 
tability proofs. 

Intuitively, fair merge requires sensitivity to the presence or absence of 
values at input ports. Keller (1978) considered the addition of a command 
with syntax pofl a, where a is an input port, to the usual language of deter- 
minate node programs consisting of read, write, and internal commands. 
The command has the effect of indicating whether there is a value available 
to be read on port a. Thus it is sensitive to the presence or absence of 
values at input ports. With this command, it is easy to program a fair 
merge. We can repeatedly poll the two input ports and read a value each 
time if it is present. This process never waits to read data are not going to 
appear nor will it consistently favour a particular port. We introduce a 
primitive called poll that has similar behaviour. A poll primitive has one 
input port andone output port. It outputs a shuffle of the input sequence 
and an infinite sequence of *‘s, where * is a special value that cannot be 
produced by other processes. With poll, one can easily implement fair 
merge. All one needs is a determinate zipper. This is a process with two 
input ports and one output port that reads values from each input port in 
strict alternation, and copies the values onto its output port. To implement 
a fair merge one-puts a poll in front of each input port to the zipper. Then 
the resulting output can be filtered to remove the Ir’s. It is trivial to imple- 
ment poll with a fair merge-just merge the input stream with an infinite 
sequence of *‘s. Therefore poll and fair merge can implement each other. 

Formally, the inputtoutput relation of fair merge consists of triples 
(si, si., s,) of value sequences, such that s, is an interleaving of si and s,, 
We can give a specific trace set with this IO-relation associated with it. If 
the fair merge process has input ports i, i’ and output port o, then the trace 
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set consists of all event sequences t E ({i, i’, O} x V)” such that n,(t) can 
be broken up into two subsequences si, s2 such that 

(i) value@,) = value(Z7,(t)), and 
(ii) value(s,) = value(Z7,.(t)), and 

In the next section, we use properties of trace sets of these merge 
processes to distinguish between them. 

5. INEXPRESSIVENESS RESULTS 

In this section, we study properties of the merge processes defined in the 
previous section, and prove that the different merge processes actually form 
different levels in a hierarchy of expressiveness. The properties that we 
define and study in this section are two different notions of “monotonicity.” 
We refer to these as “Hoare-monotonicity” and “Smyth-monotonicity,” 
and these are properties of trace sets. We prove that Smyth-monotonicity 
of trace sets is preserved under network composition, but it turns out to be 
exceedingly diflicult to prove that Hoare-monotonicity of trace sets is 
preserved under network composition. So a stronger property of trace sets, 
that implies Hoare-monotonicity, needs to be proved. This is a “continuity” 
kind of property. 

5.1. Hoare-Monotonicity 

The intuition behind the definition of Hoare-monotonicity is that, in a 
monotone network, i.e., satisfying the non-disabling input property (Defini- 
tion 4), arrival of values at input ports cannot disable output of values that 
were akready enabled before the arrival of the values at the input ports. We 
formulate this property as a property of trace sets and also describe a 
stronger property-limit-closure-that is preserved by network composi- 
tion. 

DEFINITION 21. Let t, and t, be two traces of a network N. Then the 
relative order of events in t, is said to be preserved in t, if the following two 
conditions hold: 

(i) for every port p of N, n,(ti) k Z7,(tJ, and 
(ii) for every pair e,, e2 of event occurrences in ti, if e, is the ith 

event on port pi, and e, is the jth event on port pz, then e, precedes e2 
in t, iff the ith event on port p, in t, precedes thejth event on port p2 in tz. 

DEFINITION 22. Let N be a network with input ports a and output 
ports b. We say that Trset(N) is Hoare-monotone if, for any trace 
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t E Trset(N) and any finite prefix t’ of t such that n,(t) = a, and for any 
a’ 2 a, there is a trace t” E Trset(N) with 17,(P) = a’, with L!,(t) 5 D,(t”), 
with t’ a prefix of t”, and with the relative order of the events in t preserved 
in t”. 

This says that, given a trace, we can always extend the input, and there 
will be some trace that represents the response of the network to the new 
input and in this new trace, the sequence of values on each port will be an 
extension of, or equal to, the sequence of values seen before. Clearly we 
cannot expect that every response will be an extension (in the above sense) 
of, or equal to, the old response since the networks are indeterminate. This 
definition captures the idea that if there were an enabled output then 
adding new input would not disable this output. 

The definition of the Hoare-monotonicity of a trace set is quite involved 
since it deals with the orderings of events in traces, and not just with the 
input and output sequences. We now define a predicate on the input- 
output relations of networks, such that Hoare-monotonicity of the trace 
set of a network implies the truth of this predicate on the input-output 
relation of that network. We give the same name, Hoare-monotonicity, to 
this predicate. 

DEFINITION 23. The input-output relation of a network N is said to be 
Howe-monotone, if whenever for some input a, there is an output p, and 
a’ 2 a, then there is a possible output fI’ 2 B. 

Note that since we are only talking of the input-output relation here, we 
do not have requirements as for Hoare-monotonicity of trace sets, such as 
the preservation of relative order of events in traces. 

The reason that we could not work with Hoare-monotonicity of the 
input-output relation is that this does not imply Hoare-monotonicity of 
the trace set, as the example below shows. 

EXAMPLE 5. We describe a process with input ports a’, b’ and output 
port c’, and with the central automaton of the process having input ports 
a, b, and output port c. The central automaton repeatedly executes the 
following conditional statement: if a has no values to be read, then write 
a 1 on c and then read from b, otherwise first read a value from a, then 
read a value from b and then write a 1 on c. The input-output relation of 
this process has the property that when there are no values at c1’, then the 
output at c’ is of the same length as the input at 6’. Moreover, when there 
is input at a’, then the length of the output at c’ is either the length of the 
input at b’ or 1 more than the length of the input at b’. It can easily be 
checked that this is a Hoare-monotone input-output relation. But the trace 
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set of this process is not Hoare-monotone, as the sequence (c’, l), (h’, l), 
(c’, l), . . . is a trace, but when the input at a’ is extended to a non-empty 
sequence, then the relative order of events in the above trace cannot be 
preserved, and for some i > 0, the ith c’-event follows the ith h’-event. 

However, we justify the use of our definition of Hoare-monotonicity of 
trace sets by arguing that all processes whose central automata are 
monotone have a Hoare-monotone trace set. The point here is that for 
such processes, input events commute with all other events. So if t is a trace 
and y is the corresponding completed computation sequence, then adding 
new input events after any prefix yp of y gives us a new computation 
sequence extending y,, and with the relative order of events in ;j preserved. 
This can now be L-extended to a completed computation sequence 
(Panangaden and Stark, 1988). It is of course possible that one could 
have a process with a non-monotone central automaton that has a 
Hoare-monotone trace set. Thus our proof is more general than that of 
Panangaden and Stark (1988). 

To prove the preservation of Hoare-monotonicity of trace sets for 
network composition, we need to consider aggregation and feedback. Of 
these, aggregation is more or less trivial whereas feedback, not surprisingly, 
involves an inductive proof. In order for the inductive proof to go through, 
we need to introduce limit-closure. 

DEFINITION 24. Trset(N) is said to be limit-closed if it satisfies the 
following property. Suppose that {t, 1 i < CD} is a set of traces of N such that 
for any port p, Z7,(t,) is a chain in the prefix ordering, and the relative 
order of events is preserved along this chain. Then there is a trace 
t E Trset(N) such that, for any port p, we have H,(t) = 1 H,,(t,) and the 
relative order of events in ti is preserved in t for every i. 

We now show that a network composed of components with Hoare- 
monotone and limit-closed trace sets has to have a Hoare-monotone and 
limit-closed trace set. This is the fundamental theorem on which our first 
expressiveness result rests. 

THEOREM 6. The aggregate of two networks, N and M, with Hoare- 
monotone and limit-closed trace sets has a Hoare-monotone and limit-closed 
trace set. 

Proof: Let A4 and N be networks with Hoare-monotone and limit- 
closed trace sets. Let t be a trace of N )I M. Then t is a shutlle of t, and t2, 
where t, is a trace of N and t2 is a trace of M. Extending the input streams 
of N 11 M extends the input streams of N and M. By Hoare-monotonicity of 
N and A4, there are traces t; and t; of N and M, respectively, with the 
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extended input and output and with relative order of events in t, and t2 
preserved in t; and ti respectively. Then t’, an appropriate shuftle of t’, and 
ti, is the desired trace of NII M. 

The proof that limit-closure is preserved is very similar. One can decom- 
pose traces of Nl( M to obtain traces of N and M. One can obtain the 
required limiting vector by using the limit-closure of the trace sets of the 
components and appropriately shuffling the corresponding traces. 1 

Now we consider the case of feedback. For definiteness, let us suppose 
that the network in question is A4 and that the output port b of A4 is con- 
nected to the input port c forming a feedback loop. Let the network A4 
without this feedback loop be called N. Note that N has an extra input 
port L’. Recall that the relationship between the trace sets of the two 
networks is 

Trset(M)= [n,,(t)lt~Trset(N) A precedes(b, c, t) A (Z7,.(t)=Z7,(t))}. 

We will use the following convenient notation: suppose that a is a vector 
of n sequences, then a; y will mean the vector consisting of the sequences 
in a and the sequence y in the (n + 1)th position. 

THEOREM 7. Suppose the networks M and N are as above. rf Trset(N) 
has a Hoare-monotone and limit-closed trace set, then does Trset(M). 

Prooj Suppose t E Trset(M), H,(t) = a, and H,(t) = p, where I and 0 
are the sets of input ports and output ports, respectively, of M. Now we 
consider extending the input to a’, and we pick a finite prefix t, of t. By 
Theorem 3, there is some trace t, E Trset(N) such that ZZ,(t,) = a; ZZ,(t,) 
and ZZ,(t,) = fI and precedes(b, c, to) and J7,,( to) = n,(t,,). Let tb be the 
finite prefix of t, such that ZIfkc,(tb) = t,. Since the original network N is 
Hoare-monotone, we can extend the input to a; Z7,.(t,) and there will be 
some new trace of N, call it t , , such that t, 2 t; and ZZ,( t, ) = a; Z7,( to) and 
ZZ,( t,) = I31 7 fi and with the relative ordering of events of t, preserved in 
t,, and hence precedes(b, c, t). If n,(t,) is infinite, then II, = Z7,(t,), but 
if Z7,.(t,) is finite, then we have no guarantee that Z7,.(t,) = Z7,( tl). In the 
rest of the discussion we describe how to build a trace t’~Trset(N), such 
that t’ 2 tb, n,(P) = B’, IZ,(t’) = a’; Z7,.(t’), Z7,(t’) = n,(t’) and with fl c fI’ 
and precedes(b, c, t’). II,, will then be present in Trset(M) and will 
demonstrate that A4 is also Hoare-monotone. 

The construction of t’ is carried out using traces from Trset(N). Since we 
know that Trset(N) is Hoare-monotone, we can construct t’ in successive 
approximations knowing that at each stage we can do it in such a way that 
the sequences of events on the ports increase at each stage of the construc- 
tion. Let t’, be a prefix of t, upto the first new b-event in t, . Then, by 



124 PANANGADENANDSHANBHOGUE 

Hoare-monotonicity, there is a trace t,, extending t;, with the input on 
input port c extended by a new c-event that matches the new b-event in h, , 
and with an extended output. 

We iterate this process by successively considering all the b-events, and 
obtain, in this way, a sequence of traces t,, t, . t, ... such that the event 
sequences on all the ports are increasing and for which value(n,(t,+ ,)) is 
the prefix of value(Z7,(t,)) of length n+ 1 + (length of n,(t,)). At any stage, 
if Z7,(t,) = II,( then the trace t, has the required property. However, it 
is possible that, when we look at the sequence of traces projected onto c, 
we obtain an infinite properly increasing chain of finite sequences. In this 
case, we have a sequence of inputs a’; Z7,.(ti) and a corresponding sequence 
of outputs pi. By the limit-closure of N, we have a trace t, with input 
u (a’; II,( = cc’; u n,.(ti) and outputs u bj with the relative order of 
events from each t, being preserved. The sequence corresponding to port b 
is u Z7,(ti) in U pi. 

Any event in U Z7,(ti) is in some Z7,.( ti), hence preceded by a corre- 
sponding b-event in the trace t,, and hence preceded by a corresponding 
b-event in U Z7,( t;) (because relative order is preserved). Therefore, 
precedes(b, c, t, ) holds and so t, is the required trace. 

Now we prove that Trset(M) is limit-closed. Suppose (a,, fir), . . . are 
input-output pairs corresponding to traces t,, . . . in Trset(M), such that the 
relative ordering of events is preserved. Let t;, . . . be the corresponding 
traces in Trset(N) such that immprecedes(b, c, t:) holds for every i. It is 
then easy to see that the relative ordering of events is preserved along t’,, .._ 
By limit-closure of Trset(N), 3 a trace t,, with input U (a,; n,.(t,)) and 
output U fli with relative order of events in every tj being preserved in t,. 
Since Z7,(tj) = IZ,(ti) for every i, U Z7,.(ti) = U n,(ti) and as before, 
precedes(b, c, t) holds. So II,,.(t) is a trace of A4 with the required proper- 
ty. I 

We now deal with output hiding. 

THEOREM 8. Any network obtained by hiding some output ports of a 
network with a Hoare-monotone and limit-closed trace set has a Hoare- 
monotone trace set. 

Proof. Let N be a network with a Hoare-monotone and limit-closed 
trace set, and let M be the network obtained by hiding some set S of out- 
put ports of N. Let t be a trace of M, and let t, be a finite prefix of t. Let 
the input be a and the output be B. By Theorem 5, there is a trace t’ of N 
such that t = Z7,,(t’). Let th be the prefix of t’ such that ZI,,(t~) = tp. The 
output in t’ is fl; y where y consist of the sequences of events at the ports 
in S. When a is extended to a’, then by Hoare-monotonicity of N, there is 
a trace s’ 7 tb with input sequences cc’ and output sequences fI’; y’, b c fl’ 
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and y c y’. Therefore Z7,,(s’) is a trace of M with the desired 
property. 1 

COROLLARY 1. Any network consisting of components with Hoare- 
monotone and limit-closed trace sets has a Hoare-monotone trace set. 

Proof: Any network implemented by components with Hoare- 
monotone and limit-closed trace sets is obtained by composing the com- 
ponents and then hiding some output ports. As proved earlier, any network 
obtained by composing components with Hoare-monotone and limit- 
closed components has a Hoare-monotone and limit-closed trace set. 
Hiding some output ports preserves Hoare-monotonicity of trace sets. 
Hence the resulting network has a Hoare-monotone trace set. 1 

THEOREM 9. No total subset of the input-output relation of fair merge 
can be implemented by any finite network of Hoare-monotone and limit- 
closed processes. 

Proof. The trace set of any finite network built out of Hoare-monotone 
and limit-closed processes by aggregation, feedback and output hiding is 
Hoare-monotone, and hence the input-output relation is also Hoare- 
monotone. But no total subset of the IO-relation of fair merge is Hoare- 
monotone. To see this, consider the case where the input sequences of fair 
merge are 1 3L and /i, the empty sequence. Then 1 X is the only possible out- 
put sequence. Now if the sequence on the second input port is extended to 
2, then the output sequence must include the value 2, and no such output 
sequence is an extension of lx. u 

We can therefore distinguish between angelic merge and fair merge, since 
the following corollary is immediate. 

COROLLARY 2. Angelic merge cannot implement the IO-relation of fair 
merge. 

Note that, although fair merge is also not limit-closed, and limit-closure 
is preserved under composition, it might seem that we could prove the 
expressiveness theorem using the limit-closure property instead of Hoare- 
monotonicity. This is not possible, because infinity-fair merge can be 
obtained, as in the previous section, by composing some networks with 
Hoare-monotone and limit-closed trace sets and then hiding some output 
ports. But it is not limit-closed. Consider the inputs (1, 2), (l*, 2), ( 13, 2), . . . 
to the infinity-fair merge process. 1, l’, 13, . . . are possible outputs, respec- 
tively. The limit of the inputs is (1 X, 2) and the limit of the outputs is l”, 
which is not a valid output sequence because 2 has not been output. This 
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shows that we cannot just consider limit-closure, and we really need to talk 
about Hoare-monotonicity. 

5.2. Smyth-Monotonicitv 

Hoare-monotonicity described the property that given a trace t, if we 
consider an increased input, then there is a trace t’ with that increased 
input and an equal or increased output, and further the relative ordering 
of events in t is preserved in t’. We now define a “similar” property. Infor- 
mally, this property says that given a trace t, if we consider a decreased 
input, then there is a trace t’ with that decreased input and an equal 
or decreased output, and further the relative ordering of events in t’ is 
preserved in t. 

DEFINITION 25. Trset(N) is said to be Smyth-monotone if for any trace 
t with input sequences a and output sequences b, if a’ c a, then there is 
a trace t’ with input a’ and output fi’ and fl’ c p and the relative order of 
events in t’ is preserved in t. 

The next lemmas establish that Smyth-monotonicity is preserved by 
network composition. 

LEMMA 1. Suppose N, and N, are networks with Smyth-monotone trace 
sets. Then their aggregate N also has a Smyth-monotone trace set. 

Proof Let t be a trace of N. Then t is an interleaving of a trace t, of 
N, and a trace t2 of N,. Let a and b be the input sequences and output 
sequences, respectively, in t, . Let y and 6 be the input sequences and out- 
put sequences, respectively, in t2. Let a’ c a and y’ c y. Then, by Smyth- 
monotonicity of N, and N,, there are traces t3 and t,, of N, and N, respec- 
tively, such that the relative order of events in t, and t, are preserved in 
t, and t2 respectively. Then an appropriate interleaving of t, and t, is a 
trace of N, the relative order of events of which are preserved in t. 1 

LEMMA 2. Zf N is a network with a Smyth-monotone trace set, and has 
an output port p1 and an input port pz, then the network loop(p,, pz, N) has 
a Smyth-monotone trace set. 

Proof: Let M be the network loop(p,, p2, N). We recall that 

Trset(M)= (n,,Jt) I t E Trset(N) A precedes(p,, p2, t) A (n,,(t) = np2(t))) 

Let t’ be a trace of A4 with a and fI as the input sequences and output 
sequences respectively. There is a trace t of N, such that t’ = I7,P, t and 
precedes(p,, p2, t) and ZZp,(t) = n,,(t). Let 6 = value(U,,(t)). Then the 
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input sequences in t are a; 6. Let a’ c a. By Smyth-monotonicity of N, 
there is a trace rl of N, such that the input sequences are a’; 6 and 
value( Z7,, (rI )) = 6, c 6 and the relative order of events in r, are preserved 
in t. 

If 6 = 6, then we are done because then IZ-p2r1 is the desired trace of M. 
If not, we iterate as outlined below until we finally obtain the desired trace. 
At each stage of the iteration, we construct new traces such that the relative 
order of events in newer traces is preserved in the older traces. 

The iteration proceeds as follows: If 6 # 6, then 6, is a proper prefix of 
6. This implies that a’; 6, is a prefix of a’; 6. So, by Smyth-monotonicity of 
N, there is a trace r2 with input sequences a’; 6, and value(Z7,,,(rz)) = 
6, 5 6, and precedes@,, p2, p2). 

If we repeat he above step, we will reach 6; = 6,+ r and then we will be 
done. This procedure will terminate because the prefix ordering is a well- 
ordering and 6; must certainly hit @ and stabilize if it does not stabilize 
earlier. 1 

LEMMA 3. Any network obtained by hiding some output ports of a 
network with a SmJath-monotone trace set has a Smyth-monotone trace set. 

Proof: Let N be a network with a Smyth-monotone trace set, and let M 
be the network obtained by hiding some set S of output ports of N. Let t 
be a trace of M. Let the input be a and the output be fl. By Theorem 5, 
there is a trace t’ of N such that t = 17, s(t’). The output in t’ is fl; y where 
y consist of the sequences of events at the ports in S. Let a’ E a. Then by 
the Smyth-monotonicity of N, there is a trace s’ E Trset(N) with input a’ 
and output fl’; y’, such that the relative order of events in s’ is preserved in 
t’. Then n,,(s’) is a trace of M with the desired property. i 

We now define a predicate on input-output relations that is true for any 
network whose trace set has the Smyth-monotonicity property. We will 
refer to this predicate as Smyth-monotonicity too. 

DEFINITION 26. The input-output relation of a network N is said to be 
Smyth-monotone, if whenever for some input a, there is an output fl, and 
a’ c a, then there is a possible output fI’ E l3. 

LEMMA 4. No total subset of the IO-relation of angelic merge is Smyth- 
monotone. 

Proof: Consider the following three pairs of sequences as inputs: 

1. (1”,2”), 
2. (l”,/i), 
3. (A,2”). 

543/98/l-9 
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In the second and third cases, the output of the angelic merge is deter- 
mined. Thus, any total subset of the IO-relation of angelic merge must 
produce exactly the same output as angelic merge would; namely 1 ‘n and 
2”, respectively. Now we consider the possible outputs in the first case. 
Note that the input in this case extends the inputs in both cases two and 
three. Thus if the IO-relation is to be Smyth-monotone all the possible 
outputs must extend both 1% and 2 X ; this is obviously impossible. 1 

THEOREM 10. No total subset of the IO-relation qf angelic merge can be 
implemented by any finite network sf processes with Smyth-monotone trace 
sets. 

ProoJ Smyth-monotonicity of trace sets is preserved under aggrega- 
tion, feedback and output hiding. Therefore the trace set of any finite 
network of Smyth-monotone processes must be Smyth-monotone, and 
hence the network must have a Smyth-monotone input-output relation. 
But no total subset of the IO-relation of angelic merge can have a Smyth- 
monotone input-output relation. 1 

We can therefore distinguish between infinity-fair merge and angelic 
merge, since the following corollary is immediate. 

COROLLARY 3. Infinity-fair merge cannot implement the IO-relation of 
angelic merge. 

5.3. Implementability Results 

The results in the previous subsection show that infinity-fair merge can- 
not implement angelic merge, and that angelic merge cannot implement fair 
merge. Eugene Stark (1990) showed how one could implement infinity-fair 
merge using angelic merge. We now show how one could implement 
angelic merge using fair merge, thus providing a straightforward picture of 
expressibility (Fig. 5 ). 

Figure 6 shows the network that implements angelic merge. The process 
P is a determinate process whose behaviour can be described as follows: it 

fair 

P 
angelic 

II- 
infinity-fair 

FIG. 5. A straight-line picture of merges. 
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FIG. 6. Angelic merge from fair merge. 

reads values from its first input port and outputs the values that are not *, 
until it reads two successive *‘s, in which case it switches to reading from 
its second input port and reads and outputs values that are not * until it 
reads two successive *‘s, in which case it switches back to the first input 
port and continues as above. We could formally describe this as an 
automaton, but the behaviour should be clear from the given description. 

6. CONCLUSIONS 

In this paper we have described a trace semantics for indeterminate 
dataflow networks and used it to prove expressiveness theorems. We have 
shown that there are three levels of unbounded indeterminacy and these are 
characterized by different monotonicity properties. We make no claims that 
this is an exhaustive classification, indeed we have discovered related 
expressiveness results that reline the ones discussed in the present paper 
(McAllester, Panangaden, and Shanbhogue, 1988). The main significance 
of the results derives from the significance for order theoretic approaches to 
fixed-point semantics for dataflow networks. The fact that different 
monotonicity properties are obeyed suggests that different approaches to 
fixed-point semantics might be appropriate at the different levels. Thus, for 
example, one may not need as elaborate an approach if one is only interested 
in modeling infinity-fair merge and not fair merge. 

Recent work by Samson Abramsky (1989) and E. W. Stark (1989b) has 
in fact shown that there are approaches that give fixed-point semantics for 
dataflow networks that include infinity-fair merge and angelic merge 
respectively. The problem of describing a fixed-point principle for dataflow 
networks with fair merge remains open. 



130 PANANGADENANDSHANBHOGUE 

ACKNOWLEDGMENTS 

We have benelitted from useful discussions with Samson Abramsky. Steve Brookes. 
Elsa Gunter. Albert Meyer, Alex Rabinovich, Jim Russell, and especially E. W. Stark. We 
acknowledge the support of NSF Grants DCR-8602072 and CCR-8817909. 

RECEIVED June 5, 1989; FINAL MANUSCRIPT RECEIVED July 23. 1990 

REFERENCES 

AALBERSBERG, I. J., AND ROZENBERG, G. (1983), Theory of traces, Theoret. Comput. Sri. 60, 
No. 1, 1. 

ABRAMSKY. S. (1983), On semantic foundations for applicative multiprogramming, in 
“Proceedings of the Tenth International Conference On Automata, Languages And 
Programming” (J. Diaz, Ed.), pp. 1-14. Springer-Verlag, New York. 

ABRAMSKY. S. (1989), A generalized Kahn principle for abstract asynchronous networks, in 
“Proceedings of the 1989 Symposium on Mathematical Foundations of Programming 
Language Semantics.” 

APT, K. R., AND OLDEROC, E.-R. (1983), Proof rules and transformations dealing with 
fairness, Sci. Comput. Prog. 3, 65. 

APT, K. R.. AND PLOTKIN, G. D. (1986), Countable nondeterminism and random assignment, 
J. Assoc. Comput. Mach. 33, No. 4. 724. 

BROCK. J. D., AND ACKERMAN, W. B. (1981), Scenarios: A model of nondeterminate com- 
putation. in “Formalization of Programming Concepts” (J. Diaz and I. Ramos, Eds.), 
pp. 252-259, Lecture Notes in Computer Science, Vol. 107, Springer-Verlag. Berlin/ 
New York. 

BROY, M. (1983), Fixed-point theory for communication and concurrency, in “Formal 
Description of Programming Concepts II” (D. Bjoerner, Ed.), pp. 125-148, North-Holland, 
Amsterdam. 

DEBAKKER, J. W., BERGSTRA, J. A.. KLOP. J. W.. AND MEYER, J.-J. CH. (1984), Linear time 
and branching time semantics for recursion with merge, Theoref. Compuf. Sci. 34. 134. 

FRANCEZ, N. (1986), “Fairness,” Springer-Verlag. Berlin/New York. 
JONSSON, B. (1989), A fully abstract trace model for dataflow networks, in “Proceedings of the 

Sixteenth Annual ACM Symposium On Principles Of Programming Languages, 1989.” 
KAHN, G. (1977), The semantics of a simple language for parallel programming, in “Informa- 

tion Processing 74,” pp. 993-998, North-Holland, Amsterdam. 
KELLER, R. M. (1978), Denotational models for parallel programs with indeterminate 

operators, in “Formal Description of Programming Concepts” (E. J. Neuhold, Ed.), 
pp. 337-366, North-Holland, Amsterdam. 

KELLER, R. M.. AND PANANGADEN. P. (1985), Semantics of networks containing indeter- 
minate operators, in “Proceedings of the 1984 CMU Seminar on Concurrency,” 
pp. 479496, Lecture Notes in Computer Science, Vol. 197, Springer-Verlag, Berlin/ 
New York. 

KELLER, R. M., AND PANANGADEN, P. (1986), Semantics of digital networks containing 
indeterminate operators, D&rib. Compuf. 1, No. 4, 235. 

KOK, J. (1987), A fully abstract semantics for dataflow nets. in “Proceedings of Parallel 
Architectures And Languages Europe 1987,” pp. 351-368, Springer-Verlag, Berlin. 

LYNCH. N. A., AND STARK, E. W. (1989), A proof of the Kahn principle for input/output 
automata, Inform. and Comput. 



INDETERMINATE PRIMITIVES 131 

LYNCH, N. A., AND TUTTLE, M. (1987), “Hierarchical Correctness Proofs for Distributed 
Algorithms,” Technical Report MIT/LCS/TR-387. M. I. T. Laboratory for Computer 
Science. 

MAZURKIEWICZ, A. (l986), “Advanced Course in Petri Nets,” pp. 279-324, Lecture Notes in 
Computer Science, Vol. 255. Springer-Verlag. Berlin/New York. 

MCALLESTER. D.. PANANGADEN, P.. AND SHANBHOGIJE, V. (1988). Nonexpressibility of 
fairness and signaling, in “Proceedings of the 29th Annual Symposium of Foundations of 
Computer Science. 1988.” 

PANANGADEN. P. (1985), Abstract interpretation and indeterminacy. it? “Proceedings of the 
1984 CMU Seminar on Concurrency,” pp. 497-51 I, Lecture Notes in Computer Science, 
Vol. 197, Springer-Verlag. Berlin/New York. 

PANANGADEN, P.. AND STARK, E. W. (1988), Computations, residuals and the power of 
indeterminacy. in “Proceedings of the Fifteenth ICALP” (Timo Lepisto and Arto Salomaa. 
Eds.). pp. 439454. Lecture Notes in Computer Science. Vol. 137, Springer-Verlag. Berlin/ 
New York. 

PARK, D. (1989), On the semantics of pair parallelism, in “Proceedings of the Winter School 
on Formal Software Specification,” pp. 504526. Lecture Notes In Computer Science, 
Vol. 86, Springer-Verlag. New York. 

PARK, D. (1982), The “fairness problem” and non-deterministic computing networks, in 
“Proceedings of the Fourth Advanced Course on Theoretical Computer Science,” 
pp. 133-161, Mathematisch Centrum. 

PLOTKIN, G. D. (1976). A powerdomain construction, SIAM J. Comput. 5, No. 3, 452. 
PLOTKIN, G. D. (1982). A powerdomain for countable nondeterminism, in “Proceedings of the 

Ninth ICALP,” Lecture Notes in Computer Science, Vol. 140, Springer-Verlag, Berlin/ 
New York. 

PLOTKIN. G. D. (1990), personal communication to Prakash Panangaden (remark attributed 
to M. Smyth in 1976). 

RABINOVICH. A., AND TRAKHTENBROT, B. A. (1988). Nets of processes and dataflow. in 
“Proceedings of ReX School on Linear Time, Branching Time and Partial Order in Logics 
and Models for Concurrency,” Lecture Notes in Computer Science. 

RUSSELL, J. (1989), “Full Abstraction and Fixed-Point Principles for Indeterminate Computa- 
tion.” Ph.D. Thesis, Cornell University. 

SHANBHOGUE, V. (1990), “The Expressiveness of Indeterminate Dataflow Primitives,” Ph.D. 
Thesis, Cornell University. 

STARK, E. W. (1987), Concurrent transition system semantics of process networks, in 
“Proceedings Of The Fourteenth Annual ACM Symposium On Principles Of Program- 
ming Languages,” pp. 199-210. 

STARK, E. W. (1989a), Concurrent transition systems, Theoret. Comput. Sci., 221. 
STARK, E. W. (1989b), “A Simple Generalization of Kahn’s Principle to Indeterminate 

Datatlow Networks,” Technical Report TR 89-29. SUNY at Stony Brook. 
STARK, E. W. (1990), On the relations computable by a class of concurrent automata. in 

“Proceedings Of The Fifteenth Annual ACM Symposium On Principles Of Programming 
Languages,” IEEE, New York; also Technical Report TR 88-09, SUNY at Stony Brook. 


