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Discrete Quantum Causal Dynamics

Richard F. Blute,1,3 Ivan T. Ivanov,1 and Prakash Panangaden2

Received July 16, 2002

We give a mathematical framework to describe the evolution of open quantum systems
subject to finitely many interactions with classical apparatuses and with each other. The
systems in question may be composed of distinct, spatially separated subsystems which
evolve independently, but may also interact. This evolution, driven both by unitary
operators and measurements, is coded in a mathematical structure in such a way that the
crucial properties of causality, covariance, and entanglement are faithfully represented.
The key to this scheme is the use of a special family of spacelike slices—we call them
locative—that are not so large as to result in acausal influences but large enough to
capture nonlocal correlations.
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1. INTRODUCTION

We propose a uniform scheme for describing a quantum system interacting
with a network of classical objects. The system in question may be composed of
distinct spatially separated subsystems that evolve independently, but may also in-
teract with each other at various points as well as with the classical objects. When
analyzing physical laboratory experiments on quantum systems, we frequently
abstract away from the concrete experimental setup and from the particular details
of the machinery involved. What we usually keep is the description of the quan-
tum system—and its spatially separated subsystems—in terms of wave functions
or density matrices and unitary operators as well as the changes of the quantum
system induced by the interactions with classical devices. Crucial properties of
the evolution such as the causal ordering, covariance of the description for differ-
ent observers, and quantum entanglement between distinct subsystems should be
completely reflected in any such description.
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The basis of our representation is the graph of events and causal links be-
tween them. An event could be one of the following: a unitary evolution of some
subsystem, an interaction of a subsystem with a classical device (a measurement),
or perhaps just the coming together or splitting apart of several spatially separated
subsystems. Events will be depicted as vertices of a directed graph. The edges
of the graph will represent propagation of quantum systems between two differ-
ent events. The vertices of the graph are then naturally labelled with operators
representing the corresponding interactions.

Of course, the processes of unitary evolution and measurement take a certain
amount of time; but we are only interested in the causal relations between such
events and this allows us to consider them as point-like vertices on the graph. Thus
we are thinking of the duration between events as being longer than the duration
of any event so that no causal information is lost when we represent interactions
as pointlike events.

The structure described thus far reflects the kinematic properties of the quan-
tum system. To describe the dynamics we need a composition of the operators
assigned to the vertices of the graph. This composition is described in terms of
the combinatorics of the underlying graph. Causal relations are made explicit and
we prove that no influences breaking causality arise in our scheme. The possible
entanglement between spatially separated subsystems—represented by distinct
edges of the graph—is also accounted for. Thus, our framework allows one to
represent locality of interaction—i.e. causal influences do not propagate outside
the causal “cone”—while allowing the expression of nonlocal correlations which
occur when one has quantum entanglement. The tension between causal evolution
and quantum entanglement is resolved.

1.1. Relation to Other Work

Next we outline the relations of our proposal to some recent approaches to
quantum mechanics and quantum gravity.

1.1.1. Decoherent Histories

The goal of quantum mechanics is to determine the probability of an event or
a sequence of events, thus one might hope to assign probabilities to the histories
of the quantum system. In order for the probabilities to be additive in the usual
sense, the histories have to be mutually noninterfering. Sets of histories obeying
this condition are selected with the use of a special bilinear form on histories—
the decoherence functional (Gell-Mann and Hartle, 1993; Griffiths, 1996; Omn´es,
1994).

A particular history is mathematically represented as a linearly ordered se-
quence of projection operators in the Hilbert space of the quantum mechanical
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system. But the linear causal ordering of the events in a history is too restrictive in
many experimental situations, in particular when analyzing spatially separated en-
tangled quantum systems. This issue is even more pressing for quantum cosmology
considerations. An application of the histories approach to quantum field theory
on a curved space-time (Blencowe, 1991) must assume the existence of a globally
hyperbolic manifold, and thus via the associated foliation, a linear ordering of the
histories of the quantum field.

Our proposal for describing the evolution of an open quantum system can be
considered as describing a single history in a set of histories. The important point
is that events are no longer linearly ordered by temporal order but, rather, partially
ordered with respect to the causal order. This allows one to capture the notion of
causal evolution in a manifestly covariant fashion. The decoherence condition for
histories has an immediate generalization for histories described by more general
graphs as proposed here.

1.1.2. Causal Sets

Causal setsform the basis of an approach to quantum gravity mainly advo-
cated by R. Sorkin and collaborators (Bombelliet al., 1987; Sorkin, 1991), where
the basic idea is to take the notion of causality as the primitive. In classical relativ-
ity, the structure of the space-time manifold together with a metric of Lorentzian
signature determines the causality relation. An important observation is that the
causal structure is conformally invariant, i.e. determined by only the conformal
equivalence class of the metric and hence more primitive than the metric. Various
proposals for quantum gravity—for example, the twistor program (Penrose and
MacCallum, 1972)—have taken as their point of departure the idea that the causal
structure is more fundamental than the metric structure.

In the causal sets approach, one takes the point of view that, at the smallest
length scales, space-time is inherently discrete and that the causal structure, the
“light cones,” are fundamental. This leads naturally to the idea of a partially ordered
set (poset for short) where the elements are events and two events are related by
causality. The main interest is in approximating continuous space-times with such
structures and defining processes that would generate these structures, with a view
to an eventual theory of quantum gravity. Though the aims are rather different the
issues connected with causality are closely related.

Causal sets are further motivated by the idea that a discrete structure would
avoid the singularities that plague physics (both classical and quantum). The as-
sumption that space-time should be a continuous manifold is one of the ingredients
that leads to the problematic singularities of quantum field theory and general rel-
ativity. In the causal sets approach, space-time is a discrete structure, thus possibly
avoiding these singularities, the idea being that at the Planck scale, continuous
geometry gives way to discrete geometry.
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One way to think of this is that one approximates a manifold as one “sprinkles”
more and more points into the causal set in a uniform fashion. Applications and
extensions of these ideas can be found in papers such as (Markopoulou, 2000;
Markopoulou and Smolin, 1997; Raptis, 2000), although this list is by no means
exhaustive. For us, a finite causal set is the kinematic framework on which we
describe evolution and information flow.

1.1.3. Quantum Causal Histories

The notion ofquantum causal historywas introduced by Markopoulou in
(Markopoulou, 2000). One begins with a poset (causal set) and assigns Hilbert
spaces to the vertices and evolution operators to sets of edges. However, within
this framework, one is quickly led to violations of causality—as the author herself
notes—essentially because the slices used are “too global.” She mentions the
possibility of working with a dual view. In fact, in our work, we take such a
dualized view as our starting point. In other words we assign operators representing
evolution or measurement to vertices and Hilbert spaces to the edges. However, if
we only work locally we get a causal theory but lose the possibility of capturing
nonlocal correlations.

1.2. The Importance of Graphs

A graph can be seen as a generalization of a poset in the following sense. A
poset merely records that an elementx precedesy. In a poset when one writes
x ≤ y then, depending on the context, one is stating something likex causally
precedesy, x implies y, or any of several other possibilities. On the other hand, a
graph keeps track of the different ways in whichx might precedey.

In this work, we are particularly interested in modelling the idea that infor-
mation can flow from one event to another in a number of different ways,along
different paths or channels. We would like to keep track of all these various in-
dependent paths. The structure of a poset is inadequate for achieving this, as we
would like to say thatx causally precedesy in several different ways. This naturally
suggests that we pass from posets to more general graphs.

Many recent experiments feature spatially distributed quantum systems.
When entangled quantum subsystems come back together in the same space-time
region, the description of the resulting system is causally influenced by all events
in the paths of the subsystems. In particular, a past event could influence the future
events in several distinct ways through different paths. Our scheme is well adapted
for analyzing experiments featuring spatially separated quantum entangled enti-
ties and could be used in the field of quantum information processing to analyze
information flow situations.
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1.3. Contents of the Present Paper

Section 2 presents the basic ideas of our scheme via an example. Section 3
discusses the basic physical ideas involved. In the first subsection we review the
notions of measurements and interventions. In the next subsection we give the dy-
namical prescription in a special case and in the final subsections we give the
general prescription and prove covariance.

2. CAUSAL INFORMATION FLOW VIA EXAMPLES

Consider a quantum system evolving in space-time while being subjected
to interactions with classical observers at a number of points. The causal and
spatiotemporal relations in the system will be represented by a directed acyclic
graph (hereafter called adag). The vertices of the graph—which will be drawn as
boxes—represent the events in the evolution of the system. An event could be a
measurement by a classical observer, a local unitary evolution, or just a splitting
of a subsystem into several spatially separated subsystems, which however could
still share an entangled common state. The propagation of the different subsystems
will be indicated by the edges of the graph.

There are a number of causal relations between edges and vertices. A vertex
v1 is said toimmediately precede v2 if there is a (directed) edge fromv1 to v2. We
write v1 ≤ v2 for the reflexive transitive closure of immediate precedence; thus
v ≤ v always holds andv1 ≤ v2 means that there is adirected pathfrom v1 to
v2 (possibly of length zero). Whenv1 ≤ v2 we sometimes sayv1 is “to the past
of” v2 and dually “v2 is to the future ofv1.” When we draw a poset we typically
leave out the self-loops and only draw the minimal number of edges needed to
infer all the others; the so-called “Hasse diagram” of the poset. We note that our
graphs will have initial and final “half-edges,” i.e. edges with only one endpoint.
Physically we have some quantum states incoming (or “prepared”) followed by
some interactions and some outgoing state.

The relation between vertices induces a causal relation between edges. We
say that an edgee1 is to the past of another edgee2 if the terminal vertex ofe1,
sayv1 and the initial vertex ofe2, sayv2, satisfyv1 ≤ v2. Note that we could have
v1 = v2. An initial edge is not to the future of any edge, nor is a final edge to the past
of any other edge. If two edges are not causally related, we say that they are “space-
like separated” or acausal. Note that two spacelike separated edges could share a
common terminal vertex or a common initial vertex (but since we have a graph, not
both). Aspace-like sliceis defined as a set of pairwise acausal edges. Henceforth,
whenever we say “slice” we will always mean “spacelike slice.” Note that the
initial (or final) edges form a spacelike slice. We call this theinitial (final) slice.

For example, for the graph of Fig. 1, the set of edges{ec, ed, ee} form a
spacelike slice. Another example is the set{ef , ed, ee}. The edgesea andeb form
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Fig. 1.

the initial slice. The edgesea, eb, ef , andeg are half-edges, withea andeb initial,
andef andeg final.

Associated with any edgeei is an observer who has access to a subsystem of
the complete quantum system. Thus the edges represent local information. Each
edgeei is assigned a density matrixρi in a Hilbert spaceHi .4 The density matrixρi
describes the knowledge about the quantum system available to the local observer
at the edgeei . More generally, density matrices will be associated to spacelike
slices. For a spacelike slice consisting of edges{ei1, . . .ei p}, the assigned density
matrix will be denotedρi1, . . . i p. This density matrix describes the subsystem of
the whole quantum system for that spacelike slice. Every spacelike slice has also a
Hilbert space which is the tensor product of the Hilbert spaces of the edges forming
the slice. However, the density matrix associated with the slice is not in general a
tensor product of the density matrices on the edges. If it were, we could not capture
nonlocal quantum correlations.

The graph of Fig. 1, represents a quantum systemQ which starts evolving
from a state in whichQ consists of two spatially separated subsystemsQa and
Qb described by density matricesρa andρb, respectively, in Hilbert spacesHa

andHb. The initial edgesea andeb form the initial slice in this simple system.
We will follow the convention that if the initial slice consists of several edges, the
initial state of the whole system is a tensor product state, i.e. the subsystems are
not entangled. For the above example,ψinit = ψa ⊗ ψb andρa = |ψa〉〈ψa| and
ρb = |ψb〉〈ψb|. Entangled subsystems on distinct edges will always have at least
one event in the common past. Thus we always explicitly represent the interaction
which caused the entanglement.

Each vertexvi of the graph is labelled with an operatorTi which describes
the process taking place at the corresponding event. The operatorTi at a given
eventvi takes density matrices on the tensor product of Hilbert spaces living on
the incoming edges atvi to density matrices on the tensor product Hilbert space of

4 Throughout the paper, we assume that the graph and the dimensions of all Hilbert spaces are finite.
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outgoing edges. The process at a vertex could be anintervention5 corresponding
to a positive operator-valued measure (POVM) (Nielsen and Chuang, 2000; Peres,
1995) or a unitary transformation. Or instead of an external or unitary action there
could be several quantum subsystems that come together and then split apart,
possibly in a different way. We will consider this last case as a particular instance
of a unitary evolution with identity evolution operator. As a simple example, in
the case of an event corresponding to unitary evolution by a unitary operatorU ,
we have the usual expression:

ρ in 7→ ρout = Uρ inU † (1)

The general expression for an operator associated to an event will be discussed
fully in the next section, see Eq. (3).

Here we will discuss some of the conditions such a dynamical scheme has to
satisfy in order to reflect causality and other physical properties of the quantum
system. Causality is the condition that the density matrix on a given edge should
not depend on the actions performed at vertices which are acausal to this edge
or are in its future. For example, referring back to Fig. 1, we would like any
quantum evolution rule to say that the density matrix ateg is unaffected by the
intervention atv3 or the density matrix atef is unaffected by the intervention at
v2. A general unitary evolution between the states of two spacelike slices is easily
shown to violate this condition. Therefore we need to incorporate some sort of
locality condition into the evolution scheme.

It is not hard to formulate such an evolution scheme. For example, one could
work with the dual picture and have evolution occur along edges with density
matrices at the vertices. It is not hard to formulate rules which would enforce
causality properly in such a framework. Unfortunately this rules out quantum
correlations across spatially separated subsystems. Thus, the evolution scheme
cannot be too local because entangled subsystems of the quantum system could
separate and later come together at a vertex.

Consider the system shown in Fig. 2. The quantum system represented in this
graph is as follows. The system is prepared in a stateψa as indicated by the density
matrixρa = |ψa〉〈ψa| on the incoming edge. At the vertexv1 the system splits into
two spatially separated subsystems on the edgeseb andec which, in general, are
still described by a global entangled state. The local transformationsT2 andT3 will,
in general, preserve the entanglement and the global state will be still entangled
on the spacelike slice{ed, ee}. The two subsystems come together at the vertex
v4. The two local density matricesρd andρe are not sufficient to reconstruct the
entangled state of the system described byρ f . The off-diagonal terms ofρ f are not
reflected in the local density matrices,ρd andρe. We need to include information

5 Interventions are generalized measurements where a quantum subsystem could be discarded (Peres,
2000a). This will be discussed more fully below.
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Fig. 2.

about the history of the state on the spacelike slice{ed, ee} in order to reconstruct
the global state. One possibility is to work with global spacelike slices, and show
that the scheme is generally covariant in the sense of being slice-independent. In
our approach, certain preferred (not necessarily global) spacelike slices account
for all entanglement.

The rules for constructing and labeling the graphs given so far reflect the kine-
matics of the quantum system. Specifying the dynamics amounts to a prescription
for how to obtain the density matrices on every edge from the density matrix on
the initial slice and the operators at the vertices of the graph. This prescription will
be given below in the next section.

3. DYNAMICS ON GRAPHS

3.1. Measurements and Interventions

For standard material on density matrices, positive operator-valued measures
(POVMs), and completely positive operators, we refer to (Davies, 1976; Nielsen
and Chuang, 2000; Preskill,. . . ).

The measurementof a property of a quantum system involves interaction
with a classical apparatus. When a classical apparatus measures an observable of
a quantum subsystem sitting inside a larger system the appropriate mathematical
formalism for such generalized measurement is that of POVM. Let the possi-
ble outcomes of the measurement be labelled by the letterµ ∈ {1 . . . N}. The
measurement is described by a unitary interaction between the apparatus and the
quantum system. The classical apparatus has a preferred basis of states indexed
by µ. After the measurement, the apparatus appears in one of these preferred
states. Since we are only interested in describing our quantum subsystem, we
trace out all the remaining degrees of freedom. Effectively to every outcomeµ is
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associated an operatorFµ. Consider the family of positive operatorsEµ = F†µFµ.
For a generalized measurement the family must satisfy the condition

∑
µ Eµ = I .

The probabilitypµ for obtaining a measurement result labelled byµ is then given
by: pµ = Tr (Eµρ) = Tr (FµρF†µ). The density matrix ofQ1 after the measurement
with outcomeµ is given by

ρ̃µ = 1

pµ
FµρF†µ (2)

whereρ is the density matrix before the measurement andpµ is inserted to nor-
malize the resulting density matrix to unit trace.

A more convenient way of using the density matrix formalism is as follows.
We want to label the states resulting from measurements with the probabilities
with which these states appear. These states with probabilities are described by
unnormalized density matrices, i.e. positive, self-adjoint operators with trace less
than or equal to 1. The above formula for ˜ρµ can be written in terms of unnormal-
ized density matrices as follows:ρ ′µ = FµρF†µ. The trace of this density matrix
is preciselypµ, the probability that the outcome labelled byµ was realized. This
makes sense even ifpµ is zero. Henceforth, whenever we talk about density matri-
ces we will mean these unnormalized density matrices, which describe states with
a probability attached to them. IfH is any Hilbert space, then the set of all such
density matrices will be denoted DM(H).

Even more general measurement processes could be considered if the observer
discards part of the quantum system during the process of measurement. The ap-
propriate mathematical formalism for describing these generalized measurements
is that of intervention operators(Peres, 2000a). In the process of measurement,
the density matrix changes according to:

ρ ′µ =
∑

m

AµmρA†µm (3)

The families of mapsAµm now act in general from one Hilbert space to another,
i.e. for fixedµ andm they correspond to rectangular matrices. The labelµ again
distinguishes the set of possible outcomes and the letterm labels the degrees
of freedom discarded during this generalized measurement. Since the mapsAµm

come from measurements realized by unitary operator on some larger Hilbert
space they again satisfy a completeness condition:

∑
µm A†µmAµm = I , whereI

is the identity operator in the appropriate Hilbert space. Notice that if the labels
µ and m are absent in (3) the equation describes unitary evolution. Since the
events we consider are generalized measurements or unitary evolutions, Eq. (3) is
the appropriate mathematical representation of those processes in full generality.
Equation (3) has precisely the form of a general completely positive linear map
(Davies, 1976) and we will use here also the terminologyintervention operators
for operators on density matrices of this form.
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3.2. The Dynamical Prescription

We are now ready to start discussing the dynamics of a quantum system
represented by a dagG. Dynamics will be described by supposing that we are
given a density matrix on the initial spacelike slice, and then giving a prescription
for calculating the density matrices of future spacelike slices. In essence, we are
propagating the initial data throughout the system.

To each vertexi ∈ G will be assigned an intervention operatorTi , and to
each edgeej will be assigned a Hilbert spaceH j . We note that all incoming (or
outgoing) edges of a given vertex are pairwise acausal and thus form a space-
like slice. Thus there will be a density matrixρ in

i associated to the slice of the
incoming edges. Then one obtains the density matrix for the slice of the outgoing
edges by:

ρ in
i = Ti (ρ

out
i ).

Notice that more generally, for two acausal vertices, the sets of incoming or
outgoing edges are pairwise acausal. Thus, the associated intervention operators
will act on different Hilbert spaces and hence commute.

We begin with an illustrative example. Consider the dag of Fig. 3. Given
the state on the initial slice, the operators at the events propagate the state to the
future. In the example of Fig. 3 we have:ρc = T1(ρa), ρ f de= T2(ρb). However,
the next intervention operatorT3 must act on the so far undefined density matrix
ρcd. T3 takes density matrices onHc ⊗Hd to those onHg ⊗Hd. By extendingT3

with the appropriate identity operators, we can view it as a map from DM(Hc ⊗
Hd ⊗He⊗H f ) to DM(He⊗H f ⊗Hg ⊗Hh). Then we can define the density
matrix on another spacelike slice, namelyρ f ghe= T3(ρc ⊗ ρ f de). Similarlyρ f di =
T4(ρ f de) and so on. Starting from density matrices on the initial edges and using
the intervention operators associated with the vertices—extended with identities
as needed—we obtain density matrices on specific spacelike slices.

Fig. 3.
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The above inductive process for propagating density matrices can be applied
to any system described by a dag. However, the procedure only gives the density
matrices for certain spacelike slices within the dag. For example, this procedure
does not yet yield a matrix for the slicede. To calculate such density matrices,
we would also have to make use of the trace operator. Before extending the proce-
dure to such slices, we first consider those for which the above process is sufficient.
We call these sliceslocative.

Definition 3.1. Let G be a dag, andL a slice ofG. Consider the set of all vertices
V which are to the past of some edge inL. Let I be the set of initial edges in the
past ofL. Consider all paths of maximal length beginning at an element ofI and
only going through vertices ofV . ThenL is locativeif all such paths end with an
edge inL.

In our example, the locative slices are the following:

a, b, ab, c, cb, def, adef, cdef, ef gh,

ad f i, cd f i, f ghe, f ghi, f gk, hej, hi j , jk

while, for example,de is not locative. Note that the fact that maximal slices are
always locative follows immediately from the definition of locative.

We now describe the general rule for calculating the density matrices on
locative slices. Associated with each locative sliceL is the setI of initial edges
in the past ofL. We choose a family of slices that begins withI and ends withL
in the following way. Consider the set of verticesV between the edges inI and
the edges inL. BecauseL is locative we know that propagating slices forwards
through the vertices inV will reproduceL. Let M ∈ V be such that the vertices
in M are minimal inV with respect to causal ordering. We choose arbitrarily any
vertexu in M , remove the incoming edges ofu, and add the outgoing edges of
u to the setI obtaining a new set of edgesI1. It is clear thatI1 is spacelike and
locative. Proceeding inductively in this fashion we obtain a sequences of slices
I = I0, I1, I2, . . . In = L, where,n is the cardinality ofV . Of course, this family
of slices is far from unique.

The dynamics is obtained as follows. Recall that the states on initial edges
are assumed not to be entangled with each other so that one can obtain the density
matrix on any set of initial edges, in particularI , by a tensor product. Letρ0 be
the density matrix onI . We look at the vertexu that was used to go fromI to I1

and apply the intervention operatorT assigned to this vertex—possibly augmented
with identity operators as in the example above. Proceeding inductively along the
family of slices, we obtain the density matrixρn on L.

The important point now is thatρn does not depend on the choice of slicing
used in going fromI to L. This can be argued as follows. Suppose we have a
locative sliceS and two verticesu andv which are both causally minimal above
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S and acausal with respect to each other. Then we have four slices to consider,
S, Su, Sv, andSuv where bySu we mean the slice obtained fromS by removing
the incoming edges ofu and adding the outgoing edges ofu to Sand similarly for
the others. It is clear, in this case, that the intervention operators assigned tou and
to v commute and the density matrix computed onSuv is independent of whether
we evolved along the sequenceS→ Su → Suv or S→ Sv → Suv. Now when we
constructed our slices at each stage we had the choice between different minimal
vertices to add to the slice. But such vertices are clearly pairwise acausal and
hence, by the previous argument applied inductively, the evolution prescription is
independent of all possible choices. We summarize this argument in the following
proposition

Proposition 3.2. (Covariance). The density matrix on a locative slice is inde-
pendent of the family of slices used to compute it.

So far we have defined density matrices on locative slices only. To define
density matrices on general spacelike slices we will need to consider partial tracing
operations.

3.3. General Slices

Recall that when one has subsystemsQ1 and Q2 of a quantum systemQ,
the Hilbert space forQ may be decomposed asH1⊗H2 whereHi representsQi .
The density matrix forQ1 is obtained by tracing overH2. To obtain the density
matrix of a general spacelike sliceSwe proceed as follows. First note that there is
a natural partial ordering6 on slices (recall that we always mean “spacelike slices”
whenever we say “slices”) given as follows

S1 v S2 if ∀x ∈ S1∃y ∈ S2 · x ≤ y and∀y ∈ S2∃x ∈ S1· ≤ y

wherex ≤ y means thatx causally precedesy. The collection of slices forms a
finite poset. We find theminimal(in the orderv) locative sliceM that containsS
and trace over the Hilbert spaces on edges inM\S. Such a locative sliceM always
exists because maximal spacelike slices are always locative.

Lemma 3.3. Given a slice S, there is a unique minimal slice which contains S.

Proof: We claim that the locative slice obtained by evolving through those ver-
tices to the causal past ofS is the unique minimal locative slice. More precisely,
let V = {v1, . . . , vp} be the set of vertices to the past ofS. Let I = {e1, . . . , eq}

6 This ordering is well-known in computation theory where it is called the Egli–Milner order (Plotkin,
1976).
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be the set of initial edges to the past ofS. Constructing a sequence of slices by
incrementally incorporating the vertices ofV in a manner similar to what we did
in the previous subsection, we get a locative sliceM containingS.

First, note thatM is locative by definition and also it containsS. Second,
note that any slice containingS (in particularS itself) must be to the future of all
these vertices. ThusM is indeed minimal since it lies to the future of the fewest
vertices. ¤

Definition 3.4. We shall refer toM as theleast locative sliceof the edgeS.
Starting with the density matrices on the edges ofI and applying the opera-

tors associated with the vertices ofV , we obtain the density matrix on the locative
slice M . Suppose thatS consists of edges{e1, . . .ei } Let M—the minimal loca-
tive slice throughS—consist of edges{e1, . . . , ei , e′1, . . . , e′j }. The density matrix
ρ1, . . . , i , 1′, . . . , j ′ on M is an element of the spaceEnd(H1⊗ · · · ⊗Hi ⊗H′1⊗
· · · ⊗H′j ). Let Tr1′ ... j ′ be the partial trace operation

End (H1⊗ · · · ⊗Hi ⊗H′1⊗ · · · ⊗H′j )→ End (H1⊗ · · · ⊗H′i )
which traces over the primed Hilbert spaces.

Definition 3.5.(Density matrix associated with a slice). The density matrixρ at
the sliceS is defined to be:

ρS = Tr1′ ... j ′ (ρ1,...,i ,1′,..., j ′ ). (4)

Of course ifM andScoincide then no tracing is done.

Proposition 3.6. The prescription for computing density matrices is causal in
the sense that the only vertices to the past of S can affect the density matrix on S.

Proof: This is immediate from the construction and uniqueness of the minimal
locative slice. The explicit construction of the minimal locative slice shows that
only intervention operators to the past ofScan affect the density matrix onS. ¤

For ease of presentation the rest of the discussion will focus on the case where
S is a single edge. In general, an edgeei is contained in many locative slices and
we could just as well have definedρi by tracing over the complementary degrees
of freedom in any of these locative slices. However we have to compute the density
matrices differently in order to ensure causality. To clarify the discussion consider
the quantum system represented by the graph on Fig. 4.

Let the initialρa be the density matrix of a maximally entangled state of two
spin 1/2 subsystems:ρa = |ψa〉〈ψa|, whereψa = 1/

√
2(ψ↑1 ⊗ ψ↑2 + ψ↓1 ⊗ ψ↓2 ).

At the first vertex the two subsystems separate with no classical intervention.
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Fig. 4.

Thereforeρbc = ρa. The slice{eb, ec} is the least locative slice for the edgeeb

and we can compute the density matrix associated to this edge:ρb = Trcρbc =
1/2(|ψ↑1 〉〈ψ↑1 | + |ψ↓1 〉〈ψ↓1 |). Next, let the intervention at the second vertex be
a measurement on the corresponding subsystem with the result that the spin
was found to be in the stateψ↑2 . The intervention operator is the projection
operator on this state of the second subsystem:T(ρ) = 2P↑2 ρP↑2 . We obtain:
ρbd = T(ρbc) = (|ψ↑1 〉 ⊗ |ψ↑2 〉)(〈ψ↑1 | ⊗ 〈ψ↑2 |) If now we attempt to traceρbd over
the subsystem associated with the edgeed, we will obtain an incorrect result forρb,
namely|ψ↑1 〉〈ψ↑1 |. The resolution is well known. Since a classical observer located
on the edgeeb is not aware of the result of the intervention at the second vertex, for
him the density matrixρbd has evolved fromρbc by an operator̃T which includes all
possible outcomes of the measurement: ˜ρbd = T̃(ρbc) =

∑
s=↑,↓ Ps

2ρbcPs
2 . Trac-

ing out thed-subsystem in the expression for ˜ρbd, we obtain the correct expression
for ρb, namelyρb = 1/2(|ψ↑1 〉〈ψ↑1 | + |ψ↓1 〉〈ψ↓1 |).

Now we give another general prescription for computing the density matrix
on an edgeei from an arbitrary locative sliceL containing this edge. We first
compute a density matrix ˜ρL for the sliceL. This prescription has to deal with the
possibility that some of the intervention operators used are from vertices that are
not to the past of the edgeei . As we saw in the example above, the density matrix
at ei cannot reflect the knowledge of the outcome of interactions at vertices that
are not to the causal past ofei .

This density matrix is computed from the initial data by applying intervention
operators for the events in the past ofL as before. But now, we will consider two
types of events in the past ofL: those that are to the past ofei and those that
are not. For the events that are to the past of the edgeei , we use our regular
intervention operators without a summation over the set of possible outcomes:
ρ 7→∑

m AµmρA†µm. We do not sum over the outcomes in this case precisely
because the outcome is in fact known atei . For the events that are to the past of
the sliceL but not to the past of the edgeei , we use operators that sum over all
possible outcomes:ρ 7→∑

µm AµmρA†µm. This time, of course, the summation is
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there because the outcome cannot be known atei since these events are not to the
past ofei .

After we have obtained ˜ρL , we trace out those subsystems associated with
edges inL except forei to obtain the density matrix ˜ρi . This is the density matrix
associated with our preferred edgeei , as computed from the sliceL. The indepen-
dence of the result on the choice ofL is expressed in the following proposition:

Proposition 3.7. Let ei be an edge in the dag G. The density matrixρi associated
with the edge ei does not depend on the choice of locative slice used to compute
it, provided that we use the second prescription to compute it.

Proof: We have already demonstrated that to any edgeei , there is a unique least
locative sliceMi containingei . Let ρi be the density matrix for the edgeei as
computed from the least locative slice and let ˜ρi be the density matrix for the same
edge but computed from an arbitrary locative slice, sayL, containingei . We will
prove the proposition by showing thatρi = ρ̃i .

First note thatMi being less thanL implies that there is a setV of events
betweenMi andL. The plan is to remove the effect of these events and show that, at
each stage, the density matrix is unaffected. We begin by picking a maximal event,
sayk, with the intervention operatorTk. Sincek is maximal and hence acausal
with all other maximal elements ofV , as well as with all the maximal elements
to the past ofei , the intervention operator atk commutes with all the intervention
operators at the vertices just mentioned. Thus, we can choose the intervention
operatorTk to be the outermost, i.e. the density matrixρL obtained by propagating
to L can be written as

ρL = Tk(ρ ′)

whereρ ′ is the density matrix on the (locative) slice obtained by removing the
edges to the future ofk from L and adding the edges to the past ofk. Using the
explicit general form for an intervention operator,

ρL =
∑
µ,m

A(k)
µ,mρ

′A†(k)
µ,m.

In order to obtain the density matrix ˜ρi , we trace over all Hilbert spaces associated
with edges inL exceptei . In particular, we trace over the outgoing edges associated
with k. Now we can use the cyclic property of trace and rewrite the expression for
ρ̃i as,

ρ̃i = Tr

(∑
µ,m

A†(k)
µ,mA(k)

µ,mρ ′

)
.
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Now we use the identity ∑
µm

A†µmAµm = I

to get

ρ̃i = Tr (ρ ′)

We have eliminated the effect of the intervention operator atk. Proceeding
inductively we can peel off the intervention operators associated with the rest of
the vertices inV , thus

ρ̃i = ρi .

¤

A similar argument for the case of a simple system represented by the dag in
Fig. 2 is contained in (Peres, 2000b).

4. CONCLUSIONS

We have presented an axiomatic system for the analysis of quantum evolution.
The dynamics is local as to preserve causality, but at the same time entanglement
of separated quantum systems is faithfully represented. Our work also suggests
a natural extension of the notion of quantum history. Restricting the intervention
operators at the vertices of our graphG to be projection operators we can consider
G to denote a particular history within a set of histories. This relaxes the usual
linear ordering of events considered in the literature thus far.
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