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Discrete Quantum Causal Dynamics
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We give a mathematical framework to describe the evolution of open quantum systems
subject to finitely many interactions with classical apparatuses and with each other. The
systems in question may be composed of distinct, spatially separated subsystems which
evolve independently, but may also interact. This evolution, driven both by unitary
operators and measurements, is coded in a mathematical structure in such a way that the
crucial properties of causality, covariance, and entanglement are faithfully represented.
The key to this scheme is the use of a special family of spacelike slices—we call them
locative—that are not so large as to result in acausal influences but large enough to
capture nonlocal correlations.
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1. INTRODUCTION

We propose a uniform scheme for describing a quantum system interacting
with a network of classical objects. The system in question may be composed of
distinct spatially separated subsystems that evolve independently, but may also in-
teract with each other at various points as well as with the classical objects. When
analyzing physical laboratory experiments on quantum systems, we frequently
abstract away from the concrete experimental setup and from the particular details
of the machinery involved. What we usually keep is the description of the quan-
tum system—and its spatially separated subsystems—in terms of wave functions
or density matrices and unitary operators as well as the changes of the quantum
system induced by the interactions with classical devices. Crucial properties of
the evolution such as the causal ordering, covariance of the description for differ-
ent observers, and quantum entanglement between distinct subsystems should be
completely reflected in any such description.
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The basis of our representation is the graph of events and causal links be-
tween them. An event could be one of the following: a unitary evolution of some
subsystem, an interaction of a subsystem with a classical device (a measurement),
or perhaps just the coming together or splitting apart of several spatially separated
subsystems. Events will be depicted as vertices of a directed graph. The edges
of the graph will represent propagation of quantum systems between two differ-
ent events. The vertices of the graph are then naturally labelled with operators
representing the corresponding interactions.

Of course, the processes of unitary evolution and measurement take a certain
amount of time; but we are only interested in the causal relations between such
events and this allows us to consider them as point-like vertices on the graph. Thus
we are thinking of the duration between events as being longer than the duration
of any event so that no causal information is lost when we represent interactions
as pointlike events.

The structure described thus far reflects the kinematic properties of the quan-
tum system. To describe the dynamics we need a composition of the operators
assigned to the vertices of the graph. This composition is described in terms of
the combinatorics of the underlying graph. Causal relations are made explicit and
we prove that no influences breaking causality arise in our scheme. The possible
entanglement between spatially separated subsystems—represented by distinct
edges of the graph—is also accounted for. Thus, our framework allows one to
represent locality of interaction—i.e. causal influences do not propagate outside
the causal “cone”—while allowing the expression of nonlocal correlations which
occur when one has quantum entanglement. The tension between causal evolution
and quantum entanglement is resolved.

1.1. Relation to Other Work

Next we outline the relations of our proposal to some recent approaches to
gquantum mechanics and quantum gravity.

1.1.1. Decoherent Histories

The goal of quantum mechanics is to determine the probability of an event or
a sequence of events, thus one might hope to assign probabilities to the histories
of the quantum system. In order for the probabilities to be additive in the usual
sense, the histories have to be mutually noninterfering. Sets of histories obeying
this condition are selected with the use of a special bilinear form on histories—
the decoherence functional (Gell-Mann and Hartle, 1993; Griffiths, 1996, e9mn”
1994).

A particular history is mathematically represented as a linearly ordered se-
quence of projection operators in the Hilbert space of the quantum mechanical
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system. But the linear causal ordering of the events in a history is too restrictive in
many experimental situations, in particular when analyzing spatially separated en-
tangled quantum systems. This issue is even more pressing for quantum cosmology
considerations. An application of the histories approach to quantum field theory
on a curved space-time (Blencowe, 1991) must assume the existence of a globally
hyperbolic manifold, and thus via the associated foliation, a linear ordering of the
histories of the quantum field.

Our proposal for describing the evolution of an open quantum system can be
considered as describing a single history in a set of histories. The important point
is that events are no longer linearly ordered by temporal order but, rather, partially
ordered with respect to the causal order. This allows one to capture the notion of
causal evolution in a manifestly covariant fashion. The decoherence condition for
histories has an immediate generalization for histories described by more general
graphs as proposed here.

1.1.2. Causal Sets

Causal set$orm the basis of an approach to quantum gravity mainly advo-
cated by R. Sorkin and collaborators (Bombetlal,, 1987; Sorkin, 1991), where
the basic idea is to take the notion of causality as the primitive. In classical relativ-
ity, the structure of the space-time manifold together with a metric of Lorentzian
signature determines the causality relation. An important observation is that the
causal structure is conformally invariant, i.e. determined by only the conformal
equivalence class of the metric and hence more primitive than the metric. Various
proposals for quantum gravity—for example, the twistor program (Penrose and
MacCallum, 1972)—have taken as their point of departure the idea that the causal
structure is more fundamental than the metric structure.

In the causal sets approach, one takes the point of view that, at the smallest
length scales, space-time is inherently discrete and that the causal structure, the
“lightcones,” are fundamental. This leads naturally to the idea of a partially ordered
set (poset for short) where the elements are events and two events are related by
causality. The main interest is in approximating continuous space-times with such
structures and defining processes that would generate these structures, with a view
to an eventual theory of quantum gravity. Though the aims are rather different the
issues connected with causality are closely related.

Causal sets are further motivated by the idea that a discrete structure would
avoid the singularities that plague physics (both classical and quantum). The as-
sumption that space-time should be a continuous manifold is one of the ingredients
that leads to the problematic singularities of quantum field theory and general rel-
ativity. In the causal sets approach, space-time is a discrete structure, thus possibly
avoiding these singularities, the idea being that at the Planck scale, continuous
geometry gives way to discrete geometry.
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One way to think of this is that one approximates a manifold as one “sprinkles”
more and more points into the causal set in a uniform fashion. Applications and
extensions of these ideas can be found in papers such as (Markopoulou, 2000;
Markopoulou and Smolin, 1997; Raptis, 2000), although this list is by no means
exhaustive. For us, a finite causal set is the kinematic framework on which we
describe evolution and information flow.

1.1.3. Quantum Causal Histories

The notion ofquantum causal historywas introduced by Markopoulou in
(Markopoulou, 2000). One begins with a poset (causal set) and assigns Hilbert
spaces to the vertices and evolution operators to sets of edges. However, within
this framework, one is quickly led to violations of causality—as the author herself
notes—essentially because the slices used are “too global.” She mentions the
possibility of working with a dual view. In fact, in our work, we take such a
dualized view as our starting point. In other words we assign operators representing
evolution or measurement to vertices and Hilbert spaces to the edges. However, if
we only work locally we get a causal theory but lose the possibility of capturing
nonlocal correlations.

1.2. The Importance of Graphs

A graph can be seen as a generalization of a poset in the following sense. A
poset merely records that an elema&nprecedesy. In a poset when one writes
x <y then, depending on the context, one is stating somethingxlikausally
precedey, x impliesy, or any of several other possibilities. On the other hand, a
graph keeps track of the different ways in whicimight precedsy.

In this work, we are particularly interested in modelling the idea that infor-
mation can flow from one event to another in a number of different walpsg
different paths or channelsVe would like to keep track of all these various in-
dependent paths. The structure of a poset is inadequate for achieving this, as we
would like to say thax causally precedesin several different ways. This naturally
suggests that we pass from posets to more general graphs.

Many recent experiments feature spatially distributed quantum systems.
When entangled quantum subsystems come back together in the same space-time
region, the description of the resulting system is causally influenced by all events
in the paths of the subsystems. In particular, a past event could influence the future
events in several distinct ways through different paths. Our scheme is well adapted
for analyzing experiments featuring spatially separated quantum entangled enti-
ties and could be used in the field of quantum information processing to analyze
information flow situations.
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1.3. Contents of the Present Paper

Section 2 presents the basic ideas of our scheme via an example. Section 3
discusses the basic physical ideas involved. In the first subsection we review the
notions of measurements and interventions. In the next subsection we give the dy-
namical prescription in a special case and in the final subsections we give the
general prescription and prove covariance.

2. CAUSAL INFORMATION FLOW VIA EXAMPLES

Consider a quantum system evolving in space-time while being subjected
to interactions with classical observers at a number of points. The causal and
spatiotemporal relations in the system will be represented by a directed acyclic
graph (hereafter calleddag). The vertices of the graph—which will be drawn as
boxes—represent the events in the evolution of the system. An event could be a
measurement by a classical observer, a local unitary evolution, or just a splitting
of a subsystem into several spatially separated subsystems, which however could
still share an entangled common state. The propagation of the different subsystems
will be indicated by the edges of the graph.

There are a number of causal relations between edges and vertices. A vertex
v is said toimmediately precede)if there is a (directed) edge from to v,. We
write v; < v, for the reflexive transitive closure of immediate precedence; thus
v < v always holds and; < v, means that there is directed pathfrom v; to
v, (possibly of length zero). Whewy, < v, we sometimes say; is “to the past
of” v, and dually %, is to the future ofv;.” When we draw a poset we typically
leave out the self-loops and only draw the minimal number of edges needed to
infer all the others; the so-called “Hasse diagram” of the poset. We note that our
graphs will have initial and final “half-edges,” i.e. edges with only one endpoint.
Physically we have some quantum states incoming (or “prepared”) followed by
some interactions and some outgoing state.

The relation between vertices induces a causal relation between edges. We
say that an edge is to the past of another edgg if the terminal vertex ofy,
sayv; and the initial vertex 0&,, sayv,, satisfyv; < v,. Note that we could have
V1 = Vo. Aninitial edge is not to the future of any edge, nor is a final edge to the past
of any other edge. If two edges are not causally related, we say that they are “space-
like separated” or acausal. Note that two spacelike separated edges could share a
common terminal vertex or a common initial vertex (but since we have a graph, not
both). Aspace-like slicés defined as a set of pairwise acausal edges. Henceforth,
whenever we say “slice” we will always mean “spacelike slice.” Note that the
initial (or final) edges form a spacelike slice. We call this ithigal (final) slice.

For example, for the graph of Fig. 1, the set of ed{®s €4, &} form a
spacelike slice. Another example is the g&t, ey, e.}. The edgeg, ande, form
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the initial slice. The edges,, &,, e, andey are half-edges, witk, andey initial,
ande; ande final.

Associated with any edgs is an observer who has access to a subsystem of
the complete quantum system. Thus the edges represent local information. Each
edgeg is assigned a density matyx in a Hilbert spacé<{;.* The density matrixi
describes the knowledge about the quantum system available to the local observer
at the edges. More generally, density matrices will be associated to spacelike
slices. For a spacelike slice consisting of edfggs . . . &}, the assigned density
matrix will be denoted;,, ...i,. This density matrix describes the subsystem of
the whole quantum system for that spacelike slice. Every spacelike slice has also a
Hilbert space which is the tensor product of the Hilbert spaces of the edges forming
the slice. However, the density matrix associated with the slice is not in general a
tensor product of the density matrices on the edges. If it were, we could not capture
nonlocal quantum correlations.

The graph of Fig. 1, represents a quantum sys@mvhich starts evolving
from a state in whichQ consists of two spatially separated subsysté&gsand
Qyp described by density matrices and pp,, respectively, in Hilbert spaceq,
andHy. The initial edges, ande, form the initial slice in this simple system.

We will follow the convention that if the initial slice consists of several edges, the
initial state of the whole system is a tensor product state, i.e. the subsystems are
not entangled. For the above examplg,; = Va ® ¥p and p, = |¥3) (V| and

pp = |Yp) (¥p|. Entangled subsystems on distinct edges will always have at least
one event in the common past. Thus we always explicitly represent the interaction
which caused the entanglement.

Each vertex; of the graph is labelled with an operat@rwhich describes
the process taking place at the corresponding event. The opé&yadbia given
eventv; takes density matrices on the tensor product of Hilbert spaces living on
the incoming edges &t to density matrices on the tensor product Hilbert space of

4Throughout the paper, we assume that the graph and the dimensions of all Hilbert spaces are finite.
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outgoing edges. The process at a vertex could batanventiort corresponding

to a positive operator-valued measure (POVM) (Nielsen and Chuang, 2000; Peres,
1995) or a unitary transformation. Or instead of an external or unitary action there
could be several quantum subsystems that come together and then split apart,
possibly in a different way. We will consider this last case as a particular instance
of a unitary evolution with identity evolution operator. As a simple example, in
the case of an event corresponding to unitary evolution by a unitary opé&fator

we have the usual expression:

pin — pout — UpinUT (1)

The general expression for an operator associated to an event will be discussed
fully in the next section, see Eq. (3).

Here we will discuss some of the conditions such a dynamical scheme has to
satisfy in order to reflect causality and other physical properties of the quantum
system. Causality is the condition that the density matrix on a given edge should
not depend on the actions performed at vertices which are acausal to this edge
or are in its future. For example, referring back to Fig. 1, we would like any
guantum evolution rule to say that the density matriepis unaffected by the
intervention atvs or the density matrix a¢; is unaffected by the intervention at
V2. A general unitary evolution between the states of two spacelike slices is easily
shown to violate this condition. Therefore we need to incorporate some sort of
locality condition into the evolution scheme.

It is not hard to formulate such an evolution scheme. For example, one could
work with the dual picture and have evolution occur along edges with density
matrices at the vertices. It is not hard to formulate rules which would enforce
causality properly in such a framework. Unfortunately this rules out quantum
correlations across spatially separated subsystems. Thus, the evolution scheme
cannot be too local because entangled subsystems of the quantum system could
separate and later come together at a vertex.

Consider the system shown in Fig. 2. The quantum system represented in this
graphis as follows. The system is prepared in a stgi@s indicated by the density
matrix p; = |¥a)(¥a| on the incoming edge. At the vertexthe system splits into
two spatially separated subsystems on the edgesde. which, in general, are
still described by a global entangled state. The local transformalicarsd Ts will,
in general, preserve the entanglement and the global state will be still entangled
on the spacelike slicégy, .}. The two subsystems come together at the vertex
V4. The two local density matricesy and pe are not sufficient to reconstruct the
entangled state of the system describegyl he off-diagonal terms qgd; are not
reflected in the local density matriceg, andpe. We need to include information

SInterventions are generalized measurements where a quantum subsystem could be discarded (Peres,
2000a). This will be discussed more fully below.
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Fig. 2.

about the history of the state on the spacelike gigee.} in order to reconstruct

the global state. One possibility is to work with global spacelike slices, and show
that the scheme is generally covariant in the sense of being slice-independent. In
our approach, certain preferred (not necessarily global) spacelike slices account
for all entanglement.

The rules for constructing and labeling the graphs given so far reflect the kine-
matics of the quantum system. Specifying the dynamics amounts to a prescription
for how to obtain the density matrices on every edge from the density matrix on
the initial slice and the operators at the vertices of the graph. This prescription will
be given below in the next section.

3. DYNAMICS ON GRAPHS
3.1. Measurements and Interventions

For standard material on density matrices, positive operator-valued measures
(POVMs), and completely positive operators, we refer to (Davies, 1976; Nielsen
and Chuang, 2000; Preskill,. ).

The measurementf a property of a quantum system involves interaction
with a classical apparatus. When a classical apparatus measures an observable of
a quantum subsystem sitting inside a larger system the appropriate mathematical
formalism for such generalized measurement is that of POVM. Let the possi-
ble outcomes of the measurement be labelled by the lgtter{1... N}. The
measurement is described by a unitary interaction between the apparatus and the
guantum system. The classical apparatus has a preferred basis of states indexed
by w. After the measurement, the apparatus appears in one of these preferred
states. Since we are only interested in describing our quantum subsystem, we
trace out all the remaining degrees of freedom. Effectively to every outgoime
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associated an operatby,. Consider the family of positive operatdgs, = FJ F..
For a generalized measurement the family must satisfy the con@;pﬁﬂ =1.
The probabilityp,, for obtaining a measurement result labelled.big then given
by: p, = T, (E.p) = Tr (Fup F,j). The density matrix 0€Q, after the measurement
with outcomey is given by

Pp = i Fup F;I (2)

Py

wherep is the density matrix before the measurement ppds inserted to nor-
malize the resulting density matrix to unit trace.

A more convenient way of using the density matrix formalism is as follows.
We want to label the states resulting from measurements with the probabilities
with which these states appear. These states with probabilities are described by
unnormalized density matrices, i.e. positive, self-adjoint operators with trace less
than or equal to 1. The above formula fgr €an be written in terms of unnormal-
ized density matrices as follows;, = F,p Fj. The trace of this density matrix
is preciselyp,,, the probability that the outcome labelled pywas realized. This
makes sense evenpy, is zero. Henceforth, whenever we talk about density matri-
ces we will mean these unnormalized density matrices, which describe states with
a probability attached to them.H is any Hilbert space, then the set of all such
density matrices will be denoted DWY).

Even more general measurement processes could be considered if the observer
discards part of the quantum system during the process of measurement. The ap-
propriate mathematical formalism for describing these generalized measurements
is that ofintervention operatorgPeres, 2000a). In the process of measurement,
the density matrix changes according to:

P =D Aunp Al 3)
m

The families of maps\,m now act in general from one Hilbert space to another,
i.e. for fixedu andm they correspond to rectangular matrices. The labagiain
distinguishes the set of possible outcomes and the lettéabels the degrees

of freedom discarded during this generalized measurement. Since theApaps
come from measurements realized by unitary operator on some larger Hilbert
space they again satisfy a completeness condi@m;1 ALmAMm =1, wherel

is the identity operator in the appropriate Hilbert space. Notice that if the labels
w andm are absent in (3) the equation describes unitary evolution. Since the
events we consider are generalized measurements or unitary evolutions, Eqg. (3) is
the appropriate mathematical representation of those processes in full generality.
Equation (3) has precisely the form of a general completely positive linear map
(Davies, 1976) and we will use here also the terminolioggrvention operators

for operators on density matrices of this form.
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3.2. The Dynamical Prescription

We are now ready to start discussing the dynamics of a quantum system
represented by a da@. Dynamics will be described by supposing that we are
given a density matrix on the initial spacelike slice, and then giving a prescription
for calculating the density matrices of future spacelike slices. In essence, we are
propagating the initial data throughout the system.

To each vertex € G will be assigned an intervention operaffr and to
each edge; will be assigned a Hilbert spadg;. We note that all incoming (or
outgoing) edges of a given vertex are pairwise acausal and thus form a space-
like slice. Thus there will be a density matrix" associated to the slice of the
incoming edges. Then one obtains the density matrix for the slice of the outgoing
edges by:

pi" = Ti (p®.

Notice that more generally, for two acausal vertices, the sets of incoming or
outgoing edges are pairwise acausal. Thus, the associated intervention operators
will act on different Hilbert spaces and hence commute.

We begin with an illustrative example. Consider the dag of Fig. 3. Given
the state on the initial slice, the operators at the events propagate the state to the
future. In the example of Fig. 3 we haveg; = T1(pa), 0fde = T2(pp). However,
the next intervention operatdg must act on the so far undefined density matrix
pcd- T3 takes density matrices ific ® Hq to those orfy ® Hy. By extendingTls
with the appropriate identity operators, we can view it as a map from Mg
Ha ® He ® Hy) to DM(He ® Ht @ Hg ® Hn). Then we can define the density
matrix on another spacelike slice, namelyne = Ta(oc ® pide). Similarly prgi =
Ta(ptde) and so on. Starting from density matrices on the initial edges and using
the intervention operators associated with the vertices—extended with identities
as needed—we obtain density matrices on specific spacelike slices.

Fig. 3.
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The above inductive process for propagating density matrices can be applied
to any system described by a dag. However, the procedure only gives the density
matrices for certain spacelike slices within the dag. For example, this procedure
does not yet yield a matrix for the sliake To calculate such density matrices,
we would also have to make use of the trace operator. Before extending the proce-
dure to such slices, we first consider those for which the above process is sufficient.
We call these slicelocative

Definition 3.1. LetG be adag, and a slice ofG. Consider the set of all vertices
V which are to the past of some edgelinLet | be the set of initial edges in the
past ofL. Consider all paths of maximal length beginning at an elemehtasfd
only going through vertices of . ThenL is locativeif all such paths end with an
edge inL.

In our example, the locative slices are the following:
a, b, ab, c, ch, def adef cdef efgh
adfi, cdfi, fghe fghi, fgk, hej, hij, jk

while, for examplegdeis not locative. Note that the fact that maximal slices are
always locative follows immediately from the definition of locative.

We now describe the general rule for calculating the density matrices on
locative slices. Associated with each locative slicés the setl of initial edges
in the past ofL. We choose a family of slices that begins witland ends with_
in the following way. Consider the set of verticésbetween the edges inand
the edges irL. Becausd. is locative we know that propagating slices forwards
through the vertices iv will reproduceL. Let M € V be such that the vertices
in M are minimal inV with respect to causal ordering. We choose arbitrarily any
vertexu in M, remove the incoming edges of and add the outgoing edges of
u to the setl obtaining a new set of edges. It is clear thatl, is spacelike and
locative. Proceeding inductively in this fashion we obtain a sequences of slices
| =lg, I, l2, ... 15 = L, where,n is the cardinality ofvV. Of course, this family
of slices is far from unique.

The dynamics is obtained as follows. Recall that the states on initial edges
are assumed not to be entangled with each other so that one can obtain the density
matrix on any set of initial edges, in particulbrby a tensor product. Lefy be
the density matrix oni. We look at the vertex that was used to go fromto I,
and apply the intervention operafbiassigned to this vertex—possibly augmented
with identity operators as in the example above. Proceeding inductively along the
family of slices, we obtain the density matyx on L.

The important point now is that, does not depend on the choice of slicing
used in going froml to L. This can be argued as follows. Suppose we have a
locative sliceS and two verticess andv which are both causally minimal above
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S and acausal with respect to each other. Then we have four slices to consider,
S, S, S, andS,, where byS, we mean the slice obtained froBiby removing

the incoming edges af and adding the outgoing edgeswtio Sand similarly for

the others. Itis clear, in this case, that the intervention operators assigmnaddo

to v commute and the density matrix computedRynis independent of whether

we evolved along the sequenBe> S, — Sy orS— S, — S,v. Now when we
constructed our slices at each stage we had the choice between different minimal
vertices to add to the slice. But such vertices are clearly pairwise acausal and
hence, by the previous argument applied inductively, the evolution prescription is
independent of all possible choices. We summarize this argument in the following
proposition

Proposition 3.2. (Covariancg. The density matrix on a locative slice is inde-
pendent of the family of slices used to compute it.

So far we have defined density matrices on locative slices only. To define
density matrices on general spacelike slices we will need to consider partial tracing
operations.

3.3. General Slices

Recall that when one has subsyste@sand Q, of a quantum syster®,
the Hilbert space fo@Q may be decomposed && ® H, whereH; represent£);.
The density matrix forQ, is obtained by tracing ovek{,. To obtain the density
matrix of a general spacelike sli@we proceed as follows. First note that there is
a natural partial orderirfgon slices (recall that we always mean “spacelike slices”
whenever we say “slices”) given as follows

S ESifVyeSIeS-x<yandVye SI, € §- <y

wherex < y means thak causally precedeg. The collection of slices forms a
finite poset. We find theninimal(in the orderC) locative sliceM that containss
and trace over the Hilbert spaces on edgdd 6. Such a locative slict always
exists because maximal spacelike slices are always locative.

Lemma 3.3. Given aslice S, there is a unique minimal slice which contains S.
Proof: We claim that the locative slice obtained by evolving through those ver-

tices to the causal past &fis the unique minimal locative slice. More precisely,
letV = {vi, ..., Vp} be the set of vertices to the past&fLet| = {ey, ..., &)}

6This ordering is well-known in computation theory where it is called the Egli-Milner order (Plotkin,
1976).
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be the set of initial edges to the past&fConstructing a sequence of slices by
incrementally incorporating the vertices\éfin a manner similar to what we did
in the previous subsection, we get a locative shteontainingS.

First, note thatM is locative by definition and also it contair® Second,
note that any slice containing(in particularSitself) must be to the future of all
these vertices. Thull is indeed minimal since it lies to the future of the fewest
vertices. O

Definition 3.4. We shall refer taVl as theleast locative slicef the edgeS.
Starting with the density matrices on the edges$ ahd applying the opera-

tors associated with the vertices\df we obtain the density matrix on the locative

slice M. Suppose tha$ consists of edgege, ... e} Let M—the minimal loca-

tive slice througtS—consist of edgegey, ..., &, €, .. ., € }. The density matrix

p1,-.-,1,2,..., ]’ onMis an element of the spaémdH: ® - - - @ Hi @ H} ®

.-~ ®M}). LetTr' 1" be the partial trace operation

EndM1® - @M ®Hy® - ®Hj) > End(H1® - ® H'))

which traces over the primed Hilbert spaces.

Definition 3.5.(Density matrix associated with a slice). The density mairat
the sliceSis defined to be:

ps=TrYV(p1 v, i) )

Of course ifM andS coincide then no tracing is done.

Proposition 3.6. The prescription for computing density matrices is causal in
the sense that the only vertices to the past of S can affect the density matrix on S.

Proof: This is immediate from the construction and uniqueness of the minimal
locative slice. The explicit construction of the minimal locative slice shows that
only intervention operators to the past®€an affect the density matrix d@ 0O

For ease of presentation the rest of the discussion will focus on the case where
Sis a single edge. In general, an edgés contained in many locative slices and
we could just as well have defingzl by tracing over the complementary degrees
of freedom in any of these locative slices. However we have to compute the density
matrices differently in order to ensure causality. To clarify the discussion consider
the quantum system represented by the graph on Fig. 4.

Let the initial p5 be the density matrix of a maximally entangled state of two
spin 1/2 subsystemgi = [a) (Val, Whereya = 1/V2(y] ® ] + ¥} ® ¥3).
At the first vertex the two subsystems separate with no classical intervention.
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Fig. 4.

Thereforepy. = pa. The slice{e,, &} is the least locative slice for the edgg

and we can compute the density matrix associated to this egge:Tr¢opc =
1/2(|1ﬁf)(1/;f| + |w1¢)(xpf|). Next, let the intervention at the second vertex be
a measurement on the corresponding subsystem with the result that the spin
was found to be in the statgi?zT . The intervention operator is the projection
operator on this state of the second subsysté(p) = 2P2Tp PZT. We obtain:

poa = T(ooc) = (Y1) ® [¥]))({(¥] | ® (3 ]) If now we attempt to tracgyg over

the subsystem associated with the eglgeve will obtain an incorrect result fox,,
namely| wf) (wf |. The resolution is well known. Since a classical observer located
on the edge, is not aware of the result of the intervention at the second vertex, for
him the density matriy,q has evolved fronpy. by an operatof which includes all
possible outcomes of the measuremeg: = 'T'(pbc) = ZS:M P5opcP5. Trac-

ing out thed-subsystem in the expression fa@, we obtain the correct expression
for pp, namelyp = 1/2(19{ ) (¥r] | + 197) (W1 1).

Now we give another general prescription for computing the density matrix
on an edges from an arbitrary locative slicé containing this edge. We first
compute a density matrixL~ for the sliceL. This prescription has to deal with the
possibility that some of the intervention operators used are from vertices that are
not to the past of the edge. As we saw in the example above, the density matrix
atg cannot reflect the knowledge of the outcome of interactions at vertices that
are not to the causal pastef

This density matrix is computed from the initial data by applying intervention
operators for the events in the pastloés before. But now, we will consider two
types of events in the past &f those that are to the past af and those that
are not. For the events that are to the past of the efdgee use our regular
intervention operators without a summation over the set of possible outcomes:
oD AﬂmpALm. We do not sum over the outcomes in this case precisely
because the outcome is in fact knowrgatFor the events that are to the past of
the sliceL but not to the past of the edgg we use operators that sum over all
possible outcomegi = >_ ., Aump ALm. This time, of course, the summation is
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there because the outcome cannot be knoven since these events are not to the
past ofe,.

After we have obtaine@,”; we trace out those subsystems associated with
edges inL except forg to obtain the density matrix; “This is the density matrix
associated with our preferred edgeas computed from the slide The indepen-
dence of the result on the choicelois expressed in the following proposition:

Proposition 3.7. Letg be an edge in the dag G. The density matfiassociated
with the edge jedoes not depend on the choice of locative slice used to compute
it, provided that we use the second prescription to compute it.

Proof: We have already demonstrated that to any egigihere is a unique least
locative sliceM; containinge. Let p; be the density matrix for the edge as
computed from the least locative slice anddebé the density matrix for the same
edge but computed from an arbitrary locative slice, kagontainingg . We will
prove the proposition by showing that= p;.

First note thatM; being less thar. implies that there is a sa&t of events
betweerM; andL. The plan is to remove the effect of these events and show that, at
each stage, the density matrix is unaffected. We begin by picking a maximal event,
sayk, with the intervention operatoF,. Sincek is maximal and hence acausal
with all other maximal elements &f, as well as with all the maximal elements
to the past of, the intervention operator &tcommutes with all the intervention
operators at the vertices just mentioned. Thus, we can choose the intervention
operatorT to be the outermost, i.e. the density magixobtained by propagating
to L can be written as

oL = Ti(p")

where o’ is the density matrix on the (locative) slice obtained by removing the
edges to the future & from L and adding the edges to the paskofJsing the
explicit general form for an intervention operator,

L= Ao Al
w,m

In order to obtain the density matrix, We trace over all Hilbert spaces associated
with edges il exceptg . In particular, we trace over the outgoing edges associated
with k. Now we can use the cyclic property of trace and rewrite the expression for
pi as,

~ K
p =T (X A ).

,m
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Now we use the identity

Z ALmAMm =1
um
to get
pi=Tr(p)

We have eliminated the effect of the intervention operatd. &roceeding
inductively we can peel off the intervention operators associated with the rest of
the vertices iV, thus

Pi = Pi-
O

A similar argument for the case of a simple system represented by the dag in
Fig. 2 is contained in (Peres, 2000b).

4. CONCLUSIONS

We have presented an axiomatic system for the analysis of quantum evolution.
The dynamics is local as to preserve causality, but at the same time entanglement
of separated quantum systems is faithfully represented. Our work also suggests
a natural extension of the notion of quantum history. Restricting the intervention
operators at the vertices of our graho be projection operators we can consider
G to denote a particular history within a set of histories. This relaxes the usual
linear ordering of events considered in the literature thus far.
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