
Minimization via Duality

Nick Bezhanishvili1, Clemens Kupke2, and Prakash Panangaden3

1 Department of Computing, Imperial College London
2 Department of Computer Science, University of Oxford

3 School of Computer Science, McGill University

Abstract. We show how to use duality theory to construct minimized versions of a
wide class of automata. We work out three cases in detail: (a variant of) ordinary au-
tomata, weighted automata and probabilistic automata. The basic idea is that instead
of constructing a maximal quotient we go to the dual and look for a minimal subalge-
bra and then return to the original category. Duality ensures that the minimal subobject
becomes the maximally quotiented object.

1 Introduction

The main goal of this paper is to exploit a simple observation of category theory that yields
some striking results when applied to particular instances. The simple observation is this:
a quotient construction in a category is the same as a subobject construction in the oppo-
site category. How can such a simple observation be useful or interesting? First, there is
the mathematically nontrivial task of giving a useful alternative description of the opposite
category. Second it is useful because finding the relevant subobjects may be easier than an
explicit quotient construction in the original category of interest. Furthermore one gets com-
pletely new algorithms for the minimization problem. Third, it is interesting because one ties
together seemingly unrelated ideas into a coherent whole. These ideas have appeared not
only in minimization but in questions related to machine learning, specifically the problem of
modelling systems with hidden state [9]

We are going to exploit duality or, more precisely, a dual equivalence for the minimisation of
automata, ie. we use the fact that a given category of transition systems, say C, is equivalent
to the opposite of another category Dop. Our basic strategy for minimization is as follows.
We start with a transition system S of a certain type. We go to the dual category and look for
a special subobject: a so-called zero-generated subobject which has the property that it must
embed into any other subobject of the dual object. Then we come back to the original category
and find that the zero-generated subobject is the minimal realization of the original object.
The general abstract statement is of course very easy, practically an observation. Examples
of this phenomenon are, however, very interesting.

The first example that we treat in this way is based on reasoning about systems with hidden
state [9]. It is related in spirit, but not in detail, to an old algorithm due to Brzozowski [7]
which is a minimization algorithm that seems to work by black magic. A precise categorical
treatment of Brzozowski’s algorithm has recently been given by Bonchi et al. [6]. Our second
example deals with weighted automata. We derive an algorithm due to Stefan Kiefer [12]
which he discovered after listening to a presentation of the third author. The third example
is that of probabilistic transition systems. We use Gelfand duality to show how to minimize
what are called belief automata in the AI literature [11].

2 The Abstract Setting

In this section we describe a categorical setting in which our minimization results can be
placed. This framework is by no means exhaustive, we hope it will lend itself to further gen-
eralizations and clarifications. In this paper, it merely has the role to present our minimiza-
tion procedures under a common umbrella. Readers who are interested in concrete examples,
rather than in the unifying categorical viewpoint, can skip this section.

The starting point for our presentation of automata minimization is a basic duality: Let C and
D be dually equivalent categories and let F : Cop −→ D and G : D −→ Cop be the contravari-
ant functors establishing this duality. The following three examples will be discussed in our
paper.

Example 1. 1. Let C = FinSet be the category of finite sets and D = FinBA the category
of finite Boolean algebras. The epimorphisms in C are the surjective maps.

2. Let C = D = FDVec the category of finite-dimensional real vector spaces and linear
maps. The epimorphisms in C with domain C ∈ C correspond to congruence relations on
C.

3. Let C = KHaus the category of compact Hausdorff spaces and D = C∗Alg be the
category of real commutative C∗-algebras. The epimorphisms in C with domain C ∈ C
correspond to equivalence relations on C that are closed in the topology.

In our examples we will be dealing with categories C that have an (Epi,Mono)-factorization
system (cf. [2]), i.e., we can factor any morphism f ∈ C into f = m ◦ e where m is a mono, e
is an epi and this factorization is unique up to isomorphism. The automata we are studying in
this paper are coalgebras for functors T : C −→ C that preserve monos. It is not difficult to see
that the factorization structure of C can be lifted to Coalg(T) if T : C −→ C preserves monos
and that the factorization of a morphism in Coalg(T) can be computed in the base category C
(cf. e.g. [1]). This factorization structure can be used in order to define the minimization of a
coalgebra.

Definition 1. Let T : C −→ C be a functor and let S = (S , γ) be a T-coalgebra. An epimor-
phism e : S −→ S′ of S is called minimization of S iff for all other quotients e′ : S −→ S′′

there exists a unique map g : S′′ −→ S′ such that g ◦ e′ = e.

In order to ensure that the minimization of a T-coalgebra exists we further assume that the
base category is co-wellpowered, ie., that for every object C in C the collection of epimor-
phisms e : C −→ C′ forms a set. In this case, given our assumptions on the category C and
the functor T : C −→ C, the minimization of a coalgebra (X, γ) ∈ Coalg(T) exists (cf. [1,
Thm. 3.8]).

In order to compute the minimization of a T-coalgebra we proceed as follows: We first lift
the basic duality C � Dop to a duality between Coalg(T) and some category Alg(L) for
some functor L : D −→ D and we denote by F̂ : Coalg(T) −→ Alg(L)op and Ĝ : Alg(L)
−→ Coalg(T)op the functors that witness this dual equivalence.

Remark 1. Note that a functor L : D −→ D such that Coalg(T) � Alg(L)op can always be
defined as follows: Let G : D −→ Cop and F : Cop −→ D be the functors that constitute the
dual equivalence between C and D. If we put L = F ◦ Top ◦ G, it is not difficult to see that

2

Coalg(T) � Alg(L)op. In our examples we will use, however, more concrete representations
of L and of the algebras in Alg(L).

By the duality Coalg(T) � Alg(L)op and the fact that minimizations in Coalg(T) exist it is
clear that each object A ∈ Alg(L) has a minimal subobject i : A′ −→ A such that for all other
subobjects j : A′′ −→ A there exists a map k : A′ −→ A′′ such that j ◦ k = i. For any T-
coalgebra (ie, automaton) S = (S , γ : S −→ TS) the minimization can therefore be obtained
by taking the dual of the minimal subobject of the dual algebra F̂S of S. We summarize the
observations of this section in the following meta-theorem.

Theorem 1. Let C be a co-wellpowered category with (Epi,Mono)-factorization,D be a cat-
egory dually equivalent to C, and T : C −→ C be a functor that preserves monos. Assume also
that L : D −→ D is a functor such that Coalg(T) and Alg(L) are dually equivalent. Let

F̂ : Coalg(T) −→ Alg(L)op and Ĝ : Alg(L) −→ Coalg(T)op

be the functors establishing this duality. Let S be any T-coalgebra with Cm being the minimal
subobject of F̂(S). Then Ĝ(Cm) is the minimization of S.

3 Partially Observable Deterministic Finite Automata

In this section we are working in the basic setting of Example 1.1.

Definition 2. We define partially observable deterministic finite automata (PODFA) to be
quintuples S = (S ,A,O, δ : S −→ SA, γ : S −→ 2O) where S is a finite set of states, A is
a finite set of actions, O is a finite set of observations, δ is a transition function and γ is an
observation function.

The only difference from the usual automata is the presence of observations. We do not see
what state the automaton is in currently, instead we see some observations that partly reveal
the state, we may think of γ as a relation between states and observations.

We fix the set of actions and observations henceforth; thus automata are just triples (S , δ, γ).
These automata are coalgebras for the functor T : FinSet −→ FinSet given by

T(S) = SA × 2O, T(f : S −→ S ′) = λ〈α : A −→ S , O ⊆ O〉.〈 f ◦ α, O〉.

A homomorphism for these coalgebras is a function f : S −→ S ′ such that the following
diagram commutes: S

f //

〈δ, γ〉
��

S ′

〈δ′, γ′〉
��

SA × 2O
fA×id
// S ′A × 2O

where fA(α) = f ◦ α. This translates to the following conditions:

∀s ∈ S , ω ∈ O, ω ∈ γ(s) ⇐⇒ ω ∈ γ′(f (s)), and ∀s ∈ S , a ∈ A, f (δ(s, a)) = δ′(f (s), a).
(1)

Definition 3. The category of coalgebras for the functor T is called PODFA, the category of
partially observable deterministic finite automata.

3

In order to define a category dual to PODFA we use a well-known finite variant of basic
Stone duality; see, for example [8].

Fact 2 The categories FinSet and FinBA are dually equivalent. This dual equivalence is
established via the contravariant functors 2 : FinSet −→ FinBA and At : FinBA −→ FinSet
where 2 denotes the contravariant power set functor and At the functor that maps a given
finite Boolean algebra to its set of atoms and a homomorphism h : B1 −→ B2 to the function
At(h) : At(B2) −→ At(B1) with At(h)(b′) B

∧
{b ∈ B1 | b′ ≤ h(b)} for all b′ ∈ At(B2).

Based on this duality, we establish a duality between the category PODFA and the category
of finite Boolean algebras with operators.

Definition 4. The category FBAO of finite Boolean algebras with operators (FBAOs) has as
objects finite Boolean algebras B with the usual operators ∧ and ¬ with a greatest element >
and least element ⊥ together with unary operators (a) : B −→ B, for each action a, such that
(a) is a Boolean homomorphism. For each observation ω ∈ O, we also have constants ω. We
denote an object of FBAO by

B = (B, {(a)|a ∈ A}, {ω|ω ∈ O},>,∧,¬).

The morphisms of FBAO are the usual Boolean homomorphisms preserving, in addition, the
constants and the unary operators.

Remark 2. FBAOs fit easily into the general framework that we outlined in Section 2: We
define a functor L : FinBA −→ FinBA by putting LB =

∐
a∈A B+FFinBA(O) where FFinBA(O)

denotes the free Boolean algebra generated by the finite set of observations O and
∐

and +

denote coproducts in FinBA. As the category of Boolean algebras is locally finite, finitely
generated Boolean algebras are finite and a coproduct of two finite Boolean algebras is also
finite. It is easy to see that the categories Alg(L) and FBAO are isomorphic.

Finite Boolean algebra with operators provide the categorical dual of finite automata.

Proposition 1. PODFA � FBAOop via two contravariant functors F̂ : PODFAop −→ FBAO
and Ĝ : FBAO −→ PODFAop.

Proof. We define the two functors explicitly and check the requisite conditions. First we define
a functor F̂ : PODFAop −→ FBAO as follows.

(S , δ, γ) 7→ (2S ,A, Ω)

where ω = {s|ω ∈ γ(s)} and (a)b = {s|δ(s, a) ∈ b}, b an element of the Boolean algebra 2S

is just a subset of the states of S. The arrow part of the functor is just inverse image which
clearly preserves the usual Boolean operators. The fact that it preserves the new operators
and the constants is immediate from equations (1).

Now we define a functor Ĝ : FBAO −→ PODFAop:

(B,A, Ω) 7→ (At(B), δ, γ).

Here At(B) means the set of atoms of B, since B is a finite Boolean algebra it is certainly
atomic. We define

δ(b, a) =
∧
{b′ ∈ B|b ≤ (a)b′} (2)

4

and
γ(b) = {ω ∈ O|b ≤ ω ∈ Ω} (3)

where b is an atom of B. The arrow part of the functor is defined as follows:

f : B1 −→ B2, Ĝ(f)(b ∈ At(B2)) =
∧
{c ∈ B1|b ≤ f (c)}. (4)

In order to ensure that Ĝ is well defined we need to verify that δ(b, a) is an atom and also that
Ĝ(f)(b) is an atom in the above definitions when b is an atom.

Assume that b is an atom. We claim that β def
=
∧
{b′|b ≤ (a)b} , ⊥. Suppose that it were

equal to ⊥. The set {b′|b ≤ (a)b} consists of finitely many elements {b1, . . . , bn}, so we have
b1 ∧ b2 ∧ . . . ∧ bn = ⊥. Now for each bi we have b ≤ (a)bi by the definition of the set, so
b ≤ (a)b1 ∧ . . . ∧ (a)bn. Using the fact that the operators (a) are Boolean homomorphisms it
is easy to see that b ≤ (a)b1 ∧ . . . ∧ (a)bn = (a)(b1 ∧ . . . ∧ bn) = (a)⊥ = ⊥.Thus if b , ⊥ then
β, ⊥.

In fact there is a unique atom c in the set {b′|b ≤ (a)b}. To see that there is an atom in this set
we calculate as follows

b ≤ T ≡ (a)T = (a)(
∨

x∈At(B)

x) =
∨

x∈At(B)

(a)x

and, since, b is an atom, for some c ∈ At(B) we have b ≤ (a)c. Suppose that there were
two such atoms c1, c2. Then b ≤ (a)c1, b ≤ (a)c2, hence b ≤ (a)(c1 ∧ c2) = (a)⊥ = ⊥,
which contradicts the assumption that b is an atom. Since {b′|b ≤ (a)b} contains an atom and
its meet is not ⊥ the meet must be that atom. Thus, we could have defined δ(b, a) to be the
unique atom c such that b ≤ (a)c. The proof that Ĝ(f)(b) is an atom is similar.

Now suppose that we have a PODFA S = (S , δ, γ), we construct Ĝ(F̂(S)) to obtain another
PODFA S′ = (S ′, δ′, γ′). Clearly the atoms of 2S just gives back S ; in other words {·} : S
−→ At(2S) is a (natural) isomorphism. Then

γ′({s}) = {ω ∈ O|{s} ⊆ ω} = {ω|ω ∈ γ(s)} = γ(s).

Now consider any state s and action a

δ′({s}, a) = {s′} with {s} ⊆ (a){s′}
= {s′} with {s} ⊆ {s′′|δ(s′′, a) = s′}

= {δ(s, a)}.

Thus the iso in the category of sets is in fact an iso in the category PODFA. To show that we
get an isomorphism going the other way is straightforward as well. We embed B into 2At(B)

by mapping b ∈ B to {u ∈ At(B)|u ≤ b}.

This shows that we get a precise duality between automata with observations and FBAOs. The
interesting point, however, is that one can get a minimal realization via this theory.

Definition 5. Consider the language L:

t ::= > | ω̂ | 〈a〉t | t1 ∧ t2 | ¬t.

5

Now, for a given automatonS = (S , δ, γ) we can define a satisfaction relation for the formulas
as follows:

s |= > always s |= ω̂ iff ω ∈ γ(s)
s |= t1 ∧ t2 iff s |= t1 and s |= t2 s |= ¬t iff s 6|= t
s |= 〈a〉t iff δ(s, a) |= t.

We say that a subset U of S is definable by L if U = ~t� B {s ∈ S | s |= t} for some t ∈ L.

From the subsets definable by L, call this D, we can obtain another Boolean algebra with
operators.

Proposition 2. The set of subsets definable by L of a PODFA S, with the evident restric-
tions of the operators, gives a minimal subalgebra Cm of F̂(S), i.e., a subalgebra Cm that is
contained in any other subalgebra of F̂(S).

The following theorem is an immediate consequence of Theorem 1.

Theorem 3. The automaton Ĝ(Cm) is the minimal realization of S.

In the previous construction we used a logic that had the Boolean connectives as well as the
modal operators and the observations as primitive propositions. In fact, one just needs the last
two in the logic provided one is working with deterministic systems. As we will show below
in such cases the Boolean connectives are superfluous.

Given the set of actions and observations we define a simple sublanguageL0 ofL as follows:
L0 3 t ::== ω̂ | 〈a〉t.

The following lemma is easy to prove, if we are working with deterministic automata.

Lemma 1. If a formula of L distinguishes two states then so does a formula of L0.

We say that a set of states is definable by L0 if it is of the form ~t� for some t in L0. The
subsets definable by L0 do not form a Boolean algebra. Let us call the collection of these
subsets D′. Then the Boolean algebra generated by D′ is exactly the same as the Boolean
algebra of the subsets definable by L. However, this is only true because the operators are
required to be boolean algebra homomorphisms. The reason we require that the operators be
boolean algebra homomorphisms is because we are dealing with deterministic automata. In
general, one could have sets defined by formulas like (a)(p ∧ (b)q) in D which are not in the
Boolean algebra generated by D′. Thus, we can work with D′ and use the Boolean algebra
generated by it to get to D and then proceed as we did in the previous subsection.

Proposition 3. Given a PODFA the boolean algebra with operators generated by the subsets
definable by L0 gives the zero-generated subobject of the dual FBAO object. Thus one can
construct the minimal PODFA by using formulas of L0.

Our algorithm resembles aspects of Brzozowski’s algorithm in the following sense. We con-
struct a dual object which resembles Brzozowski’s reversed machine in the sense that an
FBAO object is essentially running the original machine backward. However, there are many
differences. First of all we are not dealing with reachability aspects and secondly we have
multiple observations; essentially we have Moore machines rather than acceptors. The precise
categorical version of Brzozowski’s algorithm is given by Bonchi et al. [6] who exploit the du-
ality of observability and reachability as originally discussed by Arbib and Manes [3].

6

4 Linear weighted automata

In this section we show that the minimization of weighted automata fit into our framework.
Weighted automata are also called multiplicity automata and are important in learning the-
ory [4]. Our minimization construction is inspired by a construction by Stephan Kiefer [12]
who came up with a minimization algorithm after hearing a talk on duality for ordinary au-
tomata given by the third author of the present paper. As in [5], we model linear weighted
automata as coalgebras for a functor on the category FVect of finite dimensional real vector
spaces. In order to prepare for the categorical picture we recall the well-known self-duality
property of the category of finite-dimensional vector spaces.

For a vector space V we denote by End(V) the set of linear maps T : V −→ V and by V∗

the dual space of V consisting of linear mappings φ : V −→ R. We can easily extend ()∗ to
a contravariant functor ()∗ : FVect −→ FVectop that maps a morphism T : V −→ W to the
morphism T ∗ : W∗ −→ V∗ given by T ∗(σ)(v) B σ(T (v)) for σ ∈ W∗, v ∈ V .

Fact 4 There is a natural isomorphism τ : IdFVect −→ ()∗∗, given by τV (v)(φ) = φ(v) for all
v ∈ V, φ ∈ V∗ and V ∈ FVect. Therefore the pair (()∗, (()∗)op) is a dual equivalence between
FVect and itself.

Definition 6. The category WAuto of output linear weighted automata over alphabetA can
be defined as the category of coalgebras for the functor T = ()A ×R. Equivalently, an object
in WAuto can be represented as a triple

S = (V,T : A −→ End(V), η ∈ V∗)

where V ∈ FVect,A is a finite set (input alphabet), and T maps input letters a ∈ A to linear
transformations T (a) : V −→ V. The vector η ∈ V∗ is the final vector. The dimension of V
is called the dimension of the automaton and is denoted dim(S). Given a weighted automata
S ∈ WAuto we extend the map T to a map T : A∗ −→ End(V) inductively by putting
T (ε) = idV and T (a · w) = T (a) · T (w).

Given two linear weighted automata S1 = (V1,T1 : A −→ End(V1), η1 ∈ V∗) and S2 =

(V2,T2 : A −→ End(V2), η2 ∈ V∗2), a WAuto-morphism from S1 to S2 is a linear function
M : V1 −→ V2 such that M∗(η2) = η1 and for all a ∈ A we have M ◦ T1(a) = T2(a) ◦ M.

Based on the self-duality of FVect we can define a duality of output linear weighted automata
with linear weighted automata with initial states.

Definition 7. The category WAuti of linear weighted automata with initial state over alpha-
betA has as objects triples (V,T : A −→ End(V), α) where V ∈ FVect is a finite-dimensional
real vector space, T (a) : V −→ V is a linear function for all a ∈ A and α ∈ V is an initial
state vector. A WAuti-morphism from (V1,T1, α1) to (V2,T2, α2) is a linear function M : V1
−→ V2 such that M(α1) = M(α2) and such that for all a ∈ A we have M ◦ T1(a) = T2(a) ◦M.

Remark 3. Again the dual category WAuti can be represented as a category of algebras for a
functor. We define a functor L : FVect −→ FVect by putting LV =

∐
a∈A V + FFVect(1) where

FFVect(1) = R denotes the free real vector space generated by the one-element set. It is now
not difficult to see that Alg(L) is isomorphic to WAuti.

We now use the duality from Fact 4 to define the dual of a linear weighted automaton in order
to establish a duality WAuto � WAutop

i .

7

Definition 8. Let S = (V,T, η) be an output linear weighted automaton. The dual of S is
defined as F̂(S) = (V∗,T ∗, η) where T ∗(w) B (T (w))∗ for w ∈ A∗. We extend F̂ to a con-
travariant functor from WAuto to WAuti by putting F̂(M) B M∗ for a given morphism
M : S1 −→ S2 ∈WAuto. Likewise, the dual of a linear weighted automaton with initial state
S = (V,T, α) is defined as Ĝ(S) = (V∗,T ∗, τV (α)) where τV : V −→ V∗∗ is the V-component of
the natural isomorphism from Fact 4 and we extend Ĝ to a contravariant functor from WAuti

to WAuto by putting Ĝ(M) = M∗.

Proposition 4. The natural isomorphism τ : IdFVect −→ ()∗∗ extends to natural isomor-
phisms τ : IdWAuti −→ F̂ ◦ Ĝ and τ : IdWAuto −→ Ĝ ◦ F̂. Consequently, the contravariant
functors F̂ : WAuto −→WAuti and Ĝ : WAuti −→WAuto form a dual equivalence of WAuto

and WAuti.

Proof. We show that for any linear weighted automaton S = (V,T : A∗ −→ End(V), α ∈
V, η ∈ V∗) the map τV : V −→ V∗∗ is an isomorphism between S and ĜF̂(S). Clearly it is an
isomorphism of the underlying vector spaces.

We need to check that τV : S −→ ĜF̂(S) ∈WAuto, where

Sdd = (V∗∗,T ∗∗, τV∗ (η))

by definition.

Obviously τV satisfies the morphism condition for the initial vector. For the condition regard-
ing the final vector, one can easily see that

τ∗V (τV∗ (η))(v) (Def. of ()∗)
= (τV∗ (η))(τV (v))

(Def. of τV∗)
= τV (v)(η)

(Def. of τV)
= η(v)

for any v ∈ V . Therefore τ∗V (τV∗ (η)) = η as required. Furthermore, for w ∈ A∗, v ∈ V and
φ ∈ V∗, we calculate:

(T ∗∗(w)(τV (v)))(φ) = ((T ∗(w))∗(τV (v)))(φ)
= τV (T (w)∗(φ)) = (T (w)∗(φ))(v)

= φ(T (w)(v)) = (τV (T (w)(v)))(φ)

which implies that T ∗∗(w)(τV (v)) = τV (T (w)(v)) as required by the diagram in the definition
of a WAuto-morphism. Similarly one can check that τ gives rise to a natural isomorphism
from IdWAuti to F̂ ◦ Ĝ.

In order to apply our general minimization theorem we have to describe the minimal sub-
objects of an object S ∈ WAuti. As in the previous case this can be done using formulas.
One can think of these formulas as tests which can be applied to a given weighted automa-
ton.

Definition 9. LetA be a finite alphabet. The set of tests T overA is inductively defined by

T 3 t ::= ε | a · t, a ∈ A.

Given some S = (V,T, η ∈ V∗) ∈ WAuto the semantics of a test t ∈ T is a linear function
~t� : V −→ R that is defined by putting ~ε�(v) = η(v) and ~a · t�(v) = ~t�(T (a)(v)).

8

We can use these test functions in order to define elements of F̂(S) and in order to obtain a
way to compute minimal subobjects in the category WAuti:

Lemma 2. Let S = (V,T, η) ∈ WAuto and let F̂(S) = (V∗,T ∗, η). The smallest subobject
of F̂(S) is equal to (U,T ∗�U , η) where U = span({~t� | t ∈ T }) denotes the subspace of
V generated from test functions and T ∗�U denotes the restriction of T ∗ to U, ie., T ∗�U(a) =

(T (a)∗)�U .

Proof. In order to see that T ∗�U is well-defined we have to check that for any test t ∈ T and any
a ∈ A we have T (a)∗(~t�) ∈ U. For v ∈ V we have T (a)∗(~t�)(v) = ~t�(T (a)(v)) = ~a · t�(v)
and thus T (a)∗(~t�) = ~a · t� ∈ U as required. It is not difficult to see that any subobject of
F̂(S) has to contain {~t� | t ∈ T } and therefore also U, which shows that (U,T ∗�U , η) is indeed
the smallest subobject of F̂(S).

By Theorem 1 the following is immediate:

Theorem 5. Let S = (V,T, η) ∈ WAuto be an output linear weighted automaton. The mini-
mization of S can be computed as Ĝ(S′) where S′ is the minimal subobject of F̂(S) ∈WAuti

as described in Lemma 2.

Spelling out the description of minimal subobjects provided by Lemma 2 one can now obtain
a minimization procedure for linear weighted automata. Owing to space limitations, however,
we cannot provide the details of this construction here. Finally note that in [5] it is proven that
behavioural equivalence in the category that we call WAuto is precisely language equivalence.
This shows that minimization in WAuto coincides with the standard notion of minimization
for linear weighted automata.

5 Belief automata

A fundamental example of our approach is probabilistic transition systems. These are not
a special case of weighted automata for the simple reason that the set of probability distri-
butions on a set does not form a vector space. One needs a different theory. There are two
possible approaches: one is to use Stone’s version of Gelfand duality [18, 19] and the other is
to exploit convexity ideas, which we will not do here but will follow up in future work. For
textbook presentations of Stone’s version of Gelfand duality we recommend Johnstone [10].
Some key categorical constructions are due to Joan Wick-Pelletier [14].

There are several versions of probabilistic transition systems that one could use. A basic
model is partially observable Markov decision processes (POMDPs) [17, 16]. This is a model
invented in the operations research community but now of major importance in the artificial
intelligence community, especially in machine learning; see, for example, the paper by Kael-
bling et al. [11]. Usually POMDPs have a notion of reward associated with transitions and the
main interest is in optimizing the reward by finding a suitable policy. However, we will ignore
the reward for this paper. POMDPs without rewards are rather like Labelled Markov Pro-
cesses [15] except that the state is not observable. A very interesting duality theory for LMPs
also based on Gelfand duality has been developed by Mislove et al. [13]. Our constructions
are somewhat different because we deal with partial observability. We use the left adjoint of a
particular forgetful functor to construct C∗-algebras [14], they construct C∗-algebras directly

9

from tests. They use their theory to discuss composition of LMPs while we are interested in
minimization.

In the AI literature one does not deal with POMDPs directly, rather one deals with what are
called belief automata. This is an automaton where the states are probability distributions
over the states of the original POMDP and the transitions are interpreted as changes in the
distribution. One works directly with this object for analysis, learning prediction etc. and the
original POMDP is not used. The belief automaton becomes a set of probability distributions
over a finite set which is just a simplex in a finite dimensional real vector space and hence a
compact Hausdorff space.

Definition 10. We define CHA(A,O) as the category of compact Hausdorff automata over
A and O. The objects are triples K = (K, ∆ : K −→ KA, Γ : K −→ Sub(O)), where K is a
compact Hausdorff space and ∆ is a transition function over the set of actionsAwhile Γ maps
a state to a subdistribution over the set of observations O, ie. to a function f : O −→ [0, 1]
such that

∑
ω∈O f (ω) ≤ 1. For fixed a ∈ A, the function ∆(·)(a) : K −→ K is continuous

and Γ is continuous when Sub(O), the set of subdistributions over O, is topologized with the
topology it inherits as a subset of [0, 1]|O|.

The morphisms of CHA(A,O), f : (K, ∆, Γ) −→ (K′, ∆′, Γ′) are continuous functions f : K
−→ K′ such that ∆′(f (k))(a) = f (∆(k)(a)) and Γ′(f (k))(ω) = Γ(k)(ω) for k ∈ K, a ∈ A
and ω ∈ O. In other words, CHA(A,O) is isomorphic to the category of coalgebras for the
functor T = ()A × Sub(O) : KHaus −→ KHaus on the category of compact Hausdorff
spaces.

We will usually just write CHA instead of CHA(A,O). We employ the well known Gelfand
duality between the category of compact Hausdorff spaces and the category C∗Alg of real
commutative C∗-algebras in order to develop a duality for CHA (cf. [10, Chapter IV.4]). For
the dual of a compact Hausdorff automaton we take commutative C∗-algebras as the underly-
ing structure but we need to equip them with operators as we did with Boolean algebras with
operators. We will assume fixed setsA of actions and O of observations.

Definition 11. An object of the category CAO is a real commutative C∗-algebra C together
with a set of operators (a) : C −→ C, for each a ∈ A and a distinguished set of elementsω of C
for each ω ∈ O. The operators (a) are C*-algebra morphisms (ie. ring homomorphisms).We
require that 0 ≤ ω ≤ 1 and

∑
ω∈O ω ≤ 1. The morphisms are morphisms of C∗-algebras,which

also preserve the constants and the additional operators.

Remark 4. Again it is possible to view CAO as a category L-algebras. There is, however, a
slight problem that needs to be solved: the forgetful functor from the category of C∗-algebras
does not have a left adjoint, ie., it is not possible to always construct the free C∗-algebra for
a given set of generators. Luckily there is a slight variant of the forgetful functor that does
have a left adjoint: Consider the functor from C∗Alg to Set that maps a given C∗-algebra C
to its unit interval I = {c ∈ C | 0 ≤ c ≤ 1}. This functor does have a left-adjoint ([14])
which we denote with FC∗Alg. We now define a functor L : C∗Alg −→ C∗Alg by putting
LC =

∐
a∈AC + FC∗Alg(O)/J where FC∗Alg(O)/J is a quotient of FC∗Alg(O) that ensures that

the sum of the elements of FC∗Alg(O)/J that correspond to the constants ω is smaller or equal
to 1. A number of details have to be checked; owing to space limitations we omit them here
and will give them in the full version of the paper.

10

There are contravariant functors between these categories that establish a dual equivalence.
We describe these functors before stating the duality theorem. We name the functors A : CHA
−→ CAOop and H : CAOop −→ CHA.

We are given an object K = (K, ∆, Γ) of CHA. We define an object A(K) = (C, {(a)}, {ω}) of
CAO as follows. We define C to be the C∗-algebra of continuous functions from K to R with
the pointwise order.

The operators and constants are defined by (a) f := λx : K. f (∆(x)(a)) for a ∈ A and f ∈ C
and ω := λx : K.Γ(x)(ω) for ω ∈ O. Clearly (a) : C −→ C is a ring homomorphism for any
a ∈ A. Also, ∑

ω∈O

ω =
∑
ω∈O

λx : K.Γ(x)(ω) ≤ λx : K.1.

Given a morphism h : K −→ K ′, where K ′ = (K′, ∆′, Γ′) we define A(h) : A(K ′) −→ A(K)
by A(h)(f) = f ◦ h. It is easy to verify that this is a functor.

For the reverse direction we proceed as follows: Given a CAO (C, {(a)}, {ω}) we define the
dual compact Hausdorff automaton K = (K, ∆, Γ) by putting K = Hom(C,R), ∆(f)(a) =

λx. f ((a)x) and Γ(f)(ω) = f (ω) for a ∈ A, ω ∈ O and f ∈ Hom(C,R). The set K is turned
into a compact Hausdorff space by adding the topology that is generated by the sets ĉ =

{ f ∈ Hom(C,R) | f (c) , 0}.

Lemma 3. With these definitions the maps ∆ and Γ are continuous.

Proof. It is not difficult to see that ∆ is continuous:

∆−1
a (ĉ) = {g | ∆a(g)(c) , 0} = {g | g((a)(c)) , 0} = (̂a)(c).

The fact that Γ is well-defined follows because any C∗-algebra morphism f ∈ Hom(C,R) has
the property that || f (x)|| ≤ ||x|| for all x ∈ C and thus ||

∑
ω∈O f (ω)|| ≤

∑
ω∈O ||ω|| ≤ 1. The fact

that Γ is continuous can be seen as follows: By Gelfand duality we can assume w.l.o.g. that
C � C(X) for some compact Hausdorff space X. Also by Gelfand duality we know that the
map

τX : X −→ (C(X) −→ R)
x 7→ λ f . f (x)

is a homeomorphism. In particular, for any g : C(X) −→ R there is xg ∈ X such that τX(xg) =

g. Our goal is to prove that the map

Γω : HC(X) −→ R
(g : C(X) −→ R) 7→ g(ω)

is continuous. Let U ⊆ R be an open set. Then

Γ−1
ω (U) = {g : C(X) −→ R | g(ω) ∈ U}

= τX({x | ω(x) ∈ U}) = τX(ω−1(U))

Because ω ∈ C(X) is continuous we have ω−1(U) is open and by the fact that τX is a home-
omorphism we have Γ−1

ω (U) is open as well. As U ⊆ R was an arbitrary open set this shows
that Γw is continuous as required.

11

This operation can be extended to a functor H : CAO −→ CHAop that maps a function h : C1
−→ C2 ∈ CAO to the function H(h) : H(C2) −→ H(C1) given by H(h)(g) B g ◦ h.

Theorem 6. The functors H : CAO −→ CHAop and A : CHAop −→ CAO form an equiv-
alence of categories, i.e. the categories CHA and CAO are dually equivalent: CHA '

CAOop.

Proof. LetK = (K, ∆, Γ) be a compact Hausdorff automaton and let HAK = (K′, ∆′, Γ′). It is
an immediate consequence of Gelfand duality that the carrier spaces K and K′ are isomorphic
via the isomorphism τK : K −→ K′ given by τK (x)(f) B f (x) (note that K′ = Hom(C(K),R),
i.e. τK (x) has to map continuous real-valued functions on K to a real number). The fact that
τK : Id −→ H ◦ A is natural is also a consequence of Gelfand duality. The only thing which
remains to be checked is that τK is an automaton morphism. In order to see this we calculate
for a ∈ A, x ∈ K and g ∈ C(K) that

(∆′(τK (x))(a))(g) = τK (x)((a)g) = τK (x)(λy.g(∆(y)(a)))
= g(∆(x)(a)) = τK (∆(x)(a))(g)

where all equalities are immediate consequences of the definitions. This shows that τK is an
automaton morphism regarding the transition structures ∆ and ∆′. Let us now check that τK
also preserves all observations ω ∈ O:

Γ′(τK (x))(ω) = τK (x)(ω) = ω(x) = Γ(x)(ω).

For the other direction of the equivalence we have to show that the C∗-algebra isomorphism
αC : C −→ C(Hom(C,R)) that exists by Gelfand duality for each C = (C, {(a)}, {ω}) ∈ CAO
and and that is given by αC(c)(f) B f (c) for f ∈ Hom(C,R) is in fact a CAO-morphism. It
then follows that α : Id −→ A ◦H is a natural isomorphism. In order to see that αC is indeed
a CAO-morphism we calculate

(αC((a)c)(f)) = f ((a)c) = (∆(f)(a))(c)
= αC(c)(∆(f)(a)) = (a)′(αC(c))

(αC(ω))(f) = ω(f) = Γ(f)(ω) = ω′(f)

where the (a)′ and ω′ denote the operators and constants of AHC which is the C∗-algebra
with operators obtained by following both functors.

We are now going to use the duality in order to minimize compact Hausdorff automata. Let
us first define a set of tests.

Definition 12. The set of tests for automata in CHA is defined as follows

T 3 t ::= ω,ω ∈ O | (a)t, a ∈ A.

A test t gives rise to a function ~t� : K −→ R:

~ω�(k) B Γ(k)(ω) for ω ∈ O

~(a)t�(k) B ~t�(∆(k)(a)) for ω ∈ O,w ∈ A∗.

We say two states k, k′ ∈ K in an automaton (K, ∆, Γ) are test equivalent (notation: k ∼ k′) if
for all tests t ∈ T we have ~t�(k) = ~t�(k′).

12

The tests can be used in order to obtain a better understanding of the smallest subobject
(subalgebra) of a given C∗-algebra with operators A(K) ∈ CAO.

Proposition 5. Let K ∈ CHA be a compact Hausdorff automaton, let A(K) be its dual C∗-
algebra with operators and let C = (C, {(a)}, {ω}) be the smallest subobject (subalgebra) of
A(K). Then C ⊆ { f ∈ C(K) | ∀k, k′.k ∼ k′ implies f (k) = f (k′)}, ie. all functions in C agree
on the equivalence classes defined by test equivalence on K .

Proof.(Sketch) It is clear that ~T � = {~t� | t ∈ T } ⊆ C. We can generate a C∗-algebra with
operators from ~T � by adding the constant functions and by closing under +, · and under
limits in the sup norm. All functions generated in that way, and thus all functions in C, will
be constant on the ∼-equivalence classes.

As in the other cases duality gives us the following theorem.

Theorem 7. Let K ∈ CHA be a compact Hausdorff automaton. The minimization of K
can be computed as H(C) where C is the minimal subobject of A(K) ∈ CAO as described
in Proposition 5.

As a corollary of the previous proposition and theorem we obtain a description of the mini-
mization of a given compact Hausdorff automaton.

Corollary 1. Given a compact Hausdorff automaton K = (K, ∆, Γ), let K ′ = (K, ∆′, Γ′) be a
compact Hausdorff automaton such that the states of K ′ are ∼-equivalence classes of K and
∆′([k])(a)) = [∆(k)(a)], Γ′([k]) = Γ(k) for k ∈ K where [k] denotes the ∼-equivalence class of
k. Then K ′ is the minimization of K .

6 Conclusions

In this paper we have developed a theory of minimization via duality and showed how it
works in three examples. There are some variations of these cases that we have omitted from
this abstract for lack of space. For example, we have worked out a version of the weighted
automaton case in which there are both initial and final “states” and in which the minimization
is achieved by dualizing and using reachability twice. This version is actually being used by
Stefan Kiefer and he has implemented the algorithm.

The idea of this kind of double duality was first worked out, in a completely non-categorical
way in 2006 [9] and was used as a way of representing systems where one does not know
the state space. Closely connected to what we have been doing is the work in [6]: they give
a duality-based explanation of the Brzozowski algorithm for deterministic finite automata,
but their duality is very different from our Stone duality and takes reachability into account,
something we have not done here.

We note that Mislove et al. [13] have used this duality to study labelled Markov processes but
with different motivations; their work, while very interesting, is not about minimization but
about how to compose systems. Furthermore, the details of their work are somewhat different
from ours.

It is clear that there are a number of cases very close to automata, for example tree automata,
nondeterministic automata, alternating automata etc. that fall under the same rubric and could

13

be developed as straightforward extensions of the present work. We have begun a collabora-
tion with the authors of [6] and others to unify our points of view and collect several more
examples.

Acknowledgments

We have benefitted from discussions with Marcello Bonsangue, Marcelo Fiore, Dexter Kozen,
Alexander Kurz, Mike Mislove, Robert Myers, Jan Rutten, Alexandra Silva and James Wor-
rell on this and related topics. We are very grateful to Vincenzo Marra who shared with us his
expert knowledge on C∗-algebras and to Stefan Kiefer for explaining to us his algorithm for
minimizing weighted automata. The third author would like to thank Chris Hundt, Monica
Dinculescu, Joelle Pineau and Doina Precup for the collaboration that led to the precursor of
this paper.

This research is supported by a grant from the Natural Sciences and Engineering Research
Council of Canada to the third author. The second author acknowledges support by the
EU FP7 project SEALS and by the EPSRC projects ConDOR, ExODA and LogMap. The
work of the first author was partially supported by the EPSRC grants EP/F032102/1 and
EP/F031173/1 and by Rustaveli Science Foundation of Georgia grant FR/489/5-105/11.

References

1. Adámek, J., Bonchi, F., Hülsbusch, M., König, B., Milius, S., Silva, A.: A coalgebraic perspective
on minimization and determinization. In: Proceedings of the Fifteenth International Conference on
Foundations of Software Science and Computation structures (FoSSaCS 2012). Lecture Notes in
Computer Science (2012)

2. Adamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories: The Joy of Cats. Dover
(1990)

3. Arbib, M., Manes, E.: Adjoint machines, state behavior machines and duality. J. Pure Appl. Algebra
6, 313–343 (1975)

4. Beimel, A., Bergadano, F., Bshouty, N.H., Kushelevitz, E., Varricchio, S.: Learning functions rep-
resented as multiplicity automata. Journal of the ACM 47(5), 506–530 (May 2000)

5. Bonchi, F., Bonsangue, M., Boreale, M., Rutten, J., Silva, A.: A coalgebraic perspective on linear
weighted automata. Information and Computation 211, 77–105 (2012)

6. Bonchi, F., Bonsangue, M., Rutten, J., Silva, A.: Brzozowski’s algorithm (co)algebraically. In:
Constable, R., Silva, A. (eds.) Logics and Program Semantics: Essays Dedicated to Dexter Kozen.
Lecture Notes In Computer Science, vol. 7230, pp. 12–23. Springer-Verlag (2012)

7. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite events. In:
Fox, J. (ed.) Proceedings of the Symposium on Mathematical Theory of Automata, pp. 529–561.
No. 12 in MRI Symposia Series, Polytechnic Press of the Polytechnic Institute of Brooklyn (April
1962), book appeared in 1963.

8. Givant, S., Halmos, P.: Introduction to Boolean Algebras. Undergraduate Texts in Mathematics,
Springer-Verlag (2009)

9. Hundt, C., Panangaden, P., Pineau, J., Precup, D.: Representing systems with hidden state. In: The
Twenty-First National Conference on Artificial Intelligence (AAAI) (2006)

10. Johnstone, P.: Stone Spaces, Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge Uni-
versity Press (1982)

11. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101 (1998)

12. Kiefer, S.: Minimization of weighted automata (2011), unpublished private communication

14

13. Mislove, M., Ouaknine, J., Pavlovic, D., Worrell, J.: Duality for labelled Markov processes. In:
Walukiewicz, I. (ed.) Foundations of Software Science and Computation Structures, FOSSACS.
Lecture Notes In Computer Science, vol. 2987, pp. 393–407 (2004)

14. Negrepontis, J.W.: Duality in analysis from the point of view of triples. Journal of Algebra 19,
228–253 (1971)

15. Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)
16. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov decision pro-

cesses over a finite horizon. Operations Research 21(5), 1071–1088 (1973)
17. Sondik, E.J.: The optimal control of partially observable Markov processes. Ph.D. thesis, Stanford

University (1971)
18. Stone, M.H.: A general theory of spectra I. Proc. Nat. Acad. Sci. USA 26, 280–283 (1940)
19. Stone, M.H.: A general theory of spectra II. Proc. Nat. Acad. Sci. USA 27, 83–87 (1941)

15

