
Continuous MDP Homomorphisms and
Homomorphic Policy Gradient

Sahand Rezaei-Shoshtari
McGill University and Mila

Rosie Zhao
McGill University and Mila

Prakash Panangaden
McGill University and Mila

David Meger
McGill University and Mila

Doina Precup
McGill University, Mila, and DeepMind

Abstract

Abstraction has been widely studied as a way to improve the efficiency and general-
ization of reinforcement learning algorithms. In this paper, we study abstraction in
the continuous-control setting. We extend the definition of MDP homomorphisms
to encompass continuous actions in continuous state spaces. We derive a policy
gradient theorem on the abstract MDP, which allows us to leverage approximate
symmetries of the environment for policy optimization. Based on this theorem, we
propose an actor-critic algorithm that is able to learn the policy and the MDP homo-
morphism map simultaneously, using the lax bisimulation metric. We demonstrate
the effectiveness of our method on benchmark tasks in the DeepMind Control Suite.
Our method’s ability to utilize MDP homomorphisms for representation learning
leads to improved performance when learning from pixel observations.

1 Introduction

Policy Lifting

Value Equivalent

H
om

om
or

ph
ic

 P
ol

ic
y

G
ra

di
en

t

 D
et

er
m

in
is

tic
 P

ol
ic

y
G

ra
di

en
t

Actual Policy Abstract Policy

Inverse Policy Lifting

Figure 1: Schematics of our method. The
actual MDP M is used to train Qπ

↑
and

update π↑ with DPG, while the abstract
MDP M is used to train Qπ and update π
with HPG.M is the MDP homomorphic
image ofM obtained by learning the ho-
momorphism map h=(f, gs). Policies π↑
and π can be derived from each other.

For reinforcement learning from high-dimensional ob-
servations, such as images, learning a simpler problem
by abstraction from the original problem can be criti-
cal [2, 52]. The coupling between states, actions and
rewards complicates learning RL abstractions. MDP
homomorphisms [68, 69, 71, 62] define a concept that
allows one to exploit symmetries, yielding behavioral
equivalence and preserving values, while giving the po-
tential to arrive at a substantially smaller MDP. Recent
works [87, 89, 12] have shown that using MDP homo-
morphisms is effective to guide learning in discrete prob-
lems. This paper is one of the first to consider MDP
homomorphisms in the continuous-control setting and
to develop actor-critic algorithms with a tightly inte-
grated state-action abstraction. To that end, we identify
and answer a series of key challenges:

Can MDP homomorphisms be defined on continu-
ous state and action spaces? Our first contribution is
to define continuous MDP homomorphisms on continuous state and action spaces, which requires
more intricate proofs that do not follow in any direct way from the finite case and requires tools from
measure theory and differential geometry.

Can MDP homomorphisms be tightly integrated into the policy gradient? Our second contribu-
tion is the derivation of the homomorphic policy gradient (HPG) theorem to closely integrate the

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

ar
X

iv
:2

20
9.

07
36

4v
1

 [
cs

.L
G

]
 1

5
Se

p
20

22

abstract MDP into the policy gradient. Importantly, we rigorously prove that performing HPG on
the abstract MDP is equivalent to performing the deterministic policy gradient (DPG) on the actual
MDP. Therefore, HPG can act as an additional gradient estimator capable of utilizing approximate
symmetries for improved sample efficiency. To derive these results, we prove that continuous MDP
homomorphisms preserve value functions [35], which in turn enables their use for policy evaluation.

Can MDP homomorphisms be learned simultaneously with the optimal policy in a practical
deep reinforcement learning algorithm? We propose a deep actor-critic algorithm, depicted in
Figure 1, based on HPG, referred to as Deep Homomorphic Policy Gradient (DHPG), that unifies
state and action abstractions. DHPG is able to simultaneously learn the policy and the homomorphism
map using the lax bisimulation metric [83], a metric for measuring the equivalence of state-action
pairs under an MDP homomorphism relation. We empirically show that state-action abstractions
learned through MDP homomorphisms provide a natural inductive bias for representation learning.

Despite the existence of well-studied abstraction notions, learning state abstractions in a scalable
fashion for continuous control remains a key challenge. In contrast to previous works on learning
MDP homomorphisms [87, 89, 12], our algorithm is readily applicable to continuous actions, and
compared to previous works guided by bisimulations [98, 31, 48], our algorithm leads to more robust
solutions, as suggested by our empirical results. The bisimulation relation [59, 50, 13, 22, 32] and
bisimulation metrics [23, 28, 27, 29] do not allow abstracting actions as they require exact matching
of actions, whereas MDP homomorphisms and equivalently the lax bisimulation metric [83] remove
this strong limitation, giving them greater modeling flexibility. Most importantly, the key difference
between prior works [87, 89, 98, 31, 48] and our method is the homomorphic policy gradient theorem
which allows for a tight integration of the abstraction notion into the policy gradient that theoretically
motivates using the abstract MDP for policy optimization in the actual MDP. Our contributions are:

1. Defining continuous MDP homomorphisms on continuous state and action spaces, using
tools from measure theory and differential geometry.

2. Proving that continuous MDP homomorphisms preserve value and optimal value functions.
3. Deriving the homomorphic policy gradient theorem.
4. Developing a deep actor-critic algorithm for learning the optimal policy simultaneously with

the MDP homomorphism map in challenging continuous control problems.

DHPG improves upon strong baselines on pixel observations [95, 98] on DM Control, and our visual-
izations demonstrate the potential of MDP homomorphisms in learning structured representations
that can preserve values and represent the minimal MDP image. To the best of our knowledge,
this is the first homomorphic policy gradient derivation and the first work to define and scale up
MDP homomorphisms to continuous visual control problems. Our code is publicly available at
https://github.com/sahandrez/homomorphic_policy_gradient.

2 Background

2.1 Markov Decision Processes

We consider the standard MDP that is defined by a 5-tuple (S,A, τa,R, γ), with state space S , action
spaceA, transition dynamics τa ∶S×A→Dist(S), reward function R ∶S×A→R, and discount factor
γ ∈(0,1]. The goal is to find a policy π ∶ S → Dist(A) that maximizes the expected sum of discounted
rewards, the expected return, defined as Eπ[Rt]=Eπ[∑Tk=0γkrt+k+1]. Value function V π(s) denotes
the expected return from s under policy π, and action-value function Qπ(s, a) denotes the expected
return from s after taking action a under π. Value functions are fixed points of the Bellman equation
[9] and can be computed iteratively through a process referred to as policy evaluation [80]. Similarly,
optimal value functions V ∗(s) and Q∗(s, a) are fixed points of the Bellman optimality equation [9].

2.2 MDP Homomorphisms

MDP homomorphisms are formally defined for finite MDPs by Ravindran and Barto [69] as:

Definition 1 (MDP Homomorphism). An MDP homomorphism h=(f, gs) ∶M→M is a surjective
map from a finite MDPM=(S,A,R, τa, γ) onto an abstract finite MDPM=(S,A,R, τa, γ) where

2

https://github.com/sahandrez/homomorphic_policy_gradient

f ∶S→S and gs ∶A→A are surjective maps onto the abstract state and action spaces:

Invariance of reward: R(f(s), gs(a)) = R(s, a) ∀s ∈ S, a ∈ A (1)

Equivariance of transitions: τgs(a)(f(s′)∣f(s)) = ∑
s′′∈[s′]Bh ∣S

τa(s′′∣s) ∀s ∈ S, a ∈ A (2)

where Bh is the partition of S induced by the equivalence relation of homomorphism h, Bh∣S is
the projection of Bh onto S, and [s′]Bh∣S denotes the block of Bh∣S to which s′ belongs. Thus,
when applying action a in state s, the right-hand side is the probability that the resulting state is in
[s′]Bh∣S . The abstract MDPM is in fact the quotient MDPM/Bh based on the homomorphism
map h ∶M→M/Bh. As MDP homomorphisms are sensitive with respect to changes in rewards or
transitions, approximate MDP homomorphisms [71] allow equations (1-2) to hold approximately.
The significance of MDP homomorphisms is the optimal value equivalence betweenM andM [69]:

V ∗(s) = V ∗(f(s)) ∀s ∈ S, Q∗(s, a) = Q∗(f(s), gs(a)) ∀s ∈ S, a ∈ A (3)

which in turn allows for learning the optimal policy π∗ in the abstract MDP and consequently lifting
it to obtain the optimal policy in the actual MDP, using:

π↑(a∣s) = π(a∣f(s))
∣{a ∈ g−1s (a)}∣ , ∀s ∈ S, a ∈ g−1s (a)

where g−1s (a) denotes the set of actions that have the same image a under gs. Equivalently, the two
policies must satisfy ∑a∈g−1s (a) π

↑(a∣s) = π(a∣f(s)) for all s ∈ S and a ∈ A.

2.3 Bisimulation and Lax Bisimulation Metrics

Bisimulation for finite MDPs [22, 32] defines an equivalence relation on S where two states si
and sj are equivalent or bisimilar if R(si, a)=R(sj , a) and τa(C ∣si)= τa(C ∣sj) for all a ∈A and
every equivalence class C defined by the equivalence relation. The rigidity of bisimulation limits its
applications. Bisimulation metrics [28, 27, 29] measure the equivalence as an approximation:

dbisim(si, sj) = max
a∈A

cr ∣R(si, a) −R(sj , a)∣ + ctK(τa(⋅∣si), τa(⋅∣sj)), (4)

where the first term measures reward similarity and K is the Kantorovich (Wasserstein) metric
measuring the distance between the transition probabilities. However, bisimulation metrics can still
be brittle as they require the behaviour to match for all actions. This may be problematic particularly
in the case of continuous actions in which small changes to actions may not drastically change
the outcome. Additionally, bisimulation metrics are not able to represent environment symmetries.
Instead, lax bisimulation [83] waives the requirement on action matching in favor of extending the
state equivalence relation to state-action equivalence. Taylor et al. [83] show that lax bisimulation is
precisely the same relation as the MDP homomorphism and define the lax bisimulation metric as:

dlax((si, ai), (sj , aj)) = cr ∣R(si, ai) −R(sj , aj)∣ + ctK(τai(⋅∣si), τaj(⋅∣sj)). (5)

Furthermore, Taylor et al. [83] show that minimizing the lax bisimulation metric corresponds to
finding approximate MDP homomorphisms and bound the value error.

3 Value Equivalence Property

To motivate the use of MDP homomorphisms for policy evaluation and consequently policy optimiza-
tion, we first prove their value equivalence property in the finite case as the generalization of the prior
result of the optimal value equivalence [69], stated in Equation (3). The proof is in Appendix C.1.

Theorem 1 (Value Equivalence). LetM be the image of an MDP homomorphism h from a finiteM.
Then any two corresponding policies π↑ = lift(π) have equivalent values:

V π
↑
(s) = V π(f(s)) ∀s ∈ S, Qπ

↑
(s, a) = Qπ(f(s), gs(a)) ∀s ∈ S, a ∈ A

3

4 Continuous MDP Homomorphisms

To concretely lay out the foundations of using MDP homomorphisms for continuous control, we
extend their definition to continuous state and action spaces, and derive results analogous to the finite
case. First, we define continuous MDPs and state our underlying assumptions. Importantly, the
correct definitions of continuous MDPs and continuous MDP homomorphisms require care regarding
measurability and differentiability of spaces, and our formulation is chosen to fit the HPG derivation;
see Appendix A.2 for an overview of the tools we used from measure theory and differential geometry.
Definition 2 (Continuous MDP). A continuous Markov decision process (MDP) is a 6-tuple:

M = (S,Σ,A,∀a ∈ A τa ∶ S ×Σ→ [0,1],R ∶ S ×A→ R, γ)

where S, the state space is assumed to be a Polish space, Σ is a σ-algebra on S1, A, the space of
actions, is a locally compact metric space, usually taken to be a subset of Rn, τa is the transition
probability kernel for each possible action a, for each fixed s, τa(⋅∣s) is a probability distribution on
Σ while R is the reward function, and γ is the discount factor. Furthermore, for all s ∈ S and B ∈ Σ
the map a↦ τa(B∣s) is smooth. The last assumption is required for differentiability with respect to
actions a, which is needed in Section 5 for deriving the HPG theorem.
Given the continuous MDPs described above, we define continuous MDP homomorphisms. The
equivariance condition on the transition dynamics, Equation (2), can no longer be expressed in terms
of a discrete sum over partitions, and instead we use the σ-algebra structure on the different state
spaces.
Definition 3 (Continuous MDP Homomorphism). A continuous MDP homomorphism is a map
h = (f, gs) ∶M→M where f ∶ S → S and for every s in S, gs ∶ A→ A are measurable, surjective
maps such that the following hold:

Invariance of reward: R(f(s), gs(a)) = R(s, a) ∀s ∈ S, a ∈ A (6)

Equivariance of transitions: τgs(a)(B∣f(s)) = τa(f−1(B)∣s) ∀ s ∈ S, a ∈ A,B ∈ Σ (7)

Note that if gs is the identity map, the second condition reduces to τa(B∣f(s)) = τa(f−1(B)∣s)
which is simply the condition for preservation of transition probabilities as used in bisimulation [22].

4.1 Optimal Value Equivalence

Assuming the conditions given in Definition 3, we prove that optimal value functions are preserved
by the continuous MDP homomorphism as in the finite case.

Theorem 2 (Optimal Value Equivalence). LetM = (S,Σ,A, τa,R) be the image of a continuous
MDP homomorphism h = (f, gs) fromM = (S,Σ,A, τa,R). Then:

V ∗(s) = V ∗(f(s)) ∀s ∈ S, Q∗(s, a) = Q∗(f(s), gs(a)) ∀(s, a) ∈ S ×A (8)

The proof, given in Appendix C.2, uses the change of variable formula of the pushforward measure
of τa(⋅∣s) with respect to f to change the integration space from S to S.

4.2 Value Equivalence for Lifting Deterministic Policies

As in the finite case, we also require a lifting process to define π↑ = lift(π) given a policy π on the
abstract MDP. In general, the lifted policy needs to satisfy the relation π↑(g−1s (β)∣s) = π(β∣f(s))
for every Borel set β ⊆ A and s ∈ S. While our initial progress shows that lifted stochastic policies
exist based on the disintegration theorem, the full proof and design of a computationally tractable
algorithm for this process is left for future work. Therefore, here and in the subsequent sections we
assume the policy is deterministic in which case the lifted policy can be simply obtained by choosing
one representative for the preimage g−1s (π(f(s))). If we select gs to be a bijection, the lifted policy
can be uniquely defined as π↑(s)=g−1s (π(f(s))). The assumption on deterministic policies is not
limiting, as in general the optimal policy of a given MDP is deterministic [10]. With this lifting
definition, we state and prove the following value equivalence result:

1Usually the Borel algebra.

4

Theorem 3 (Value Equivalence for Deterministic Policies). LetM be the image of a continuous
MDP homomorphism h = (f, gs) from M, then any two deterministic policies π↑ ∶ S → A and
π ∶ S → A where π↑ = lift(π) have equivalent value functions on their domain:

V π
↑
(s) = V π(f(s)) ∀s ∈ S, Qπ

↑
(s, a) = Qπ(f(s), gs(a)) ∀(s, a) ∈ S ×A

The proof, given in Appendix C.3, uses the change of variable formula of the pushforward measure of
τa(⋅∣s) with respect to f to change the integration space from S to S and assumes gs to be bijective.

5 Homomorphic Policy Gradient

The next goal of this work is to derive a policy gradient estimator using samples obtained from
the abstract MDP. Intuitively, this allows for direct incorporation of state-action abstraction as an
inductive bias for policy optimization, thereby reducing the variance of actor updates and improving
sample efficiency. Equipped with continuous MDP homomorphisms from Definition 3 and their
value equivalence property, we now derive the homomorphic policy gradient (HPG) theorem.

In this section, we assume having access to an MDP homomorphism map h=(f, gs), parameterized
by differentiable functions. The problem of learning such mapping from samples is addressed in
Section 6. Additionally, we assume the MDP and the homomorphism map adhere to the conditions
of Definition 2 and Appendix B. Similarly to prior works on policy gradients [81, 74], we define
the performance measure as J(θ) = Eπ[V π(s)] where the expectation is over the uncertainty in
transitions, rewards, and initial states. Finally, as detailed in Section 4.2, our results are derived for
deterministic policies and a bijective gs. Notably, this choice allows us to parameterize one of the
policies and to uniquely derive the other policy. In practice, we parameterize the actual policy as π↑θ
and obtain the abstract policy as πθ = gs(π↑θ(s)). First, we show the equivalence of policy gradients:

Theorem 4 (Equivalence of Deterministic Policy Gradients). LetM be the image of a continuous
MDP homomorphism h fromM, and let π↑θ ∶ S → A be the lifted deterministic policy corresponding
to the abstract deterministic policy πθ ∶ S → A. Then for any (s, a) ∈ S ×A we have:

∇aQπ
↑
θ(s, a)∣

a=π↑
θ
(s)
∇θπ↑θ(s) = ∇aQ

πθ(s, a)∣
a=πθ(s)

∇θπθ(s).

The proof is given in Appendix C.4 and uses the chain rule and the inverse function theorem on
manifolds, which in turn raises the need for gs to be a bijection and local diffeomorphism. Theorem
4 highlights that the gradient of the abstract MDP is equivalent to that of the original, despite the
underlying spaces being abstracted. This implies that performing HPG on the abstract MDP is
equivalent to performing DPG on the actual MDP, allowing us to use them synergistically to update
the same parameters θ, as shown in Figure 1.

While one can naively use Theorem 4 to substitute gradients of the standard DPG, theoretically this
does not produce any useful result as the expectation remains estimated with respect to the stationary
state distribution of the actual MDPM under π↑θ(s). However, using properties of continuous MDP
homomorphisms, we can change the integration space from S to S, and consequently estimate the
policy gradient with respect to the stationary distribution of the abstract MDPM under πθ(s):

Theorem 5 (Homomorphic Policy Gradient Theorem). LetM be the image of a continuous MDP
homomorphism h fromM, and let πθ ∶ S → A be a deterministic abstract policy defined onM.
Then the gradient of the performance measure J(θ), defined on the actual MDPM, w.r.t. θ is:

∇θJ(θ) = ∫
s∈S

ρπθ(s)∇aQπθ(s, a)∣
a=πθ(s)

∇θπθ(s)ds.

where ρπθ(s) is the discounted state distribution ofM following the deterministic policy πθ(s).

The proof is given in Appendix C.5 and applies the result of Theorem 4 and the change of variables
formula of the pushforward measure on the state space. The significance of Theorem 5, which forms
the basis of our proposed homomorphic actor-critic algorithm, is twofold. First, we can get another
estimate for the policy gradient based on the approximate MDP homomorphic image in addition to
DPG. Although the two policy gradient estimates are not statistically independent from one another

5

as they are tied through the homomorphism map, HPG will potentially have less variance at the
expense of some bias due to the approximation of the MDP homomorphism.

Second, since the minimal image of an MDP is the MDP homomorphic image [69], the abstract critic
Qπθ is trained on a simplified problem. In other words, each abstract state-action pair (s, a) used
to train Qπθ represents all (s, a) pairs that are equivalent under the MDP homomorphism relation,
thus improving sample efficiency. However, the amount of complexity reduction is dependent on the
approximate symmetries of the environment, as also supported by our empirical results.

6 Homomorphic Actor-Critic Algorithms

We propose a deep actor-critic algorithm based on HPG by adapting DDPG [54]. We refer to our
method as Deep Homomorphic Policy Gradient (DHPG). Although HPG is applicable to any other
deterministic actor-critic, we chose DDPG as its simplicity compared to modern choices [8, 45]
allows for a better study on the impact of MDP homomorphisms. Notably, a strong advantage of
DHPG is that it is readily applicable to pixel observations without the need for extra mechanisms such
as image reconstruction [31, 36, 97, 38], as the notion of MDP homomorphism provides a natural
inductive bias for learning representations that preserve values and optimal values.

Since DHPG is learning the MDP homomorphism map h online and concurrently with the policy,
using the actual MDP for training the critic, specifically at the early stages of training, is helpful.
Therefore, we utilize a separate critic for each MDPM andM. Ultimately, critics are used to update
a single set of parameters, as shown in Figure 1; see Appendix D.5 for the ablation study on this.

Thus, the components of DHPG are: actual criticQψ(s, a), abstract criticQψ(s, a), deterministic actor
a=πθ(s), homomorphism map hφ,η= (fφ(s), gη(s, a)), reward predictor Rρ(s), and probabilistic
transition model τν(s′∣s, a) which outputs a Gaussian distribution. We use target networks and a
vanilla replay buffer [60, 54]. As discussed in Section 5, an abstract actor is obtained as a=gs(πθ(s)).
In case of pixel observations, a single image encoder Eµ is shared among all components.

Training the Policy and Critic. Actual and abstract critics are trained using n-step TD error for a
faster reward propagation [8]. The loss function for each critic is therefore defined as the expectation
of the n-step Bellman error estimated over transitions samples from the replay buffer B:

Lactual critic(ψ) = E(s,a,s′,r)∼B[(R(n)
t + γnQψ′(st+n, at+n) −Qψ(st, at))

2] (9)

Labstract critic(ψ,φ, η) = E(s,a,s′,r)∼B[(R(n)
t + γnQ

ψ
′(st+n, at+n) −Qψ(st, at))

2], (10)

where st=fφ(st) and at=gη(st, at) are computed using the learned MDP homomorphism, ψ′ and
ψ
′

denote parameters of target networks, and R(n)
t =∑n−1i=0 γ

irt+i is the n-step return. Consequently,
we train the policy using DPG [74] and HPG from Theorem 5 by backpropagating the following loss:

Lactor(θ) ≈ −Es∼B[Qψ(s, πθ(s)) +Qψ(fφ(s), gη(s, πθ(s)))]. (11)

Here, the two gradients are added together and a single policy update is conducted; see Appendix
D.5 for the ablation study on other combinations of HPG and DPG. Finally, we utilize target policy
smoothing and delayed actor updates [30]. The pseudo-code of DHPG is presented in Appendix E.1.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

DHPG
Our DDPG
TD3
SAC

(a) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> Our DDPG
SAC
TD3
DHPG

(b) Performance profiles.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG Our DDPG TD3 SAC

(c) Learning curves.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

A
ve

ra
ge

 R
et

ur
n

Finger Turn Hard

DHPG Our DDPG TD3 SAC

(d) Learning curves.

Figure 2: Results of DM Control tasks with state observations obtained on 10 seeds. RLiable
metrics are aggregated over 17 tasks. (a) RLiable IQM scores as a function of number of steps for
comparing sample efficiency, (b) RLiable performance profiles at 500k steps, (c)-(d) examples of
learning curves. Full results are in Appendix D.1. Shaded regions represent 95% confidence intervals.

6

Learning Continuous MDP Homomorphisms. We now address the problem of learning con-
tinuous MDP homomorphisms. While few methods have been proposed for learning finite MDP
homomorphisms [87, 89], these are not readily extendable to continuous actions. In this work, we use
the lax bisimulation metric [83], Equation (5), to propose a loss function that encodes lax bisimilar
states closer together in the abstract space. The lax bisimulation metric is applicable to continuous
actions and as a (pseudo-)metric, it can naturally represent approximate MDP homomorphisms.

Following the same intuition as prior works on bisimulations [98], we define our proposed lax
bisimulation loss over pairs of transition tuples sampled from the replay buffer. We permute samples
to compute their pairwise distance in the abstract space and their pairwise lax bisimilarity distance.
Consequently, we minimize the distance between these two terms:
Llax(φ, η) = EB[∥fφ(si)−fφ(sj)∥1 −∥ri −rj∥1 −αW2(τν(⋅∣fφ(si), gη(si, ai)), τν(⋅∣fφ(sj), gη(sj , aj)))]

(12)
Similarly to Zhang et al. [98], we replaced the Kantorovich (W1) metric in Equation (5) with the W2

metric as there is an explicit formula for it for Gaussian distributions. Finally, we apply the conditions
of a continuous MDP homomorphism map from Definition 3 via the loss function of:

Lh(φ, η, ν, ρ) = E(si,ai,s′i,ri)∼B[(fφ(s
′
i) − s′i)

2 + (ri−Rρ(fφ(si)))
2], (13)

where s′i∼τν(⋅∣fφ(si), gη(si, ai)). The final loss function is obtained as Llax(φ, η)+Lh(φ, η, ρ, ν).

7 Experiments

In our experiments, we aim to answer the following key questions:

1. Does the homomorphic policy gradient improve policy optimization?
2. What are the qualitative properties of the learned representations and the abstract MDP?
3. Can DHPG learn and recover the minimal MDP image from raw pixel observations?

We evaluate DHPG on continuous control tasks from DM Control on state and pixel observations.
Importantly, to reliably evaluate our algorithm against the baselines and to correctly capture the
distribution of results, we follow the best practices proposed by Agarwal et al. [5] and report the
interquartile mean (IQM) and performance profiles aggregated on all tasks over 10 random seeds.
While our baseline results are obtained using the official code, when possible 2, some of the results
may differ from the originally reported ones due to the difference in the seed numbers and our goal to
present a faithful representation of the true performance distribution [5].

7.1 State Observations

(a) Actual optimal policy. (b) Abstract optimal policy.

Figure 3: Contours of actual and abstract opti-
mal actions over the state space of the pendulum-
swingup task. Colors represent action values, and
states are s = (θ, θ̇). (a) Actual optimal policy;
contours of optimal actions a∗ = π↑∗(s). (b) Ab-
stract optimal policy; contours of abstract opti-
mal actions a∗ = gs(a∗) = π∗(s). The relation
gs1(a1)=gs2(a2) holds for equivalent state-action
pairs, and the abstract optimal policy is symmetric.

We compare DHPG on state observations
against three commonly-used off-policy model-
free algorithms: DDPG [54], TD3 [30], and
SAC [37]. All methods use n-step returns, and
share the same hyperparameters presented in Ap-
pendix E.2. For a fair comparison with DDPG
and a better study of the impact of HPG, we
have improved our DDPG by adding delayed
policy updates and target policy [30]. Thus, the
only difference between our DDPG and TD3 is
the clipped double Q-learning present in TD3,
which appears to be hurting the performance in
some tasks of DMC as also observed in [63, 53].

DHPG outperforms or matches other algo-
rithms on state observations and has a better
sample efficiency. Results are presented in Fig-
ure 2, and full results are in Appendix D.1. Ex-
pectedly, performance gains are larger on tasks
with symmetries, as DHPG is able to learn a compressed abstract MDP.

2We use the official implementations of DrQv2, DBC, and SAC-AE, while we re-implement DeepMDP due
to the unavailability of the official code. See Appendix E.3 for full details.

7

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e DHPG
DrQ-v2
DBC
DeepMDP
SAC-AE
w/o Aug.
w/ Aug.

(a) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE
w/o Aug.
w/ Aug.

(b) Performance profiles.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

(c) Learning curves.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

(d) Learning curves.

Figure 4: Results of DM Control tasks with pixel observations obtained on 10 seeds. RLiable
metrics are aggregated over 14 tasks. (a) RLiable IQM scores as a function of number of steps for
comparing sample efficiency, (b) RLiable performance profiles at 500k steps, (c)-(d) examples of
learning curves. Full results are in Appendix D.2. Shaded regions represent 95% confidence intervals.

The learned mapping h=(f, gs) demonstrates properties of an MDP homomorphism. We use
the pendulum swingup task to visualize its learned MDP homomorphism, as its symmetries are
perfectly intelligible. Two state-action pairs (s1=(θ1, θ̇1), a1) and (s2=(θ2, θ̇2), a2) are equivalent
if a1 = −a2, θ1 = −θ2, and θ̇1 = −θ̇2. Therefore, the learned action representations are expected to
reflect this by setting gs1(a1)=gs2(a2). Figure 3a shows contours of optimal actions over S, while
Figure 3b shows action representations a=gs(a) of optimal actions over S . Clearly, abstract actions
adhere to the aforementioned relation for equivalent state-action pairs, indicating gs(a) is in fact
representing the action encoder of an MDP homomorphism mapping.

7.2 Pixel Observations

We compare the effectiveness of DHPG on pixel observations against DBC [98], DeepMDP [31],
SAC-AE [97], and state-of-the-art performing DrQ-v2 [95]. All methods use n-step returns, share the
same hyperparameters in Appendix E.2 and all hyperparameters are adapted from DrQ-v2 without
any further tuning. Importantly, for a fair comparison with DrQ-v2 which uses image augmentation,
we present two variations of DHPG and other baselines, with and without image augmentation.

5

0

5

Trajectory of Real States

Position x Angle Velocity x Angular velocity

0 25 50 75 100 125 150 175 200
Time Step

1.0

0.5

0.0

0.5
Trajectory of Latent States of DHPG

Latent state 1 Latent state 2 Latent state 3 Latent state 4

(a) Trajectories.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG (Latent dim: 4)
DBC (Latent dim: 4)

DeepMDP (Latent dim: 4)
SAC-AE (Latent dim: 4)

(b) Curves.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG (Latent dim: 4)
DBC (Latent dim: 4)

DeepMDP (Latent dim: 4)
SAC-AE (Latent dim: 4)

(c) Curves.

Figure 5: Effectiveness of DHPG in recovering the
minimal MDP from pixels. All methods are lim-
ited to a 4-dimensional latent space which is equal
to the dimensions of the real state space of cart-
pole. (a) Trajectories of real states obtained from
Mujoco and trajectories of latent states of DHPG.
(b, c) Learning curves averaged on 10 seeds.

DHPG outperforms or matches other algo-
rithms on pixel observations, demonstrating
its effectiveness in representation learning.
Results are presented in Figure 4 and full results
are in Appendix D.2. Interestingly, DHPG with-
out image augmentation outperforms DrQ-v2
on domains with easily learnable MDP homo-
morphism maps, such as cartpole and pendulum,
showing its power of representation learning.

DHPG can learn and recover a low-
dimensional MDP image. A key strength of
MDP homomorphisms is their ability to repre-
sent the minimal MDP image [69], which is
particularly important when learning from pixel
observations. To demonstrate this ability, we
have limited the latent space dimensions to the dimension of the real system and compared DHPG
(without image augmentation) with baselines in Figure 5. While other methods are not able to learn
the tasks, DHPG can successfully learn the policy and the minimal low-dimensional latent space.
Surprisingly, trajectories of the latent states resemble that of the real states as shown in Figure 5a.

The abstract MDP demonstrates properties of an MDP homomorphic image. To qualitatively
demonstrate the significance of learning joint state-action representations, Figure 6 shows visualiza-
tions of latent states for quadruped-walk, a task with symmetries around movements of its four legs.
Interestingly, while the latent space of DHPG (Figure 6a) shows distinct states for each leg, abstract
state encoder fφ has mapped corresponding legs (e.g., left forward leg and right backward leg) to the
same abstract latent state (Figure 6b) as they are some homomorphic image of one another. Clearly,
DBC and DrQ-v2 are not able to achieve this.

8

The learned representations and the MDP homomorphism map transfer to new tasks within
the same domain. Importantly, one consideration with representation learning methods relying on
rewards is the transferability of the learned representations to a new reward setting within the same
domain. To ensure that our method does not hinder such transfer, we have carried out experiments in
which the actor, critics, and the learned MDP homomorphism map are transferred to another task
from the same domain. Results, given in Appendix D.3 show that our method has not compromised
transfer abilities.

Accounting for the larger network capacity of DHPG compared to the baselines. Since our
DHPG algorithm contains additional networks, such as the parameterized MDP homomorphism
map and the abstract critic, it may have a higher network capacity compared to the baselines. To
control for the effect of the network capacity and for a fair evaluation, we compare DHPG with
higher-capacity variants of DBC and DrQ-v2 that have a larger critic networks, selected such that the
total number of parameters are considerably more than that of DHPG. Results are presented in Figure
7, while full results and a detailed description of the total number of parameters are in Appendix D.7.
As suggested by the results, DHPG outperforms or matches the performance of the higher-capacity
baselines, demonstrating the improved performance is rather due to the use of the abstract MDP
homomorphic image for representation learning and performing HPG updates.

Additional Experiments. We study the value equivalence property as a measure for the quality
of the learned MDP homomorphisms in Appendix D.4, and we present ablation studies on DHPG
variants, and the impact of n-step return on our method in Appendices D.5 and D.6, respectively.

8 Related Work

State Abstraction. Bisimulation [59, 50] is a notion of behavioral equivalence between systems. It
was extended to continuous state spaces by Blute et al. [13, 22] and extended to MDPs by Givan
et al. [32]. Bisimulation metrics [23, 28, 27, 29] define a pseudometric to quantify the degree of
behavioural similarity. Recently, Zhang et al. [98] defined a loss function for learning representations
via bisimilarity of latent states, and Kemertas et al. [48] have further improved its robustness. Castro
[16] has proposed a method to approximate the bisimulation metric for deterministic MDPs with
continuous states but discrete actions. van der Pol et al. [87] have defined a contrastive loss based
on MDP homomorphisms for learning an abstract MDP for planning, however, their method is only
applicable to finite MDPs. Another approach is to directly embed the MDP homomorphic relation
in the network architecture [89, 88]. Other recently proposed methods seek to learn representations
that preserve values [35, 34] or policies [4], or via a sampling-based similarity metric [17]. Finally,
state abstractions can in principle help improve transferring of policies [1, 18, 76, 77, 67], or learning
temporally extended actions [19, 94, 93, 82].

Action Abstraction. Action representations are often studied in the context of large discrete action
spaces [72] as a form of a look-up embedding that is known a-priori [24], factored representations [73],
or policy decomposition [20]. Action representations can also be learned from expert demonstrations
[84]. More related to our work is dynamics-aware embeddings [91] where a combined state-action

(a) Latent states, DHPG. (b) Abstract states, DHPG. (c) Latent states, DBC. (d) Latent States, DrQ-v2.

Figure 6: PCA projection of learned representations for quadruped-walk with pixel observations. (a)
Latent states s=Eµ(o), (b) abstract latent states s=fφ(Eµ(o)) for DHPG, (c) latent states s=Eµ(o)
for DBC, and (d) DrQ-v2. Color of each point denotes its value learned byQ(s, a) orQ(s, a). Points
are also projected onto each main plane. The homomorphism map of DHPG has mapped the latent
states of corresponding legs (e.g., left forward leg and right backward leg) (a) on to the same abstract
latent states (b), indicating a clear structure in S .

9

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e DHPG
DrQ-v2
DrQ-v2 (High Cap.)
DBC
DBC (High Cap.)
w/o Aug.
w/ Aug.

(a) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DBC (High Cap.)
DrQ-v2 (High Cap.)
DHPG
DBC
DrQ-v2
w/o Aug.
w/ Aug.

(b) Performance profiles.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

(c) Learning curves.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

(d) Learning curves.

Figure 7: Results of DM Control tasks with pixel observations for higher-capacity variants of DBC
and DrQ-v2 obtained on 10 seeds. RLiable metrics are aggregated over 14 tasks. (a) RLiable IQM
scores as a function of number of steps for comparing sample efficiency, (b) RLiable performance
profiles at 500k steps, (c)-(d) examples of learning curves. Full results are in Appendix D.7. Shaded
regions represent 95% confidence intervals.

embedding for continuous control is learned. In contrast, we use the notion of homomorphisms to
learn the state-dependent action representations, while preserving values. Action representations can
be combined with temporal abstraction [82] for discovering extended actions [70, 3, 18, 19].

State Representation Learning. Extant methods for learning the underlying state space from raw
observations often use latent models [31, 38, 39, 36, 11], auxiliary prediction tasks [46, 56, 57],
physics-inspired inductive biases [47, 21, 33], unsupervised learning [44, 55], or self-supervised
learning [6, 75, 40, 41, 26]. From another point of view, representation learning can be effectively
decoupled from the RL problem [25, 79]. Symmetries of the environment can also be used for
representation learning [61, 58, 64, 90, 42, 43, 66, 15]. In fact, MDP homomorphisms are special-
izations of such approaches for RL. A key distinguishing factor of MDP homomorphisms is their
ability to take actions into account for representation learning in the same premises as Thomas et al.
[85]. Recently, simple image augmentation methods have shown significant improvements in RL
performance [96, 51]. Since these approaches are in general orthogonal to state abstractions, they can
be combined together.

9 Conclusion

In this paper, we developed the novel theory of continuous MDP homomorphisms using measure
theory, and we rigorously proved their value and optimal value equivalence properties. We derived
the homomorphic PG in order to directly use a joint state-action abstraction for policy optimization.
Importantly, we rigorously proved that applying our homomorphic PG on the abstract MDP is
equivalent to applying the standard DPG on the actual MDP. Based on our novel theoretical results,
we developed a deep actor-critic algorithm that can simultaneously learn the policy and the MDP
homomorphism map using the lax bisimulation metric. Our algorithm improves upon strong baselines
in both learning from state and pixel observations. The visualization of the latent space demonstrates
the strong potential of MDP homomorphisms in learning structured representations that can preserve
value functions. We believe that our work will open-up future possibilities for the application of MDP
homomorphisms in challenging continuous control problems.

Acknowledgements

SRS is supported by an NSERC CGS-D scholarship. RZ was supported by an NSERC CGS-M
scholarship at the time this work was completed. We would like to thank Juan Camilo Gamboa
Higuera, Harley Wiltzer, and Scott Fujimoto for insightful discussions.

References

[1] David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L Littman, and Lawson LS
Wong. State abstraction as compression in apprenticeship learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 3134–3142, 2019.

10

[2] David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate
state abstraction. In International Conference on Machine Learning, pages 2915–2923. PMLR,
2016.

[3] David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and
Michael Littman. Value preserving state-action abstractions. In International Conference on
Artificial Intelligence and Statistics, pages 1639–1650. PMLR, 2020.

[4] Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive
behavioral similarity embeddings for generalization in reinforcement learning. In International
Conference on Learning Representations, 2020.

[5] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

[6] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon
Hjelm. Unsupervised state representation learning in Atari. Advances in Neural Information
Processing Systems, 32:8769–8782, 2019.

[7] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[8] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva
Tb, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional determin-
istic policy gradients. arXiv preprint arXiv:1804.08617, 2018.

[9] Richard Bellman. Dynamic Programming. Princeton University Press, 1957.

[10] Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena
scientific, 2012.

[11] O Biza, R Platt, JW van de Meent, and L Wong. Learning discrete state abstractions with deep
variational inference. Advances in Approximate Bayesian Inference, 2021.

[12] Ondrej Biza and Robert Platt. Online abstraction with mdp homomorphisms for deep learning.
In Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent
Systems, 2019.

[13] Richard Blute, Josée Desharnais, Abbas Edalat, and Prakash Panangaden. Bisimulation for
labelled markov processes. In Proceedings of Twelfth Annual IEEE Symposium on Logic in
Computer Science, pages 149–158. IEEE, 1997.

[14] Vladimir Igorevich Bogachev and Maria Aparecida Soares Ruas. Measure theory, volume 1.
Springer, 2007.

[15] Hugo Caselles-Dupré, Michael Garcia Ortiz, and David Filliat. Symmetry-based disentangled
representation learning requires interaction with environments. Advances in Neural Information
Processing Systems, 32:4606–4615, 2019.

[16] Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov
decision processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 10069–10076, 2020.

[17] Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland. Mico: Improved
representations via sampling-based state similarity for Markov decision processes. Advances in
Neural Information Processing Systems, 34, 2021.

[18] Pablo Samuel Castro and Doina Precup. Using bisimulation for policy transfer in MDPs. In
Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010.

[19] Pablo Samuel Castro and Doina Precup. Automatic construction of temporally extended actions
for MDPs using bisimulation metrics. In European Workshop on Reinforcement Learning, pages
140–152. Springer, 2011.

[20] Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International Conference on Machine
Learning, pages 941–950. PMLR, 2019.

[21] Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia, David Spergel, and Shirley
Ho. Lagrangian neural networks. arXiv preprint arXiv:2003.04630, 2020.

11

[22] J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled Markov processes.
Information and Computation, 179(2):163–193, Dec 2002.

[23] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labeled Markov
systems. In Proceedings of CONCUR99, number 1664 in Lecture Notes in Computer Science.
Springer-Verlag, 1999.

[24] Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap,
Jonathan Hunt, Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep
reinforcement learning in large discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

[25] SM Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S Morcos, Marta
Garnelo, Avraham Ruderman, Andrei A Rusu, Ivo Danihelka, Karol Gregor, et al. Neural scene
representation and rendering. Science, 360(6394):1204–1210, 2018.

[26] Linxi Fan, Guanzhi Wang, De-An Huang, Zhiding Yu, Li Fei-Fei, Yuke Zhu, and Animashree
Anandkumar. Secant: Self-expert cloning for zero-shot generalization of visual policies. In
International Conference on Machine Learning, pages 3088–3099. PMLR, 2021.

[27] Norm Ferns, Pablo Samuel Castro, Doina Precup, and Prakash Panangaden. Methods for
computing state similarity in Markov decision processes. In Proceedings of the Twenty-Second
Conference on Uncertainty in Artificial Intelligence, pages 174–181, 2006.

[28] Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for Markov decision processes
with infinite state spaces. In Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, pages 201–208, 2005.

[29] Norm Ferns, Prakash Panangaden, and Doina Precup. Bisimulation metrics for continuous
Markov decision processes. SIAM Journal on Computing, 40(6):1662–1714, 2011.

[30] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, pages 1587–1596.
PMLR, 2018.

[31] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G Bellemare. Deep-
mdp: Learning continuous latent space models for representation learning. In International
Conference on Machine Learning, pages 2170–2179. PMLR, 2019.

[32] Robert Givan, Thomas Dean, and Matthew Greig. Equivalence notions and model minimization
in Markov decision processes. Artificial Intelligence, 147(1-2):163–223, 2003.

[33] Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

[34] Christopher Grimm, André Barreto, Gregory Farquhar, David Silver, and Satinder Singh. Proper
value equivalence. arXiv preprint arXiv:2106.10316, 2021.

[35] Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence
principle for model-based reinforcement learning. arXiv preprint arXiv:2011.03506, 2020.

[36] David Ha and Jürgen Schmidhuber. World models. arXiv e-prints, pages arXiv–1803, 2018.

[37] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[38] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International Conference on Learning Representa-
tions, 2019.

[39] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee,
and James Davidson. Learning latent dynamics for planning from pixels. In International
Conference on Machine Learning, pages 2555–2565. PMLR, 2019.

[40] Nicklas Hansen, Rishabh Jangir, Yu Sun, Guillem Alenyà, Pieter Abbeel, Alexei A Efros,
Lerrel Pinto, and Xiaolong Wang. Self-supervised policy adaptation during deployment. In
International Conference on Learning Representations, 2020.

[41] Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data
augmentation. In 2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 13611–13617. IEEE, 2021.

12

[42] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende,
and Alexander Lerchner. Towards a definition of disentangled representations. arXiv preprint
arXiv:1812.02230, 2018.

[43] Irina Higgins, Peter Wirnsberger, Andrew Jaegle, and Aleksandar Botev. Symetric: Measuring
the quality of learnt hamiltonian dynamics inferred from vision. Advances in Neural Information
Processing Systems, 34, 2021.

[44] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil Bachman,
Adam Trischler, and Yoshua Bengio. Learning deep representations by mutual information
estimation and maximization. In International Conference on Learning Representations, 2018.

[45] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. In International Conference on
Learning Representations, 2018.

[46] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

[47] Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors.
Autonomous Robots, 39(3):407–428, 2015.

[48] Mete Kemertas and Tristan Aumentado-Armstrong. Towards robust bisimulation metric learning.
Advances in Neural Information Processing Systems, 34, 2021.

[49] Serge Lang. Differential and Riemannian manifolds, volume 160. Springer Science & Business
Media, 2012.

[50] Kim G Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
computation, 94(1):1–28, 1991.

[51] Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple
technique for generalization in deep reinforcement learning. arXiv preprint arXiv:1910.05396,
2019.

[52] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for MDPs. ISAIM, 4:5, 2006.

[53] Qing Li. Continuous control benchmark of DeepMind control suite and MuJoCo. https:
//github.com/LQNew/Continuous_Control_Benchmark, 2021.

[54] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[55] Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pages 6736–6747. PMLR, 2021.

[56] Shikun Liu, Andrew Davison, and Edward Johns. Self-supervised generalisation with meta
auxiliary learning. Advances in Neural Information Processing Systems, 32, 2019.

[57] Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks
on representation dynamics. In International Conference on Artificial Intelligence and Statistics,
pages 1–9. PMLR, 2021.

[58] Anuj Mahajan and Theja Tulabandhula. Symmetry learning for function approximation in
reinforcement learning. arXiv preprint arXiv:1706.02999, 2017.

[59] Robin Milner. Communication and concurrency, volume 84. Prentice hall Englewood Cliffs,
1989.

[60] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[61] Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. Eqr: Equivariant
representations for data-efficient reinforcement learning. In International Conference on
Machine Learning, pages 15908–15926. PMLR, 2022.

[62] Shravan Matthur Narayanamurthy and Balaraman Ravindran. On the hardness of finding
symmetries in markov decision processes. In Proceedings of the 25th international conference
on Machine learning, pages 688–695, 2008.

13

https://github.com/LQNew/Continuous_Control_Benchmark
https://github.com/LQNew/Continuous_Control_Benchmark

[63] Fabio Pardo. Tonic: A deep reinforcement learning library for fast prototyping and benchmark-
ing. arXiv preprint arXiv:2011.07537, 2020.

[64] Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan Willem van de Meent, and Robin Wal-
ters. Learning symmetric embeddings for equivariant world models. arXiv preprint
arXiv:2204.11371, 2022.

[65] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32:8026–8037, 2019.

[66] Robin Quessard, Thomas D Barrett, and William R Clements. Learning group structure and
disentangled representations of dynamical environments. arXiv preprint arXiv:2002.06991,
2020.

[67] Srividhya Rajendran and Manfred Huber. Learning to generalize and reuse skills using approxi-
mate partial policy homomorphisms. In 2009 IEEE International Conference on Systems, Man
and Cybernetics, pages 2239–2244. IEEE, 2009.

[68] Balaraman Ravindran. An algebraic approach to abstraction in reinforcement learning. Univer-
sity of Massachusetts Amherst, 2004.

[69] Balaraman Ravindran and Andrew G Barto. Symmetries and model minimization in markov
decision processes, 2001.

[70] Balaraman Ravindran and Andrew G Barto. Relativized options: Choosing the right transfor-
mation. In Proceedings of the 20th International Conference on Machine Learning (ICML-03),
pages 608–615, 2003.

[71] Balaraman Ravindran and Andrew G Barto. Approximate homomorphisms: A framework for
non-exact minimization in Markov Decision Processes, 2004.

[72] Brian Sallans and Geoffrey E Hinton. Reinforcement learning with factored states and actions.
The Journal of Machine Learning Research, 5:1063–1088, 2004.

[73] Sahil Sharma, Aravind Suresh, Rahul Ramesh, and Balaraman Ravindran. Learning to factor
policies and action-value functions: Factored action space representations for deep reinforce-
ment learning. arXiv preprint arXiv:1705.07269, 2017.

[74] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. PMLR, 2014.

[75] Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision
for offline reinforcement learning in robotics. In 5th Annual Conference on Robot Learning,
2021.

[76] Vishal Soni and Satinder Singh. Using homomorphisms to transfer options across continuous
reinforcement learning domains. In AAAI, volume 6, pages 494–499, 2006.

[77] Jonathan Sorg and Satinder Singh. Transfer via soft homomorphisms. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems-Volume 2, pages
741–748, 2009.

[78] Michael Spivak. Calculus on manifolds: a modern approach to classical theorems of advanced
calculus. CRC press, 2018.

[79] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation
learning from reinforcement learning. In International Conference on Machine Learning, pages
9870–9879. PMLR, 2021.

[80] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

[81] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[82] Richard S Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-
2):181–211, 1999.

14

[83] Jonathan Taylor, Doina Precup, and Prakash Panagaden. Bounding performance loss in approx-
imate mdp homomorphisms. Advances in Neural Information Processing Systems, 21:1649–
1656, 2008.

[84] Guy Tennenholtz and Shie Mannor. The natural language of actions. In International Conference
on Machine Learning, pages 6196–6205. PMLR, 2019.

[85] Valentin Thomas, Jules Pondard, Emmanuel Bengio, Marc Sarfati, Philippe Beaudoin, Marie-
Jean Meurs, Joelle Pineau, Doina Precup, and Yoshua Bengio. Independently controllable
factors. arXiv preprint arXiv:1708.01289, 2017.

[86] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033. IEEE, 2012.

[87] Elise van der Pol, Thomas Kipf, Frans A Oliehoek, and Max Welling. Plannable approximations
to mdp homomorphisms: Equivariance under actions. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems, pages 1431–1439, 2020.

[88] Elise van der Pol, Herke van Hoof, Frans A Oliehoek, and Max Welling. Multi-agent MDP
homomorphic networks. arXiv preprint arXiv:2110.04495, 2021.

[89] Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp
homomorphic networks: Group symmetries in reinforcement learning. Advances in Neural
Information Processing Systems, 33, 2020.

[90] Dian Wang, Robin Walters, and Robert Platt. So(2)-equivariant reinforcement learning. In
International Conference on Learning Representations, 2021.

[91] William Whitney, Rajat Agarwal, Kyunghyun Cho, and Abhinav Gupta. Dynamics-aware
embeddings. In International Conference on Learning Representations, 2019.

[92] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256, 1992.

[93] Alicia P Wolfe and Andrew G Barto. Decision tree methods for finding reusable mdp ho-
momorphisms. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE, volume 21, page 530. Menlo Park, CA; Cambridge, MA; London; AAAI
Press; MIT Press; 1999, 2006.

[94] Alicia Peregrin Wolfe and Andrew G Barto. Defining object types and options using mdp
homomorphisms. In Proceedings of the ICML-06 Workshop on Structural Knowledge Transfer
for Machine Learning. Citeseer, 2006.

[95] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous
control: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645,
2021.

[96] Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In International Conference on Learning
Representations, 2020.

[97] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus.
Improving sample efficiency in model-free reinforcement learning from images. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pages 10674–10681, 2021.

[98] Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.
Learning invariant representations for reinforcement learning without reconstruction. In Inter-
national Conference on Learning Representations, 2020.

15

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] All the theoretical claims are substantiated in Sections
3, 4, and 5. All the empirical claims are substantiated in Section 7 and Appendix D.

(b) Did you describe the limitations of your work? [Yes] Theoretical limitations and
assumptions are discussed in Section 4, and empirical limitations are discussed in
Section 7.

(c) Did you discuss any potential negative societal impacts of your work? [No] Our work
is foundational research on reinforcement learning and state abstraction, hence we do
not foresee any substantive societal and ethical implications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] The full set of

assumptions are detailed in Section 4 and Appendix B.
(b) Did you include complete proofs of all theoretical results? [Yes] The proofs of all

theoretical results are given in Appendix C.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] Our code,
including the instructions, are submitted in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Hyperparameters, implementation, and training details are given
in Appendix E

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All experiments are obtained on 10 seeds, and we report
confidence intervals, interquartile mean, median, mean, and performance profiles as
suggested by Agarwal et al. [5].

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We describe our hardware setup in
Appendix E, but we do not include the amount of compute used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The creators are cited

appropriately and information of each asset is included in Appendix E.3.
(b) Did you mention the license of the assets? [N/A] All assets are open-source and under

permissive open-source licenses.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include the code of our algorithm in the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] We are using open-source simulators and reinforcement learning
environments.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] We are using open-source simulators and
reinforcement learning environments.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

16

A Additional Background

A.1 Background on the Policy Gradient Theorem

RL algorithms can be broadly divided into value-based and policy gradient (PG) methods. While
value-based methods select actions via a greedy maximization step based on the learned action-values,
PG methods directly optimize a parameterized policy πθ based on the performance gradient ∇θJ(θ).
Thus, unlike value-based methods, PG algorithms inherit the strong, albeit local, convergence guar-
antees of the gradient descent and are naturally extendable to continuous actions. The fundamental
theorem underlying PG methods is the policy gradient theorem [81]:

∇θJ(πθ) = ∫
s∈S

ρπθ(s)∫
a∈A

∇θπθ(a∣s)Qπθ(s, a) (14)

where ρπθ(s) = limt→∞ γtP (st = s∣s0, a0∶t ∼ πθ) is the discounted stationary distribution of states
under πθ which is assumed to exist and to be independent of the initial state distribution (ergodicity
assumption). The significance of the PG theorem is that the effect of policy changes on the state
distribution does not appear in its expression, allowing for a sample-based estimate of the gradient
[92].

The deterministic policy gradient (DPG) is derived for deterministic policies by Silver et al. [74] as:

∇θJ(πθ) = ∫
s∈S

ρπθ(s)∇θπθ(s)∇aQπθ(s, a)∣a=πθ(s) (15)

Since DPG does not need to integrate over the action space, it is often more sample-efficient than the
stochastic policy gradient [74]. However, a noise needs to be manually injected during exploration
as the deterministic policy does not have any inherent means of exploration. Finally, it is worth
noting that due to the differentiation of the value function with respect to a, DPG is only applicable
to continuous actions.

A.2 Mathematical Tools

Various mathematical concepts from measure theory and differential geometry are presented in this
section. We only explicitly introduce concepts which are directly mentioned or relevant to the proofs
presented in section C; for a more comprehensive overview, we direct the reader to textbooks such as
[14, 49, 78].
Definition 4 (σ-algebra). Given a set X , a σ-algebra on X is a family Σ of subsets of X such that 1)
X ∈ Σ, 2) A ∈ Σ implies Ac ∈ Σ (closure under complements), and 3) if (Ai)i∈N satisfies Ai ∈ Σ for
all i ∈ N, then ∪i∈NAi ∈ Σ (closure under countable union). The tuple (X,Σ) is a measurable space.

The σ-algebra of a space specifies the sets in which a measure is defined; in probability theory— and
in our use case— a σ-algebra represents a collection of events which can be assigned probabilities.
Definition 5 (Pushforward measure). Let (X1,Σ1) and (X2,Σ2) be two measurable spaces, f ∶
X1 →X2 a measurable map and µ ∶ Σ1 → [0,∞] a measure on X1. Then the pushforward measure
of µ with respect to f , denoted f∗(µ) ∶ Σ2 → [0,∞] is defined as:

(f∗(µ))(B) = µ(f−1(B)) ∀ B ∈ Σ2.

Theorem 6 (Change of variables). A measurable function g on X2 is integrable with respect to
f∗(µ) if and only if the function g ○ f is integrable with respect to µ, in which case the integrals are
equal:

∫
X2

gd(f∗(µ)) = ∫
X1

g ○ fdµ.

Definition 6 (Local diffeomorphism). Let M and N be differentiable manifolds. A function f ∶
M → N is a local diffeomorphism, if for each point x ∈M there exists an open set U containing x
such that f(U) is open in N and f ∣U ∶ U → f(U) is a diffeomorphism.
Theorem 7 (Inverse function theorem for manifolds). If f ∶M → N is a smooth map whose differen-
tial dfx ∶ TxM → Tf(x)N is an isomorphism at a point x ∈M . Then f is a local diffeomorphism at
x.
Theorem 8 (Chain rule for manifolds). If f ∶M → N and g ∶ N → O are smooth maps of manifolds,
then:

d(g ○ f)x = dgf(x) ○ dfx.

17

B Assumptions and Conditions

The derivation of our homomorphic policy gradient theorem is for continuous state and action spaces.
Therefore, we have assumed the following regularity conditions on the actual MDPM and its MDP
homomorphic imageM under the MDP homomorphism map h. The conditions are largely based on
the regularity conditions of the deterministic policy gradient theorem [74]:

Regularity conditions 1: τa(s′∣s), ∇aτa(s′∣s), τa(s′∣s), ∇aτa(s′∣s), R(s, a),∇aR(s, a),
R(s, a),∇aR(s, a), π↑θ(s),∇θπ

↑
θ(s), πθ(s), ∇θπθ(s), p1(s), and p1(s) are continuous with respect

to all parameters and variables s, s, a, a, s′, and s′.

Regularity conditions 2: There exists a b and L such that sups p1(s) < b, sups p1(s) < b,
supa,s,s′ τa(s′∣s) < b, supa,s,s′ τa(s′∣s) < b, supa,sR(s, a) < b, supa,sR(s, a) <
b, supa,s,s′ ∥∇aτa(s′∣s)∥ < L, supa,s,s′ ∥∇aτa(s′∣s)∥ < L, sups,a ∥∇aR(s, a)∥ <
L, sups,a ∥∇aR(s, a)∥ < L.

We also assume the following conditions on the continuous MDP homomorphism map h = (f, gs),
as discussed in Definition 3:

Regularity conditions 3: The action mapping gs(a) is a local diffeomorphism (Definition 6). Hence
it is continuous with respect to a and locally bijective with respect to a. Additionally, ∇ags(a) is
continuous with respect to the parameter a, and there exists a L such that sups,a ∥∇ags(a)∥ < L.

18

C Proofs

Below are the proofs accompanying Sections 3, 4 and 5.

C.1 Proof of Theorem 1: Value Equivalence

Proof. The proof is along the lines of the optimal value equivalence theorem of Ravindran and
Barto [69]. We define the m-step discounted action value function Qπ

↑

m(s, a) recursively for all
(s, a) ∈ S ×A and for all integers m ≥ 1 as:

Qπ
↑

m(s, a) = R(s, a) + γ ∑
s′∈S

τa(s′∣s) ∑
a′∈A

π↑(a′∣s′)Qπ
↑

m−1(s′, a′),

with Qπ
↑

0 (s, a) = R(s, a). The proof is by induction on m; the base case of m = 0 is true because:

Qπ
↑

0 (s, a) = R(s, a) = R(f(s), gs(a)) = Qπ0 (f(s), gs(a)).

Now suppose towards induction that Qπ
↑

k (s, a) = Qπk(f(s), gs(a)) for all values of k less than m
and all state action pairs (s, a) ∈ S ×A. Using the fact that h = (f, gs) is an MDP homomorphism,
we have:

Qπ
↑

m(s, a) = R(s, a) + γ ∑
s′∈S

τa(s′∣s) ∑
a′∈A

π↑(a′∣s′)Qπ
↑

m−1(s′, a′)

= R(s, a) + γ ∑
[s′]Bh ∣S∈Bh∣S

∑
s′′∈[s′]Bh ∣S

τa(s′′∣s) ∑
a′∈A

π↑(a′∣s′)Qπm−1(f(s′), gs′(a′))

(16)

= R(s, a) + γ ∑
[s′]Bh ∣S∈Bh∣S

∑
s′′∈[s′]Bh ∣S

τa(s′′∣s) ∑
a′∈A

∑
a′′∈g−1

s′ (a
′)
π↑(a′′∣s′)Qπm−1(f(s′), a′)

= R(f(s), gs(a)) + γ ∑
[s′]Bh ∣S∈Bh∣S

τgs(a)(f(s′)∣f(s)) ∑
a′∈A

π(a′∣f(s′))Qπm−1(f(s′), a′)

(17)

= R(f(s), gs(a)) + γ ∑
s′∈S

τgs(a)(s′∣f(s)) ∑
a′∈A

π(a′∣s′)Qπm−1(s′, a′)

= Qπm(f(s), gs(a)).

Where in equation (16) we used the fact that Qπ
↑

m−1(s, a) = Qπm−1(f(s), gs(a)) from the in-
duction assumption. In equation (17) we used ∑s′′∈[s′]Bh ∣S τa(s

′′∣s) = τgs(f(s′)∣f(s)) and

∑a′′∈g−1
s′ (a

′) π
↑(a′′∣s′) = π(a′∣f(s′)) from the definition of MDP homomorphism [69]. Since R

and R are bounded, it follows by induction that Qπ
↑(s, a) = Qπ(f(s), gs(a)) for all (s, a) ∈ S ×A.

The proof for V π
↑(s) = V π(f(s)) follows directly from the equivalence of action value functions

and the fact that the two policies are tied together through the lifting process because in general we
have: V π(s) = ∑a∈A π(a∣s)Qπ(s, a).

C.2 Proof of Theorem 2: Optimal Value Equivalence for Continuous MDP
Homomorphisms

Proof. The proof follows along the same lines as Ravindran and Barto [69]. We will first prove the
following claim:

Claim. For m ≥ 1, define the sequence Qm ∶ S ×A→ R as

Qm(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(s′, a′)

and Q0(s, a) = R(s, a). Define the sequence Qm ∶ S ×A → R analogously. Then for any (s, a) ∈
S ×A we have

Qm(s, a) = Qm(f(s), gs(a)).

19

We will prove this claim by induction on m. The base case m = 0 follows from the reward invariance
property of continuous MDP homomorphisms:

Q0(s, a) = R(s, a) = R(f(s), gs(a)) = Q0(f(s), gs(a)).
For the inductive case, note that

Qm(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(s′, a′)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(f(s′), gs′(a′)) (18)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s) sup
a′∈A

Qm−1(f(s′), a′) (19)

= R(f(s), gs(a)) + γ ∫
s′∈S

τgs(a)(ds′∣f(s)) sup
a′∈A

Qm−1(s′, a′) (20)

= Qm−1(f(s), gs(a)), (21)

where Equation 18 follows from the inductive hypothesis, Equation 19 follows from gs being
surjective, and Equation 20 follows from the change of variables formula (Theorem 6); indeed, from
Definition 3 we have the pushforward measure of τa(⋅∣s) with respect to f equals τgs(a)(⋅∣f(s)) and
here g ∶ S → R is defined as g(s) = supa′∈AQm−1(s, a′). This concludes the induction proof. Since
limm→∞Qm(s, a) = Q∗(s, a), it follows that Q∗(s, a) = Q∗(f(s), gs(a)).

The proof for V ∗(s) = V ∗(f(s)) follows directly from the equivalence of optimal action value
functions as V ∗(s) = maxaQ

∗(s, a) in general.

C.3 Proof of Theorem 3: Value Equivalence for Deterministic Policies and Continuous
MDP Homomorphisms

Proof. Unlike the proofs of Theorems 1 and 2, here we assume the policy is deterministic due
to the complications of lifting stochastic policies discussed in Section 4.2. Therefore, the lifting
process can be simply obtained as π↑(s) = g−1s (π(f(s)) and the inverse of the lifting process is
π(f(s)) = gs(π↑(s)), as the mapping gs is assumed to be an invertible continuous map (Appendix
B).

Similarly to Ravindran and Barto [69], the proof is by induction. We define the m-step discounted
action value function Qπ

↑

m(s, a) for the domain S ×A and for all integers m ≥ as:

Qπ
↑

m(s, a) = R(s, a) + γ ∫
s′∈S

τa(ds′∣s)Qπ
↑

m−1(s′, π↑(s′)),

with Qπ
↑

0 (s, a) = R(s, a) for all pairs (s, a) ∈ S ×A. The proof is by induction on m, the base case
of m = 0 is true because:

Qπ
↑

0 (s, a) = R(s, a) = R(f(s), gs(a)) = Qπ0 (f(s), gs(a)).

Now suppose towards induction that Qπ
↑

k (s, a) = Qπk(f(s), gs(a)) for all values of k less than m on
the domain S ×A. Using the fact that h = (f, gs) is a continuous MDP homomorphism, we have:

Qπ
↑

m(s, a) = R(s, a) + γ ∫
s′∈S

τ(ds′∣s)Qπ
↑

m−1(s′, π↑(s′))

= R(s, a) + γ ∫
s′∈S

τa(ds′∣s)Qπm−1(f(s′), gs′(π↑(s′))) (22)

= R(f(s), gs(a)) + γ ∫
s′∈S

τa(ds′∣s)Qπm−1(f(s′), π(f(s′))) (23)

= R(f(s), gs(a)) + γ ∫
s∈S

τgs(a)(ds∣f(s))Qπm−1(s′, π(s′)) (24)

= Qπm(f(s), gs(a)). (25)

Where in equation (22), we used the induction assumption,in equation (23) we used the definition the
inverse of policy lifting as defined above, and in equation (24) we applied the change of variables

20

formula (Theorem 6) using the fact that τgs(a)(⋅∣f(s)) is the pushforward measure of τa(⋅∣s) under f
by definition. Since R and R are bounded, it follows by induction that Qπ

↑(s, a) = Qπ(f(s), gs(a)).

The proof for V π
↑(s) = V π(f(s)) follows directly from the equivalence of action value functions

and the fact that the two policies are tied together through the lifting process because V π(s) =
Qπ(s, π(s)) for deterministic policies.

C.4 Proof of Theorem 4: Equivalence of Deterministic Policy Gradients

Proof. Assuming the conditions described in Appendix B, we first take the derivative of the deter-
ministic policy lifting relation w.r.t. the policy parameters θ using the chain rule:

(gs ○ π↑)(s) = (π ○ f)(s)
d(gs ○ π↑)θ(s) = d(π ○ f)θ(s)

d(gs)π↑(s) ○ d(π↑)θ(s) = d(π ○ f)θ(s)
∇ags(a)∣a=π↑(s)
´¹¹¹¸¹¹¶

P

∇θπ↑(s) = ∇θπ(f(s)), (26)

where ○ is the composition operator and the dimensions of the matrices are P ∈ R∣A∣×∣A∣, ∇θπ↑(s) ∈
R∣A∣×∣θ∣, and ∇θπ(s) ∈ R∣A∣×∣θ∣. Second, we take the derivative of the value equivalence theorem w.r.t.
the actions a using the chain rule:

Qπ
↑
(s, a) = Qπ(f(s), gs(a))

dQπ
↑
(s, a)a = dQπ(f(s), gs(a))a

∇aQπ
↑
(s, a)∣

a=π↑(s) = ∇aQ
π(f(s), a)∣

a=π(f(s))∇ags(a)∣a=g−1s (π(f(s)))
´¹¹¹¸¹¹¹¶

P

, (27)

where the dimensions of the matrices are ∇aQπ
↑(s, a) ∈ R∣A∣, ∇aQπ(s, a) ∈ R∣A∣, and similarly as

before P ∈ R∣A∣×∣A∣. As we assumed the gs to be a local diffeomorphism, the inverse function theorem
(Theorem 7) states that the matrix P is invertible, thus we right-multiply both sides of equation (27)
by P −1 and left-multiply the resulting equation by equation (26) to obtain the desired result:

∇aQπ
↑
(s, a)∣

a=π↑(s)P
−1P∇θπ↑(s) = ∇aQπ(f(s), a)∣a=π(f(s))∇θπ(f(s))

∇aQπ
↑
(s, a)∣

a=π↑(s)∇θπ
↑(s) = ∇aQπ(f(s), a)∣a=π(f(s))∇θπ(f(s)). (28)

C.5 Proof of Theorem 5: Homomorphic Policy Gradient

Proof. The proof follows along the same lines of the deterministic policy gradient theorem [74], but
with additional steps for changing the integration space from S to S. First, we derive a recursive
expression for ∇θV π

↑
θ(s) as:

∇θV π
↑
θ(s) = ∇θQπ

↑
θ(s, π↑θ(s))

= ∇θ[R(s, π↑θ(s)) + γ ∫S τπ
↑
θ
(s)(s, ds

′)V π
↑
θ(s′)]

= ∇θπ↑θ(s)∇aR(s, a)∣
a=π↑

θ
(s)

+ γ ∫
S
[τπ↑

θ
(s)(s, ds

′)∇θV π
↑
θ(s′) +∇θπ↑θ(s)∇aτa(s, ds

′)∣
a=π↑

θ
(s)
V π

↑
θ(s′)] (29)

= ∇θπ↑θ(s)∇a[R(s, a)+γ∫
S
τa(s, ds′)V π

↑
θ(s′)]∣

a=π↑
θ
(s)
+γ∫

S
τπ↑
θ
(s)(s, ds

′)∇θV π
↑
θ(s′)

21

= ∇θπ↑θ(s)∇aQ
π↑
θ(s, a)∣

a=π↑
θ
(s)

+ γ ∫
S
τπ↑
θ
(s)(s, ds

′)∇θV πθ(f(s′)) (30)

= ∇θπ↑θ(s)∇aQ
π↑
θ(s, a)∣

a=π↑
θ
(s)

+ γ ∫
S
τgs(π↑θ(s))

(f(s), ds′)∇θV πθ(f(s′)) (31)

= ∇θπθ(f(s))∇aQπθ(f(s), a)∣
a=πθ(f(s))

+ γ ∫
S
τπθ(s)(s, ds

′)∇θV πθ(s′) (32)

= ∇θπθ(f(s))∇aQπθ(f(s), a)∣
a=πθ(f(s))

+ γ ∫
S
p(s→ s′,1, πθ)∇θV πθ(s′)ds′.

Where p(s→ s′, t, πθ) is the probability of going from s to s′ under the policy πθ(s) in t time steps.
In equation (29) we were able to apply the Leibniz integral rule to exchange the order of derivative
and integration because of the regularity conditions on the continuity of the functions. In equation
(30) we used the value equivalence property, and in equation (31) we used the change of variables
formula based on the pushforward measure (6) of τa(s, .) with respect to f . Finally, in equation (32)
we used the equivalence of policy gradients from Theorem 4. By recursively rolling out the formula
above, we obtain:

∇θV π
↑
θ(s) = ∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))

+ γ ∫
S
p(s→ s′,1, πθ)∇θπθ(f(s′))∇aQπθ(f(s′), a)∣

a=πθ(f(s′))
ds′

+ γ2 ∫
S
p(s→ s′,1, πθ)∫

S
p(s′ → s′′,1, πθ)∇θV π

↑
θ(f(s′′))ds′′ds′

= ∇θπθ(f(s))∇aQπθ(f(s), a)∣
a=πθ(f(s))

+ γ ∫
S
p(s→ s′,1, πθ)∇θπθ(f(s′))∇aQπθ(f(s′), a)∣

a=πθ(f(s′))
ds′

+ γ2 ∫
S
p(s→ s′′,2, πθ)∇θV πθ(f(s′′))ds′′ (33)

⋮

= ∫
S

∞
∑
t=0
γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))
ds′. (34)

Where in equation (33) we exchanged the order of integration using the Fubini’s theorem that requires
the boundedness of ∥∇θV πθ(s)∥ as described in the regularity conditions. Finally, we take the
expectation of ∇θV π

↑
θ(s) over the initial state distribution:

∇θJ(θ) = ∇θ ∫
S
p1(s)V π

↑
θ(s)ds

= ∫
S
p1(s)∇θV π

↑
θ(s)ds

= ∫
S
p1(s)∫

S

∞
∑
t=0
γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))
ds′ds

= ∫
S
p1(s)∫S

∞
∑
t=0
γtp(s→ s′, t, πθ)∇θπθ(f(s))∇aQπθ(f(s), a)∣

a=πθ(f(s))
ds′ds (35)

= ∫
S
ρπθ(s)∇θπθ(s)∇aQπθ(s, a)∣

a=πθ(s)
ds. (36)

Where ρπθ(s) is the discounted stationary distribution induced by the policy πθ. In equation (35) we
used the change of variable formula. Similar to the steps before, we have used the Leibniz integral
rule to exchange the order of integration and derivative, used Fubini’s theorem to exchange the order
of integration.

22

D Full Results

As discussed in Section 7, we evaluate DHPG on continuous control tasks from DM Control on state
and pixel observations. Importantly, to reliably evaluate our algorithm against the baselines and to
correctly capture the distribution of results, we follow the best practices proposed by Agarwal et al.
[5] and report the interquartile mean (IQM) and performance profiles aggregated on all tasks over 10
random seeds. While our baseline results are obtained using the official code, when possible, some of
the results may differ from the originally reported ones due to the difference in the seed numbers and
our goal to present a faithful representation of the true performance distribution [5].

We use the official implementations of DrQv2, DBC, and SAC-AE, while we re-implement DeepMDP
due to the unavailability of the official code; See Appendix E.3 for full details on the baselines.

D.1 State Observations

Figure 8 shows full results obtained on 18 DeepMind Control Suite tasks with state observations to
supplement results of Section 7.1. Domains that require excessive exploration and large number of
time steps (e.g., acrobot, swimmer, and humanoid) are not included in this benchmark.

Figures 9 and 10 respectively show performance profiles and aggregate metrics [5] on 17 tasks;
hopper hop is removed from RLiable evaluation as none of the algorithms have acquired reasonable
performance in 1 million steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

A
ve

ra
ge

 R
et

ur
n

Finger Turn Hard

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

50

100

150

200

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Reacher Hard

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG Our DDPG TD3 SAC

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG Our DDPG TD3 SAC

Figure 8: Learning curves for 18 DM control tasks with state observations. Mean performance is
obtained over 10 seeds and shaded regions represent 95% confidence intervals. Plots are smoothed
uniformly for visual clarity.

23

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> Our DDPG
SAC
TD3
DHPG

(a) 250k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> Our DDPG
SAC
TD3
DHPG

(b) 500k step benchmark.

Figure 9: Performance profiles for state observations based on 17 tasks over 10 seeds, at 250k steps
(a), and at 500k steps (b). Shaded regions represent 95% confidence intervals.

0.4 0.5 0.6 0.7
DHPG

Our DDPG
TD3
SAC

Median

0.48 0.56 0.64

IQM

0.50 0.55 0.60

Mean

0.40 0.45 0.50 0.55

Optimality Gap

Normalized Score

(a) 250k step benchmark.

0.5 0.6 0.7 0.8
DHPG

Our DDPG
TD3
SAC

Median

0.66 0.72 0.78

IQM

0.60 0.66 0.72

Mean

0.24 0.30 0.36 0.42

Optimality Gap

Normalized Score

(b) 500k step benchmark.

Figure 10: Aggregate metrics for state observations with 95% confidence intervals based on 17
tasks over 10 seeds, at 250k steps (a), and at 500k steps (b).

24

D.2 Pixel Observations

Figure 11 shows full results obtained on 16 DeepMind Control Suite tasks with pixel observations
to supplement results of Section 7.2. Domains that require excessive exploration and large number
of time steps (e.g., acrobot, swimmer, and humanoid) and domains with visually small targets (e.g.,
reacher hard and finger turn hard) are not included in this benchmark. In each plot, the solid lines
present algorithms with image augmentation and dashed lines present algorithms without image
augmentation.

Figures 12 and 13 respectively show performance profiles and aggregate metrics [5] on 14 tasks;
hopper hop and walker run are removed from RLiable evaluation as none of the algorithms have
acquired reasonable performance in 1 million steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG
DrQ-v2

DBC
DeepMDP

SAC-AE
w/o Aug.

w/ Aug.

Figure 11: Learning curves for 16 DM control tasks with pixel observations. Mean performance is
obtained over 10 seeds and shaded regions represent 95% confidence intervals. Plots are smoothed
uniformly for visual clarity.

25

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE
w/o Aug.
w/ Aug.

(a) 500k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DHPG
DBC
DeepMDP
DrQ-v2
SAC-AE
w/o Aug.
w/ Aug.

(b) 1m step benchmark.

Figure 12: Performance profiles for pixel observations based on 14 tasks over 10 seeds, at 500k
steps (a), and at 1m steps (b). Shaded regions represent 95% confidence intervals.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DBC w/ Aug.

DeepMDP w/ Aug.
SAC-AE w/ Aug.
DHPG w/o Aug.

DBC w/o Aug.
DeepMDP w/o Aug.

SAC-AE w/o Aug.
Median

0.2 0.4 0.6

IQM

0.15 0.30 0.45 0.60

Mean

0.45 0.60 0.75

Optimality Gap

Normalized Score

(a) 500k step benchmark.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DBC w/ Aug.

DeepMDP w/ Aug.
SAC-AE w/ Aug.
DHPG w/o Aug.

DBC w/o Aug.
DeepMDP w/o Aug.

SAC-AE w/o Aug.
Median

0.2 0.4 0.6 0.8

IQM

0.2 0.4 0.6

Mean

0.4 0.6 0.8

Optimality Gap

Normalized Score

(b) 1m step benchmark.

Figure 13: Aggregate metrics for pixel observations with 95% confidence intervals based on 14
tasks over 10 seeds, at 500k steps (a), and at 1m steps (b).

26

D.3 Transfer Learning Experiments

As discussed in Section 7.2, the purpose of transfer experiments is to ensure that using MDP
homomorphisms does not compromise transfer abilities. Figure 14 shows learning curves for a series
of transfer scenarios in which the critic, actor, and representations are transferred to a new task within
the same domain. DHPG matches the same transfer abilities of other methods.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Cartpole Swingup

DHPG+Aug.
DHPG

DrQ-v2
DBC

DeepMDP
SAC-AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk Quadruped Run
DHPG+Aug.
DHPG

DrQ-v2
DBC

DeepMDP
SAC-AE

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand Walker Walk
DHPG+Aug.
DHPG

DrQ-v2
DBC

DeepMDP
SAC-AE

Figure 14: Learning curves for transfer experiments with pixel observations. At 500k time step mark,
all components are transferred to a new task on the same domain. Mean performance is obtained over
10 seeds and shaded regions represent 95% confidence intervals. Plots are smoothed uniformly for
visual clarity.

D.4 Value Equivalence Property in Practice

We can use the value equivalence between the critics of the actual and abstract MDPs as a measure
for the quality of learned MDP homomorphismsm, since the two critics are not directly trained to
minimize this distance, instead they have equivalent values through the learned MDP homomorphism
map. Figure 15 shows the normalized mean absolute error of ∣Q(s, a)−Q(s, a)∣ during training,
indicating the property is holding in practice. Expectedly, for lower-dimensional tasks with easily
learnable homomorphism maps (e.g., cartpole) the error is reduced earlier than more complicated
tasks (e.g., quadruped and walker). But importantly, in all cases the error decreases over time and is
at a reasonable range towards the end of the training, meaning the continuous MDP homomorphisms
is adhering to conditions of Definition 3.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

1.0

V
al

ue
 E

rr
or

 |Q
(s

,a
)

Q
(s

,a
)|

Cartpole Balance Sparse
Cartpole Swingup

Hopper Stand
Quadruped Walk

Reacher Easy
Walker Stand

Figure 15: Normalized mean absolute error ∣Q(s, a)−Q(s, a)∣ as a measure for the value equivalence
property during training of different tasks from pixel observations. The error is measured on samples
from the replay buffer and is normalzied by the range of the value function. The error is averaged
over 10 seeds and shaded regions represent 95% confidence intervals.

27

D.5 Ablation Study on the Combination of HPG with DPG

We carry out an ablation study on the combination of HPG with DPG for actor updates as indicated
discussed in Section 6. To that end, we evaluate the performance of four variants of DHPG (all using
image augmentation) on pixel observations:

1. DHPG: Gradients of HPG and DPG are added together and a single actor update is done
based on the sum of gradients. This is the standard DHPG algorithm that is used throughout
the paper.

2. DHPG with independent DPG update: Gradients of HPG and DPG are independently
used to update the actor.

3. DHPG without DPG update: Only HPG is used to update the actor.
4. DHPG with single critic: A single critic network is trained for learning values of both the

actual and abstract MDP. Consequently, HPG and DPG are used to update the actor.

Figure 16 shows learning curves obtained on 16 DeepMind Control Suite tasks with pixel observa-
tions, and Figure 17 shows RLiable [5] evaluation metrics. In general, summing the gradients of
HPG and DPG (variant 1) results in lower variance of gradient estimates compared to independent
HPG and DPG updates (variant 2). Interestingly, the variant of DHPG without DPG (variant 3)
performs reasonably well or even outperforms other variants in simple tasks where learning MDP
homomorphisms is easy (e.g., cartpole and pendulum), indicating the effectiveness of our method
in using only the abstract MDP to update the policy of the actual MDP. However, in the case of
more complicated tasks (e.g., walker), DPG is required to additionally use the actual MDP for
policy optimization. Finally, using a single critic for both the actual and abstract MDPs (variant
4) can improve sample efficiency in symmetrical MDPs, but may result in performance drops in
non-symmetrical MDPs due to the large error bound between the two MDPs, ∥Qπ↑(s, a)−Qπ(s, a)∥
[83].

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

20

40

60

80

100

120

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

100

150

200

250

300

350

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

100

150

200

250

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG+Aug.
DHPG (ind. DPG update)+Aug.

DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

Figure 16: Ablation study on the combination of HPG and DPG. Learning curves for 16 DM control
tasks with pixel observations. Mean performance is obtained over 10 seeds and shaded regions
represent 95% confidence intervals. Plots are smoothed uniformly for visual clarity.

28

0.45 0.60 0.75
DHPG+Aug.

DHPG (ind. DPG update)+Aug.
DHPG (w/o DPG update)+Aug.

DHPG (single critic)+Aug.
Median

0.48 0.56 0.64 0.72

IQM

0.50 0.55 0.60 0.65

Mean

0.35 0.40 0.45 0.50

Optimality Gap

Normalized Score

(a) Aggregate metrics at 500k steps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

DHPG+Aug.
DHPG (ind. DPG update)+Aug.
DHPG (w/o DPG update)+Aug.
DHPG (single critic)+Aug.

(b) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG (w/o DPG update)+Aug.
DHPG+Aug.
DHPG (ind. DPG update)+Aug.
DHPG (single critic)+Aug.

(c) Performance profiles at 250k
steps.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG (w/o DPG update)+Aug.
DHPG+Aug.
DHPG (ind. DPG update)+Aug.
DHPG (single critic)+Aug.

(d) Performance profiles at 500k
steps.

Figure 17: Ablation study on the combination of HPG and DPG. RLiable evaluation metrics for pixel
observations averaged on 14 tasks over 10 seeds. Aggregate metrics at 500k steps (a), IQM scores
as a function of number of steps for comparing sample efficiency (b), performance profiles at 250k
steps (c), performance profiles at 500k steps (d). Shaded regions represent 95% confidence intervals.

D.6 Ablation Study on n-step Return

We carry out an ablation study on the choice of n-step return for DHPG. Figure 18 shows RLiable
[5] evaluation metrics for DHPG with 1-step and 3-step returns for pixel observations. We show
the impact of n-step return on DHPG with and without image augmentation. Overall, n-step return
appears to improve the early stages of training. In the case of DHPG without image augmentation,
the final performance of 1-step return is better than 3-step return, perhaps indicating that using n-step
return can render learning MDP homomorphisms more difficult.

0.30 0.45 0.60
DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)

DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update (1-step return)

Median

0.30 0.45 0.60

IQM

0.4 0.5 0.6

Mean

0.4 0.5 0.6 0.7

Optimality Gap

Normalized Score

(a) Aggregate metrics at 500k steps.

0.0 0.2 0.4 0.6 0.8 1.0
Number of Time Steps (1e6)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update (1-step return)

(b) Sample efficiency.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (1-step return)

(c) Performance profiles at 250k
steps.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DHPG+ind. DPG update+Aug. (3-step return)
DHPG+ind. DPG update (3-step return)
DHPG+ind. DPG update+Aug. (1-step return)
DHPG+ind. DPG update (1-step return)

(d) Performance profiles at 500k
steps.

Figure 18: Ablation study on n-step return. RLiable evaluation metrics for pixel observations
averaged on 12 tasks over 10 seeds. Aggregate metrics at 1m steps (a), IQM scores as a function
of number of steps for comparing sample efficiency (b), performance profiles at 250k steps (c), and
performance profiles at 500k steps (d). Shaded regions represent 95% confidence intervals.

29

D.7 Comparison Against Higher-Capacity Baselines

The DHPG algorithm contains additional networks, such as the parameterized MDP homomorphism
map and the abstract critic, thus it may have a higher network capacity compared to the baselines.
To control for the effect of the network capacity and for a fair evaluation, we compare DHPG with
higher-capacity variants of DBC and DrQ-v2 that have a larger critic networks. First, we provide a
detailed list of network parameters based on the architecture described in Appendix E.2:

1. DHPG: image encoder (1,990,518) + actor (79,105) + critic (79,361) + dynamics model
(117,348) + reward model (79,105) + abstract critic (91,905) + f (91,698) + g (91,954) =
2,620,994

2. DBC: image encoder (1,990,518) + actor (79,362) + critic (158,722) + dynamics model
(104,804) + reward model (79,105) = 2,412,511

3. DrQ-v2: image encoder (1,990,518) + actor (79,105) + critic (158,722) = 2,228,602

To account for the parameter increase, we present variations of DBC and DrQ with a larger critic
(512 hidden dim compared to the initial 256). Consequently, the new total number of parameters
for DBC and DrQ are respectively 2,833,375 and 2,649,466. Figure 19 shows full results obtained
on 16 DeepMind Control Suite tasks with pixel observations for higher-capacity variants of DBC
and DrQ-v2 to supplement results of Section 7.2. Domains that require excessive exploration and
large number of time steps (e.g., acrobot, swimmer, and humanoid) and domains with visually small
targets (e.g., reacher hard and finger turn hard) are not included in this benchmark. In each plot, the
solid lines present algorithms with image augmentation and dashed lines present algorithms without
image augmentation.

Figures 20 and 21 respectively show performance profiles and aggregate metrics [5] on 14 tasks;
hopper hop and walker run are removed from RLiable evaluation as none of the algorithms have
acquired reasonable performance in 1 million steps.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup Sparse

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Cartpole Swingup

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cartpole Balance Sparse

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

A
ve

ra
ge

 R
et

ur
n

Cheetah Run

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Cup Catch

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Finger Spin

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Finger Turn Easy

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Hopper Stand

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

50

0

50

100

150

200

A
ve

ra
ge

 R
et

ur
n

Hopper Hop

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Pendulum Swingup

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Quadruped Walk

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

A
ve

ra
ge

 R
et

ur
n

Quadruped Run

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Reacher Easy

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Stand

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

Walker Walk

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

0.0 0.2 0.4 0.6 0.8 1.0
Time Steps (1e6)

0

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

Walker Run

DHPG
DrQ-v2

DrQ-v2 (High Cap.)
DBC

DBC (High Cap.)
w/o Aug.

w/ Aug.

Figure 19: Learning curves for 16 DM control tasks with pixel observations for higher-capacity
variants of DBC and DrQ-v2. Mean performance is obtained over 10 seeds and shaded regions
represent 95% confidence intervals. Plots are smoothed uniformly for visual clarity.

30

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

> DBC (High Cap.)
DrQ-v2 (High Cap.)
DHPG
DBC
DrQ-v2
w/o Aug.
w/ Aug.

(a) 500k step benchmark.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Score ()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

DBC (High Cap.)
DrQ-v2 (High Cap.)
DHPG
DBC
DrQ-v2
w/o Aug.
w/ Aug.

(b) 1m step benchmark.

Figure 20: Performance profiles for pixel observations for higher-capacity variants of DBC and
DrQ-v2 based on 14 tasks over 10 seeds, at 500k steps (a), and at 1m steps (b). Shaded regions
represent 95% confidence intervals.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DrQ-v2 (High Cap.) w/ Aug.

DBC w/ Aug.
DBC (High Cap.) w/ Aug.

DHPG w/o Aug.
DBC (High Cap.) w/o Aug.

DBC w/o Aug.
Median

0.2 0.4 0.6

IQM

0.30 0.45 0.60

Mean

0.45 0.60 0.75

Optimality Gap

Normalized Score

(a) 500k step benchmark.

0.2 0.4 0.6 0.8
DHPG w/ Aug.

DrQ-v2 w/ Aug.
DrQ-v2 (High Cap.) w/ Aug.

DBC w/ Aug.
DBC (High Cap.) w/ Aug.

DHPG w/o Aug.
DBC (High Cap.) w/o Aug.

DBC w/o Aug.
Median

0.2 0.4 0.6 0.8

IQM

0.30 0.45 0.60 0.75

Mean

0.30 0.45 0.60

Optimality Gap

Normalized Score

(b) 1m step benchmark.

Figure 21: Aggregate metrics for pixel observations for higher-capacity variants of DBC and
DrQ-v2 with 95% confidence intervals based on 14 tasks over 10 seeds, at 500k steps (a), and at 1m
steps (b).

31

E Implementation Details

E.1 Pseudo-code

Algorithm 1 presents the details of the Deep Homomorphic Policy Gradient (DHPG) for pixel
observations. This is the main variant used throughout the paper, in which policy gradients obtained
from DPG and HPG are added together before updating the actor. For clarity, here the TD error is
estimated with 1-step returns.

In the image augmentation version of DHPG, as well as all the baselines, we use image augmentation
of DrQ [96] that simply applies random shifts to pixel observations. First, 84 × 84 images are padded
by 4 pixels (by repeating boundary pixels), and then a random 84 × 84 crop is selected, rendering the
original image shifted by ±4 pixels. Similarly to Yarats et al. [95], we also apply bilinear interpolation
on top of the shifted image by replacing each pixel value with the average of four nearest pixel values.

In order to use DHPG for state observations, Lines 8-11 should be simply removed.

Algorithm 1 Deep Homomorphic Policy Gradient (DHPG) for Pixel Observations

1: Hyperparameters:
Target network update weight α, actor update delay d, clipped noise parameters c and σ.

2: Inputs:
Policy πθ(s, a), actual critic Qψ(s, a), abstract critic Qψ(s, a), MDP homomorphism map
hφ,η = (fφ(s), gη(s, a)), reward predictor Rρ(s), transition model τν(s′∣s, a), CNN image
encoder Eµ, and replay buffer B.

3: Initialize target networks ψ′ ← ψ, ψ′ ← ψ, θ′ ← θ.
4: for t = 1 to T do
5: Select action with exploration noise a ∼ πθ(Eµ(s)) + ε, where ε ∼ N(0, σ)
6: Store transition (s, a, r, s′) in B
7: Sample mini-batch Bi ∼ B

8: if using image augmentation then
9: s← aug(s), s′ ← aug(s′)

10: end if
11: Encode pixel observations: s← Eµ(s), s′ ← Eµ(s′)

12: Critic and MDP Homomorphism Update:
13: Compute MDP homomorphism loss: Llax(φ, η, µ) +Lh(φ, η, ρ, ν, µ) ▷ Equations (12-13)
14: Add clipped noise: a′ ← πθ′(s′) + ε, where ε ∼ clip(N(0, σ),−c, c) ▷ TD3 [30]
15: Compute critic loss: Lactual critic(ψ) +Labstract critic(ψ,φ, η) ▷ Equations (9-10)
16: Update: ψ,ψ,φ, η, ρ, ν, µ← arg minψ,ψ,φ,η,ρ,ν,µLlax +Lh +Lactual critic +Labstract critic
17:
18: Actor update:
19: if t mod d then
20: Freeze Qψ,Qψ, fφ, gη , and Eµ
21: Compute policy loss using DPG and HPG: Lactor(θ) ▷ Equation (11)
22: Update policy: θ ← arg minLactor(θ)
23: Update target networks ψ′ ← αψ+(1−α)ψ′, ψ′ ← αψ+(1−α)ψ′, θ′ ← αθ+(1−α)θ′
24: end if
25: end for

E.2 Hyperparameters

Our code is submitted in the suplemental material.

We implemented our method in PyTorch [65] and results were obtained using Python v3.8.10, PyTorch
v1.10.0, CUDA 11.4, and Mujoco 2.1.1 [86] on A100 GPUs on a cloud computing service. Tables 1-3
present the hyperparameters used in our experiments. The hyperparameters are all adapted from DrQ-
v2 [95] without any further hyperparameter tuning. We have kept the same set of hyperparameters

32

across all algorithms and tasks, except for the walker domain which similarly to DrQ-v2 [95], we
used n-step return of n = 1 and mini-batch size of 512.

The core RL components (actor and critic networks), as well as the components of DHPG (state
and action encoders, transition and reward models) are all MLP networks with the ReLU activation
function and one hidden layer with dimension of 256.

In the case of state observations, the abstract MDP has the same state and action dimensions as the
actual MDP. In the case of pixel observations, the image encoder is based on the architecture of
DrQ-v2 which is itself based on SAC-AE [97] and consists of four convolutional layers of 32 × 3 × 3
with ReLU as their activation functions, followed by a one-layer fully-connected neural network
with layer normalization [7] and tanh activation function. The stride of the convolutional layers
are 1, except for the first layer which has stride 2. The image decoder of the baseline models with
image reconstruction is based on SAC-AE [97] and has a single-layer fully connected neural network
followed by four transpose convolutional layers of 32 × 32 × 3 with ReLU activation function. The
stride of the transpose convolutional layers are 1, except for the last layer which has stride 2.

Table 1: Hyperparameters used in our experiments.
Hyperparameter Setting

Learning rate 1e−4
Optimizer Adam
n-step return 3

Mini-batch size 256
Actor update frequency d 2

Target networks update frequency 2
Target networks soft-update τ 0.01

Target policy smoothing stddev. clip c 0.3
Hidden dim. 256

Replay buffer capacity 106

Discount γ 0.99
Seed frames 4000

Exploration steps 2000
Exploration stddev. schedule linear(1.0,0.1,1e6)

Table 2: Hyperparameters specific to state observations.
Hyperparameter Setting

Feature dim. Same as the state dim. of the task
Action repeat 1
Frame stack N/A

Table 3: Hyperparameters specific to pixel observations.
Hyperparameter Setting

Feature dim. 50
Action repeat 2
Frame stack 3

E.3 Baseline Implementations

All of the baselines are submitted in the supplemental material. We use the official implementations
of DBC, SAC-AE, and TD3. DeepMDP does not have a publicly available code, and we use the
implementation available in the official DBC code-base. The official DDPG implementation is in
TensorFlow, thus we used the implementation available in the official TD3 code-base with additional
improvements detailed in Section 7.1. Similarly, the official SAC implementation is in TensorFlow,
thus we used the SAC implementation available in the official SAC-AE code-base. As discussed
in Section 7.2, we have run two versions of the baselines, with and without image augmentation.
The image augmented variants, use the same image augmentation method of DrQ-v2 described in
Appendix E.1.

33

	1 Introduction
	2 Background
	2.1 Markov Decision Processes
	2.2 MDP Homomorphisms
	2.3 Bisimulation and Lax Bisimulation Metrics

	3 Value Equivalence Property
	4 Continuous MDP Homomorphisms
	4.1 Optimal Value Equivalence
	4.2 Value Equivalence for Lifting Deterministic Policies

	5 Homomorphic Policy Gradient
	6 Homomorphic Actor-Critic Algorithms
	7 Experiments
	7.1 State Observations
	7.2 Pixel Observations

	8 Related Work
	9 Conclusion
	A Additional Background
	A.1 Background on the Policy Gradient Theorem
	A.2 Mathematical Tools

	B Assumptions and Conditions
	C Proofs
	C.1 Proof of Theorem 1: Value Equivalence
	C.2 Proof of Theorem 2: Optimal Value Equivalence for Continuous MDP Homomorphisms
	C.3 Proof of Theorem 3: Value Equivalence for Deterministic Policies and Continuous MDP Homomorphisms
	C.4 Proof of Theorem 4: Equivalence of Deterministic Policy Gradients
	C.5 Proof of Theorem 5: Homomorphic Policy Gradient

	D Full Results
	D.1 State Observations
	D.2 Pixel Observations
	D.3 Transfer Learning Experiments
	D.4 Value Equivalence Property in Practice
	D.5 Ablation Study on the Combination of HPG with DPG
	D.6 Ablation Study on n-step Return
	D.7 Comparison Against Higher-Capacity Baselines

	E Implementation Details
	E.1 Pseudo-code
	E.2 Hyperparameters
	E.3 Baseline Implementations

