
Spatial and Epistemic Modalities in Constraint-Based
Process Calculi

Sophia Knight2, Catuscia Palamidessi2, Prakash Panangaden3, Frank D. Valencia1

1 CNRS and LIX École Polytechnique de Paris
2 INRIA and LIX École Polytechnique de Paris

3 School of Computer Science, McGill University

Abstract. We introduce spatial and epistemic process calculi for reasoning about
spatial information and knowledge distributed among the agents of a system. We
introduce domain-theoretical structures to represent spatial and epistemic infor-
mation. We provide operational and denotational techniques for reasoning about
the potentially infinite behaviour of spatial and epistemic processes. We also give
compact representations of infinite objects that can be used by processes to sim-
ulate announcements of common knowledge and global information.

Introduction. Distributed systems have changed substantially in the recent past with
the advent of phenomena like social networks and cloud computing. In the previous
incarnation of distributed computing [16] the emphasis was on consistency, fault toler-
ance, resource management and related topics; these were all characterized by interac-
tion between processes. Research proceeded along two lines: the algorithmic side which
dominated the Principles Of Distributed Computing conferences and the more process
algebraic approach epitomized by CONCUR where the emphasis was on developing
compositional reasoning principles. What marks the new era of distributed systems is
an emphasis on managing access to information to a much greater degree than before.

Epistemic concepts were crucial in distributed computing as was realized in the mid
1980s with Halpern and Moses’ groundbreaking paper on common knowledge [13].
This led to a flurry of activity in the next few years [11] with many distributed protocols
being understood from an epistemic point of view. The impact of epistemic ideas in
the concurrency theory community was slower in coming. In an invited talk by one of
us [20] at a joint PODC-CONCUR conference in 2008, this point was emphasized and
a plea was made for epistemic ideas to be exploited more by concurrency theorists.

The goal of the present paper is simple: to put epistemic concepts in the hands
of programmers rather than just appearing in post-hoc theoretical analyses. One could
imagine the incorporation of these ideas in a variety of process algebraic settings – and
indeed we expect that such formalisms will appear in due course – but what is partic-
ularly appealing about the concurrent constraint programming (ccp) paradigm [24, 25]
is that it was designed to give programmers explicit access to the concept of partial
information and, as such, had close ties with logic [21, 18]. This makes it ideal for the
incorporation of epistemic concepts by expanding the logical connections to include
modal logic [15]. In particular, agents posting and querying information in the presence
of spatial hierarchies for sharing information and knowledge, e.g. friend circles and

shared albums in social networks or shared folders in cloud storage, provide natural ex-
amples of managing information access. These domains raise important problems such
as the design of models to predict and prevent privacy breaches, which are common-
place nowadays.

Contributions. In ccp [24, 25] processes interact with each other by querying and
posting information to a single centralized shared-store. The information and its asso-
ciated partial order are specified as a constraint system, which can be seen as a Scott
information system without consistency structure [1]. The centralized notion of store,
however, makes ccp unsuitable for systems where information and processes can be
shared or spatially distributed among certain groups of agents. In this paper we enhance
and generalize the theory of ccp for systems with spatial distribution of information.

In Section 1 we generalize the underlying theory of constraint systems by adding
space functions to their structure. These functions can be seen as topological and closure
operators and they provide for the specification of spatial and epistemic information.
In Section 2 we extend ccp with a spatial/epistemic operator. The spatial operator can
specify a process, or a local store of information, that resides within the space of a given
agent (e.g., an application in some user’s account, or some private data shared with a
specific group). This operator can also be interpreted as an epistemic construction to
specify that the information computed by a process will be known to a given agent. It
is crucial that one make the distinction between agent and process. The processes are
programs, they are mindless and do not “know” anything; the agents are other primitive
entities in our model that can be viewed as spatial locations (a passive view) or as
active entities that control a locus of information and interact with the global system by
launching processes.

It also worth noticing that the ccp concept of local variables cannot faithfully model
what we are calling local spaces, since in our spatial framework we can have inconsis-
tent local stores without propagating their inconsistencies towards the global store.

In Section 3 we give a natural notion of observable behaviour for spatial/epistemic
processes. Recursive processes are part of our framework, accordingly the notion of ob-
servable may involve limits of the spatial information in fair, possibly infinite, computa-
tions. These limits may result in infinite or, more precisely, non-compact objects involv-
ing unbounded nestings of spaces, or epistemic specifications such as common knowl-
edge. We then provide a finitary characterization of these observables avoiding complex
concepts such as fairness and limits. We also provide a compositional denotational char-
acterization of the observable behaviour. Finally, in Section 4 we address the technical
issue of giving finite approximations of non-compact information. (An extended version
of this work is at http://www.lix.polytechnique.fr/∼fvalenci/papers/eccp-extended.pdf.)

1 Space and Knowledge in Constraint Systems

In this section we introduce two new notions of constraint system for reasoning about
distributed information and knowledge in ccp. We presuppose basic knowledge of do-
main theory and modal logic [1, 22].

Flat Constraint Systems. The ccp model is parametric in a constraint system (cs)
specifying the structure and interdependencies of the information that processes can

ask of and add to a central shared store. This information is represented as assertions
traditionally referred to as constraints. Following [8, 21] we regard a cs as a complete
algebraic lattice in which the ordering v is the reverse of an entailment relation: c v d
means d entails c, i.e., d contains “more information” than c. The top element false
represents inconsistency, the bottom element true is the empty constraint, and the least
upper bound (lub) t is the join of information.

⊔
S is the lub of the elements in S.

Definition 1 (cs). A constraint system (cs) C = (Con,Con0,v,t, true, false) is a
complete algebraic lattice where Con, the set of constraints, is a partially ordered set
wrt v, Con0 is the subset of compact elements of Con , t is the lub operation defined
on all subsets, and true , false are the least and greatest elements of Con , respectively.

Remark 1. Recall that C is a complete lattice iff each subset of Con has a least upper
bound in Con . Also c ∈ Con is compact (finite) iff for any directed subset D of Con ,
c v

⊔
D implies c v d for some d ∈ D. C is algebraic iff for each c ∈ Con, the set of

compact elements below it forms a directed set and the lub of this directed set is c.

Example 1. We briefly explain the Herbrand cs from [24, 25]. This cs captures syntac-
tic equality between terms t, t′, . . . built from a first-order alphabet L with countably
many variables x, y, . . ., function symbols, and equality =. The constraints are sets of
equalities over the terms of L (e.g., {x = t, y = t} is a constraint). The relation c v d
holds if the equalities in c follow from those in d (e.g., {x = y} v {x = t, y = t}). The
constraint false is the set of all term equalities in L and true is (the equivalence class
of) the empty set. The compact elements are the (equivalence clases of) finite sets of
equalities. The lub is (the equivalence class of) set union. (See [24, 25] for full details).

Spatial Constraint Systems. A crucial issue in distributed and multi-agent scenarios
is that agents may have their own space for their local information or for performing
their computations. We shall address this issue by introducing a notion of space for
agents. In our approach each agent i has a space si. We can then think of si(c) as an
assertion stating that c holds within a space attributed to agent i. Thus, given a store
s = si(c)t sj(d)t e we may think of c and d as holding within the spaces that agents i
and j have in s, respectively. Similarly, si(sj(c)) can be viewed as a hierarchical spatial
specification stating that c holds within the space the agent i attributes to agent j.

An n-agent spatial constraint system (n-scs) is a cs parametric in n structure-
preserving constraint mappings s1, . . . , sn capturing the above intuitions.

Definition 2 (scs). An n-agent spatial constraint system (n-scs) C is a cs equipped
with n lub and bottom preserving maps s1, . . . , sn over its set of constraints Con . More
precisely, each si : Con → Con must satisfy the following properties: (S.1) si(true) =
true , and (S.2) si(c t d) = si(c) t si(d).

Henceforth, given an n-scs C, we refer to each si as the space (function) of agent i
in C. We use (Con,Con0,v,t, true, false, s1, . . . , sn) to denote the corresponding n-
scs with space functions s1, . . . , sn.We shall simply write “scs” when n is unimportant.

Intuitively, S.1 states that having an empty local store amounts to nothing and S.2
allows us to join pieces of information of agent i. From S.2 one can draw the immediate
inference that space functions are monotone: Property S.3 below says that if c can be
derived from d then any agent should be able to derive c from d within its own space.

Corollary 1. Let C be an n-scs with space functions s1, . . . , sn. Then for each si the
following property holds: (S.3) If c v d then si(c) v si(d).

Inconsistency Confinement. In an scs nothing prevents us from having si(false) 6=
false . Intuitively, inconsistencies generated by an agent may be confined within its own
space. It is also possible to have si(c) t sj(d) 6= false even when c t d = false;
i.e. we may have agents whose information is inconsistent with that of other agents.
This reflects the distributive nature of the agents as they may have different information
about the same incident. The following notions capture the above-mentioned situations.

Definition 3. An n-scs C = (Con,Con0,v,t, true, false, s1, . . . , sn) is said to be
(i, j) space-consistent wrt (c, d) iff si(c) t sj(d) 6= false. Also, C is said to be (i, j)
space-consistent iff it is (i, j) space-consistent wrt to each (c, d) ∈ Con × Con . Fur-
thermore, C is space-consistent iff it is (i, j) space-consistent for all i, j ∈ {1, . . . , n}.

We will see an important class of logical structures characterized as space-consistent
scs’s in Applications (Section 1). From the next proposition we conclude that to check
(i, j) space-consistency it is sufficient to verify whether si(false) t sj(false) 6= false .

Proposition 1. Let C be an n-scs with space functions s1, . . . , sn. Then (1) C is (i, j)
space-consistent if si(false) t sj(false) 6= false and (2) if C is (i, j) space-consistent
then si(false) 6= false.

Distinctness preservation. Analogous to inconsistency confinement, we could have
si(c) = si(d) for c 6= d. Depending on the intended model this could be interpreted
as saying that agent i cannot distinguish c from d. For some applications, however, one
may require the space functions to preserve distinctness

Definition 4. An n-scs C preserves distinctness iff all its space functions are injective.

Shared and Global Information. We conclude by introducing a lub construction that
captures the intuition that a given constraint holds in a shared space and globally.

Definition 5. Let C be an n-scs with space functions s1, . . . , sn. Group-spaces sG(·)
and global information gG(·) of G ⊆ {1, . . . , n} are defined thus: sG(c) =

⊔
i∈G si(c)

and gG(c) =
⊔∞

j=0 s
j
G(c), where s0G(c) = c and sk+1

G (c) = sG(s
k
G(c)).

The constraint gG(c) is easily seen to entail c and si1(si2(. . . (sim(c)) . . .)) for any
{i1, . . . , im} ⊆ G. Thus it realizes the intuition that c holds globally wrt G: c holds in
each nested space involving only the agents in G.

Epistemic Constraint Systems. We now wish to use si(c) to represent not only some
information c that agent i has but rather a fact that he knows. In this case, (i, j)-space
consistency wrt any pair of inconsistent information (Definition 3) would not be con-
sidered admissible. For in epistemic reasoning if an agent knows facts, those facts must
be true, hence asserting that an agent i knows false or inconsistent information would
be a fallacy. Thus, si(false) = false and si(c) t sj(d) = false if c t d = false .

The domain theoretical nature of constraint systems allows for a rather simple and
elegant characterization of knowledge by requiring our space functions to be Kura-
towski closure operators [17]: i.e., lub and bottom preserving closure operators.

Definition 6 (n-ecs). An n-agent epistemic constraint system (n-ecs) C is an n-scs
whose space functions s1, . . . , sn are also closure operators. Thus, in addition to S.1,
S.2 in Def. 2, each si also satisfies: (E.1) c v si(c) and (E.2) si(si(c)) = si(c).

Intuitively, in an n-ecs, si(c) states that the agent i has knowlege of c in its store
si. The axiom E.1 says that if agent i knows c then c must hold, hence si(c) has at
least as much information as c. The epistemic principle that an agent i is aware of its
own knowledge (the agent knows what he knows) is realized by E.2. Also the epistemic
assumption that agents are idealized reasoners follows from S.3 in Corollary 1; for if c
is a consequence of d (c v d) then if d is known to agent i, so is c, si(c) v si(d).

Common Knowledge. Epistemic constructions such as “the agent i knows that agent j
knows c” can be expressed as si(sj(c)). The group knowledge of a fact c in a group of
agents G happens when all the agents in G know c. This can be represented as sG(c) in
Definition 5. Similarly, common knowlege of a fact c in a group G happens when all the
agents in G know c, they all know that they know c, and so on ad infinitum. This can be
captured by the lub construction gG(c) in Definition 5.

Remark 2. Consider an n-ecs C whose compact elements Con0 are closed under the
space functions: i.e., if c ∈ Con0 the si(c) ∈ Con0. Clearly Con0 is closed under group
knowledge sG(c) sinceG is finite. It is not necessarily closed under common knowledge
gG(c) because, in general,

⊔∞
j=1 s

j
G(c) cannot be finitely approximated. Nevertheless,

in Applications (Section 1) we shall identify families of scs’s where Con0 is closed
under common knowledge, and in Section 4 we address the issue of using suitable
over-approximations of common knowledge.

The following proposition states two distinctive properties of ecs’s: They are not
space-consistent, as argued above, and those whose space function is not the identity do
not preserve distinctness. We use id for the identity space function.

Proposition 2. Let C be an n-ecs with space functions s1, . . . , sn. For each i, j ∈
{1, . . . , n}: (1) C is not (i, j)-space consistent, and (2) if si 6= id then si is not injective.

Applications. We shall now illustrate important families of scs’s. The families reveal
meaningful connections between our scs’s and models of knowledge and belief [11].

Aumann Constraint Systems. Aumann structures [11] are an alternative event-based
approach to modelling knowledge. An Aumann structure is a tupleA = (S,P1, ...,Pn)
where S is a set of states and each Pi is a partition on S for agent i. We call these
partitions information sets. If two states t and u are in the same information set for
agent i, it means that in state t agent i considers state u possible, and vice versa. An
event in an Aumann structure is any subset of S. Event e holds at state t if t ∈ e. The
conjunction of two events is their intersection and knowledge operators are defined as
Ki(e) = {t ∈ S | Pi(t) ⊆ e} where Pi(t) denotes the set where t appears in Pi.

We define the Aumann n-ecs C(A) as follows: The constraints are the events, i.e.,
Con = {e | e is an event in A}, e1 v e2 iff e2 ⊆ e1, t is the set intersection of two
events, true is the event containing every state in S, and false is the event containing
no states. The space function for each agent i is given by si(e) = Ki(e). ut

Theorem 1. For any Aumann structure A = (S,P1, ...,Pn), C(A) is an n-ecs.

Aumann constraint systems are ecs’s, thus they are not space-consistent (Proposi-
tion 2). We shall now identify a meaningful scs that is space-consistent.

Kripke Constraint Systems. A Kripke structure can be seen as a labeled transition sys-
tem (LTS) where the labels represent agents and the transitions represent accessibility
relations for the agents: if s i−→ t then in state s, agent i considers t possible. An epis-
temic Kripke structure is an LTS where the transition relations are equivalences. In the
following scs, the constraints are sets of pointed Kripke structures, i.e., sets of pairs
(M, s) where M is a Kripke structure and s is a state of M .

Consider a set of Kripke structures M over agents {1, ..., n}. Let ∆M be the set
{(M, t) | M ∈ M and t ∈ St(M)} where St(M) denotes the set of states of M .
Define an n-scs C(∆M) as follows: Let Con = P(∆M) and c1 v c2 iff c2 ⊆ c1. This
generates a complete algebraic lattice, where c1 t c2 is the set intersection of c1 and
c2. The compact elements of the lattice are the cofinite sets, that is, if ∆M\c is a finite
set, then c is a compact element in the lattice. Finally, define si(c) = {(M, t) | ∀t′ ∈
St(M)

[
t

i−→M t
′ =⇒ (M, t′) ∈ c

]
}– this definition is reminiscent of the semantics of

the box modality in modal logic [22]. ut
The following theorem gives us a taxonomy of scs’s for the above construction.

Theorem 2. For any non-empty set of Kripke structures M over agents {1, ..., n}, (1)
C(∆M) is an n-scs, (2) if M is the set of all pointed Kripke structures, C(∆M) is a
space-consistent n-scs, and (3) if M is the set of all pointed Kripke structures whose
accessibility relations are equivalences then C(∆M) is an n-ecs.

Remark 3. Consider the modal formulae given by φ := p | φ ∧ φ | �iφ, where p
is a basic proposition, and the corresponding usual notion of satisfaction over Kripke
models for propositions, conjunction and the box modality (see [22]). We abuse the
notation and use a formula φ to denote the set of all pointed Kripke structures that satisfy
φ. With the help of the above theorem, one can establish a correspondence between the
n-scs satisfying the premise in (2) and the modal system Kn [11] in the sense that φ is
above φ′ in the lattice iff we can derive in Kn that φ implies φ′ (written `KN

φ⇒ φ′).
Similarly, for the n-scs satisfying (3) and the epistemic system S4n [11].

We conclude by giving sufficient conditions for compactness of the constraints in
C(∆M). The compact elements of C(∆M) are the cofinite subsets of ∆M. If ∆M is
a finite set (this occurs if M is a finite set of finite state Kripke structures), then every
subset of ∆M is cofinite, and therefore each element of the lattice is compact, even
gG(c) (Remark 2). Thus, if ∆M is finite then each constraint in C(∆M) is compact.

2 Space and Knowledge in Processes

We now introduce two ccp variants: spatial ccp (sccp) and epistemic ccp (eccp). The
former is a conservative extension of ccp to model agents with spaces, possibly nested,
in which they can store information and run processes. Its underlying cs is an scs. The

latter extends the former with additional rules to model agents that interact by asking
and computing knowledge within the spatial information distribution. Its underlying scs
is an ecs. For semantic reasons, we require our scs be continuous and space-compact.

Definition 7. An n-scs C = (Con,Con0,v,t, true, false, s1, . . . , sn) is said to be
continuous iff for every directed set S ⊆ Con and every si, si(

⊔
S) =

⊔
e∈S si(e).

Furthermore C is said to be space-compact iff for every si, si(c) ∈ Con0 if c ∈ Con0.

Our examples (Applications, Section 1) can be shown to be continuous. Aumann
ecs’s are space-compact under the additional condition that every set in each partition
is finite. A Kripke scs is space-compact if the inverse of the accessibility relation is
finitely-branching. In the special case of Kripke ecs’s this is the same as requiring each
agent’s accessibility relation to be finitely-branching since these relations are reflexive.

Syntax. The following syntax of processes will be common to both calculi. 4

Definition 8. Let C = (Con,Con0,v,t, true, false, s1, . . . , sn) be a continuous and
space compact n-scs. Let A = {1, ..., n} be the set of agents. Assume a countable
set of variables Vars = {X ,Y , . . .}. The terms are given by the following syntax:

P,Q . . . ::= 0 | tell(c) | ask(c)→ P | P ‖ Q | [P]i | X | µX.P
where c ∈ Con0, i ∈ A, and X ∈ Vars . A term T is said to be closed iff every variable
X in T occurs in the scope of an expression µX.P . We shall refer to closed terms as
processes and use Proc to denote the corresponding set.

Before giving semantics to our processes, we give some intuitions about their be-
haviour. The basic processes are tell, ask, and parallel composition and they are defined
as in standard ccp [25]. Intuitively, tell(c) in a store d adds c to d to make c available
to other processes with access to this store. This addition, represented as d t c, is per-
formed whether or not dtc = false . The process ask(c)→ P in a store emay execute
P if c is entailed by e, i.e., c v e . The process P ‖ Q stands for the parallel execution
of P and Q. The following example will be referred to throughout the paper.

Example 2. Let us take P = tell(c) and Q = ask(c) → tell(d). From the above
intuitions, it follows that in P ‖ Q both c and d will be added to the store.

Spatial Processes. Our spatial ccp variant can be thought of as a shared-spaces model
of computation. Each agent i ∈ A may have computational spaces of the form [·]i
where processes as well as other agents’ spaces may reside. It also has a space function
si representing the information stored in its spaces. Recall that si(c) states that c holds
in the space of agent i. Similarly, si(sj(c)) means that c holds in the store that agent
j has within the space of agent i. Unlike any other ccp calculus, it is possible to have
agents with inconsistent information since c t d = false does not necessarily imply
si(c) t sj(d) = false (see space-consistent ecs in Definition 3).

The spatial construction [P]i represents a process P running within the space of
agent i. Any information c that P produces is available to processes that lie within the
same space. We shall use [P]G, where G ⊆ A, as an abbreviation of ‖i∈G [P]i.

4 For the sake of space and clarity, we dispense with the local/hiding operator.

Example 3. Consider [P]i ‖ [Q]i with P andQ as in Ex. 2. From the above intuitions it
follows that both c and dwill be added to store of agent i, i.e., we will have si(c)tsi(d).
Similarly, [P ‖ Q]i will produce c t d in the store of agent i, i.e., si(c t d) which from
the scs axioms is equivalent to si(c) t si(d). In fact, we will equate the behaviour of
[P]i ‖ [Q]i with that of [P ‖ Q]i. In [P]j ‖ [Q]i for i 6= j, d will not necessarily be
added to the space of i because c is not made available for agent i. Also in P ‖ [Q]i, d
is not added to the the space of i. In this case, however, we may view the c told by P as
being available at an outermost space that does not belong to any agent. This does not
mean that c holds everywhere, i.e., globally (Def. 5). Finally, consider [P]{i,j} ‖ [[Q]i]j .
Here d will not necessarily be added to the space agent i has within the space of agent
j because in an scs although si(c) and sj(c) hold, sj(si(c)) may not hold.

Epistemic Processes. For our epistemic ccp variant, we shall further require that the
underlying scs be epistemic, i.e., an ecs. This gives the operator [P]i additional be-
haviour. From an epistemic point of view, the information c produced by P not only
becomes available to agent i, as in the spatial case, but also it becomes a fact. This does
not necessarily mean, of course, that c will be available everywhere, as there are facts
that some agents may not know. It does mean, however, that unlike the spatial case,
we cannot allow agents’ spaces to include inconsistent information, as facts cannot be
contradictory–in an ecs, c t d = false implies si(c) t sj(d) = false.

Operationally, [P]i causes any information c produced by P to become available
not only in the space of agent i but also in any space in which [P]i is included. This is
because epistemically si(c) = c t si(c) so if sj(si(c)) holds, then sj(c t si(c)) also
holds, and similarly c t sj(c t si(c)). This can be viewed as saying that c propagates
outward in space.

Example 4. Consider [Q ‖ [P]i]j with P and Q as in Example 2. Notice that from ex-
ecuting P we obtain sj(si(c)). In the spatial case, Q will not necessarily tell d because
in an scs, sj(si(c)) may not entail sj(c). On the other hand, in the epistemic case, Q
will tell d since in any ecs, sj(si(c)) = sj(c t si(c)) which entails sj(c).

Infinite Processes. Unbounded behaviour is specified using recursive definitions of the
form µX.P whose behaviour is that of P [µX.P/X], i.e., P with every free occurrence
of X replaced with µX.P. We assume that recursion is ask guarded: i.e., for every
µX.P , each occurrence of X in P occurs under the scope of an ask process. For sim-
plicity we assume an implicit “ask(true)→ ” in unguarded occurrences of X .

Recursive definitions allow us to define complex spatial and epistemic situations.
Given G ⊆ A and a basic process P we define global(G,P)

def
= P ‖ µX. [P ‖ X]G .

Intuitively, in global(G,P) any information c produced by P will be available at any
space or any nesting of spaces involving only the agents in G. Consider the process
global(G,P) ‖

[
[. . . [Q]km

. . .]k2

]
k1

where G = {k1, ..., km} ⊆ A, with P and Q as
in Example 2. The process global(G,P) eventually makes c available in the (nested)
space

[
[. . . [·]km

. . .]k2

]
k1

and thus Q will tell d in that space.

Spatial and Epistemic Reduction Semantics. We now define a structural operational
semantics (sos) for sccp and eccp. We begin with the sos for the spatial case. The sos

T〈tell(c), d〉−→〈0, d t c〉 A
c v d

〈ask (c) → P, d〉−→〈P, d〉
PL

〈P, d〉−→〈P ′, d′〉

〈P ‖ Q, d〉−→〈P ′ ‖ Q, d′〉

R
〈P [µX.P/X], d〉−→γ

〈µX.P, d〉−→γ
S

〈P, ci〉−→〈P ′, c′〉

〈[P]i , c〉−→〈[P
′]i , c t si(c

′)〉
E

〈P, c〉−→〈P ′, c′〉

〈[P]i , c〉−→〈[P]i ‖ P
′, c′〉

Table 1. Rules for sccp and eccp (see Convention 1). The projection ci is given in Definition 9.
The symmetric right rule for PL, PR, is omitted. Rule E only applies to eccp.

for the epistemic case extends the spatial one with an additional rule and the assumption
that the underlying scs is an ecs. Henceforth we shall use the following convention:

Convention 1 The relations in following sections assume an underlying continuous
and space-compact n-scs C = (Con,Con0,v,t, true, false, s1, . . . , sn). We some-
times index them with “s” if they are interpreted for sccp, and with “e” if they are
interpreted for eccp. We often omit the indexes when they are irrelevant or obvious.

A configuration is a pair 〈P, c〉 ∈ Proc×Con where c represents the current spatial
distribution of information in P . We use Conf with typical elements γ, γ′, . . . to denote
the set of configurations. The sos for sccp is given by means of the transition relation
between configurations −→s ⊆ Conf ×Conf obtained by replacing −→ with −→s in
the rules A, T, PL (and its symmetric version), R, and S in Table 1.

The rules A, T, PL, and R for the basic processes and recursion are standard in ccp
and they are easily seen to realize the above intuitions (see [25]). The rule S for the
new spatial operator is more involved and we explain it next. First we introduce the
following central notion defining the projection of a spatial constraint c for agent i.

Definition 9 (Views). The agent i’s view of c, ci, is given by ci =
⊔
{d | si(d) v c}.

Intuitively, ci represents all the information the agent i may see or have in c. For exam-
ple if c = si(d) t sj(e) then agent i sees d, so d v ci. Observe that if si(d) = si(d

′)
then (si(d))

i entails both d and d′. This is intended because si(d) = si(d
′) means that

agent i cannot distinguish d from d′. The constraint ci enjoys the following property
which will be useful later on.

Lemma 1. For any constraint c, c t si(c
i) = c.

Let us now describe the rule S for the spatial operator. First, in order for [P]i with
store c to make a reduction, the information agent i sees or has in c must allow P
to make the reduction. Hence we run P with store ci. Second, the information d that
P ’s reduction would add to ci is what [P]i adds to the space of agent i as stated in
Proposition 3 below.

Proposition 3. If 〈P, ci〉 −→ 〈P ′, ci t d〉 then 〈[P]i , c〉 −→ 〈[P ′]i , c t si(d)〉.

Next we show an instructive reduction involving the use of the S rule.

Example 5. Take R = [P]i ‖ [Q]i with P and Q as in Example 2. One can verify
that 〈R, true〉 −→ 〈[0]i ‖ [Q]i, si(c)〉 −→ 〈[0]i ‖ [0]i, si(c) t si(d)〉. Recall that
si(c) t si(d) = si(c t d). A more interesting example is T = [tell(c′)]i ‖ [Q]i under
the assumption that si(c) = si(c

′). We have 〈T, true〉 −→ 〈[0]i ‖ [Q]i, si(c
′)〉 −→

〈[0]i ‖ [0]i, si(c′) t si(d)〉. d is told by Q within the space of i because si(c) = si(c
′),

so c and c′ are regarded as equivalent by i.

Epistemic Semantics. The eccp sos assumes that the underlying scs is an ecs. As ex-
plained earlier given [P]i, the information c produced by P not only becomes available
to agent i but also becomes a fact within the hierarchy of spaces in which [P]i is in-
cluded. This means that c is available not only in the space of agent i but also in any
space in which [P]i is included. We can view this as saying that c propagates outwards
through the spaces [P]i is in and this is partly realized by the equation si(c) = ct si(c)
which follows from E.1 in ecs (Definition 6). Mirroring this constraint equation and
epistemic reasoning, the behaviour of [P]i and P ‖ [P]i must also be equated (since
P can only produce factual information). This makes [P]i reminiscent of the replica-
tion/bang operator in the π-calculus [19]. For eccp we include Rule E in Table 1. As
illustrated in Example 6, Rule E is necessary for the behaviour of [P]i and P ‖ [P]i to
be the same, corresponding to the epistemic principles we wish to mimic.

The sos of eccp is given by the transition relation between configurations −→e ⊆
Conf ×Conf obtained by replacing−→with−→e in the rules in Table 1 and assuming
the underlying scs to be an ecs.

Example 6. Let R = [P ‖ [Q]i]j and T = [P ‖ [Q]i ‖ Q]
j

with P and Q as in Exam-
ple 2. We wish to equate R and T to mimic epistemic principles. Even assuming an
ecs, with only the rules of sccp (i.e., without Rule E), T can produce sj(d), d in the
store of agent j, but R is not necessarily able to do this: One can verify that there are
T ′, e′ s.t. 〈T, true〉 −→∗s 〈T ′, e′〉 and sj(d) v e′, while, in general, for all R′, e′′ s.t.,
〈R, true〉 −→∗s 〈R′, e′′〉 we have sj(d) 6v e′′. With the rules of eccp, however, one can
verify for each e′ s.t. 〈T, true〉 −→∗e 〈T ′, e′〉 there exists e′′, 〈R, true〉 −→∗e 〈R′, e′′〉
such that e′ v e′′ (and vice-versa with the roles of R and T interchanged).

3 Observable Behaviour of Space and Knowledge

A standard notion of observable behaviour in ccp involves infinite fair computations and
information constructed as the limit of finite approximations. For our calculi, however,
these limits may result in infinite (or non-compact) objects involving arbitrary nesting
of spaces, or epistemic specifications such as common knowledge. In this section we
provide techniques useful for analyzing the observable behaviour of such processes
using simpler finitary concepts and compositional reasoning.5

The notion of fairness is central to the definition of observational equivalence for
ccp. We introduce this notion following [12]. Any derivation of a transition involves an
application of Rule A or Rule T. We say that P is active in a transition t = γ−→γ′ if
there exists a derivation of t where rule A or T is used to produce a transition of the

5 See Convention 1.

form 〈P, d〉−→γ′′. Moreover, we say that P is enabled in γ if there exists γ′ such that
P is active in γ−→γ′. A computation γ0−→γ1−→γ2−→ . . . is said to be fair if for
each process enabled in some γi there exists j ≥ i such that the process is active in γj .

Observing Limits. A standard notion of observables for ccp is the results computed by a
process for a given initial store. The result of a computation is defined as the least upper
bound of all the stores occurring in the computation, which, thanks to the monotonic
properties of our calculi, form an increasing chain. More formally, given a finite or
infinite computation ξ of the form 〈Q0, d0〉−→〈Q1, d1〉−→〈Q2, d2〉−→ . . . the result
of ξ, denoted by Result(ξ), is the constraint

⊔
i di. In our calculi all fair computations

from a configuration have the same result: Let γ be a configuration and let ξ1 and ξ2
be two computations of γ. We can show that if ξ1 and ξ2 are fair, then Result(ξ1) =

Result(ξ2). We can then set Result(γ)
def
= Result(ξ) for any fair computation ξ of γ.

Definition 10. (Observational equivalence) Let O : Proc → Con0 → Con be given
by O(P)(d) = Result(〈P, d〉). We say that P and Q are observationally equivalent,
written P ∼o Q, iff O(P) = O(Q).

Example 7. The observation we make of the recursive process global(G, tell(c)) on
input true is the limit gG(c) (Definition 5). I.e.,O(global(G, tell(c)))(true) = gG(c).

The relation∼o can be shown to be a congruence, i.e., it is preserved under arbitrary
contexts. Recall that a context C is a term with a hole •, so that replacing it with a
process P yields a process term C(P). E.g., if C = [•]i then C(tell(d)) = [tell(d)]i .

Theorem 3. P ∼o Q iff for every context C, C(P) ∼o C(Q).

Observing Barbs. In the next section we shall show that the above notion of observa-
tion has pleasant and useful closure properties like those of basic ccp. Some readers,
however, may feel uneasy with observable behaviour involving notions such as infinite
fair computations and limits, i.e., possibly infinite (or non-compact) elements. Never-
theless, we can give a finitary characterization of behavioral equivalence for our calculi,
involving only finite computations and compact elements.

A barb is an element of Con0, i.e., a compact element. We say that γ = 〈P, d〉
satisfies the barb c, written γ ↓c, iff c v d; γ weakly satisfies the barb c, written γ ⇓c,
iff there is γ′ s.t. γ−→∗γ′ and γ′ ↓c. E.g., 〈tell(c) ‖ ask c → [tell(d)]i , true〉 ⇓si(d).

Definition 11. P and Q are barb equivalent, written P ∼b Q, iff ∀d ∈ Con0, 〈P, d〉
and 〈Q, d〉 weakly satisfy the same barbs.

We now establish the correspondence between our process equivalences. First we
recall some facts from domain theory central to our proof of the correspondence. Two
(possibly infinite) chains d0 v d1 v · · · v dn v . . . and e0 v e1 v · · · v en v . . .
are said to be cofinal if for all di there exists an ej such that di v ej and vice versa.

Lemma 2. Let d0 v d1 v · · · v dn v . . . and e0 v e1 v · · · v en v . . . be two
chains. (1) If they are cofinal, then they have the same limit, i.e.,

⊔
di =

⊔
ei. (2) If all

elements of both chains are compact and
⊔
di =

⊔
ei, then the two chains are cofinal.

DX [[X]]I = I(X) DP [[P ‖ Q]]I = [[P]]I ∩ [[Q]]I D0 [[0]]I = {d | d ∈ Con}

DT [[tell(c)]]I = {d | c v d} DA [[ask(c)−→P]]I = {d | c v d and d ∈ [[P]]I} ∪ {d | c 6v d}

DR [[µX.P]]I =
⋂
{S ⊆ P(Con) | [[P]]I[X:=S] ⊆ S}

DS [[[P]i]]I = {d | di ∈ [[P]]I} (for sccp) DE [[[P]i]]I = {d | di ∈ [[P]]I} ∩ [[P]]I(for eccp)

Table 2. Denotational Equations for sccp and eccp. I : Var → P(Con).

The proof of the correspondence shows that the stores of any pair of fair computations
of equivalent processes form pairs of cofinal chains. It also uses a relation between weak
barbs and fair computations: Let 〈P0, d0〉−→〈P1, d1〉−→ . . .−→〈Pn, dn〉−→ . . . be
a fair computation. We can show that if 〈P0, d0〉 ⇓c then there exists a store di s.t.,
c v di. With these observations we can show that two processes are not observationally
equivalent on a given input iff there is a compact element that tells them apart.

Theorem 4. ∼o = ∼b .

Denotational Semantics. Here we define a denotational characterization of observ-
able behaviour that allows us to reason compositionally about our spatial/epistemic
processes. First we can show that the behaviour of a process P , O(P), is a closure
operator on v. The importance of O(P) being a closure operator on v is that it is
fully determined by its fixed points fix (O(P)) = {d | O(P)(d) = d}. More precisely,
O(P)(c) =

⊔
{d ∈ Con | c v d and d ∈ fix (O(P))}. Therefore,

Corollary 2. O(P) = O(Q) iff fix (O(P)) = fix (O(Q)).

We now give a compositional denotational semantics [[P]] that captures exactly the
set of fixed points of O(P). More precisely, let I be an assignment function from Var ,
the set of process variables, to P(Con). Given a term T , [[T]]I is meant to capture
the fixed points of T under the assignment I . Notice that if T is a process P , i.e., a
closed term, the assignment is irrelevant so we simply write [[P]]. The denotation for
processes in sccp is given by the equations DX, D0, DT, DA, DP and DS in Table 2.
The denotation for the processes in eccp is given by the same rules except that the rule
DS is replaced with the rule DE in Table 2.

The denotations of the basic operators are the same as in standard ccp [25] and are
given by equations D0, DT, DA and DP. E.g., DA says that the set of fixed points of
ask c → P are those d that do not entail c or that if they do entail c then they are fixed
points of P. The denotation of a termX under I is I(X) (see DX). The equation DR for
µX.P follows from the Knaster-Tarski theorem in the complete lattice (P(Con),⊆).

The denotation of [P]i in the spatial case is given by equation DS. It says that d is
a fixed point for [P]i if di ∈ [[P]]. Recall that di is i’s view of d, so if di ∈ [[P]], then
i’s view of d is a fixed point for P . In the operational semantics, the S rule is the only
applicable rule for this case. We can use Lemma 1, which says that d = d t si(d

i), to
prove that if di is a fixed point for P then d is a fixed point for [P]i.

The denotation of [P]i in the epistemic case is given by DE instead of DS. It says
that d is a fixed point for [P]i if di ∈ [[P]], as in the spatial case, and d is fixed point of
P . The additional requirement follows from the operational semantics rule E which it
amounts to run [P]i in parallel with (an evolution of) P .

From the above observations we can show that in fact [[P]] = fix (O(P)). Hence,
from Corollary 2 we obtain a compositional characterization of observational equiva-
lence, and thus from Theorem 4 also for barb equivalence.

Theorem 5. P∼oQ iff [[P]] = [[Q]].

4 Compact Approximation of Space and Knowledge

An important semantic property of global information/common knowledge gG(c) (Def-
inition 5) in the underlying scs is that it preserves the continuity of the space functions.
I.e., one can verify that gG(

⊔
D) =

⊔
d∈D gG(d) for any directed set D ⊆ Con .

In contrast gG(c) does not preserve the compactness of the space functions (Remark
2). This means that, although, the limit of infinite computation may produce gG(c), we
cannot have a process that refers directly to gG(c) since processes can only ask and tell
compact elements. The reason for this syntactic restriction is illustrated below:

Example 8. Suppose we had a process P = ask gG(c) → tell(d) asking whether
group G has common knowledge of c and if so posting d. Note that O(P)(true) =
true and O(P)(gG(c)) = gG(c) t d. Now for Q = global(G, tell(c)) we have
O(Q)(true) = gG(c). But one can verify that O(P ‖ Q)(true) = gG(c), and thus
O(P ‖ Q)(O(P ‖ Q)(true)) = O(P ‖ Q)(gG(c)) = gG(c) t d. This would mean
that the observation function is not idempotent, contradicting the fact that O(P) is a
closure operator, a crucial property for full abstraction of our denotational semantics.

Nevertheless, asking and telling information of the form gG(c) could be useful in
certain protocols to state in one computational step, rather than computing as a limit,
common knowledge or global information about certain states of affairs c (e.g., mutual
agreement). To address this issue we extend the underlying scs with compact elements
of the form aG(c) which can be thought of as (over-)approximations of gG(c). The
approximation aG(c) can then be used in our processes to simulate the use of gG(c).
We refer to aG(c) as a announcement of c for the group G to convey the meaning
that gG(c) is attained in one step as in a public announcement. We can only define the
announcements over a finite subset of compact elements S, since an infinite set would
conflict with the continuity aG(·). We only consider announcements for the entire set
of agentsA (for arbitrary groups the construction follows easily). The above-mentioned
extension of an scs C1 into an scs C2(S) with announcement over S is given below:

Definition 12. Let C1 = (Con1,Con1
0,v1, s

1
1, . . . , s

1
n) be an scs over agents A =

{1, . . . , n}. For S ⊆fin Con1
0, define lattice C2(S) = (Con2,Con2

0,v2, s
2
1, . . . , s

2
n)

as follows. The set Con2 is given by two rules: (1) Con1 ⊆ Con2, and (2) for any
finite nonempty indexing set I , if ci ∈ S for all i ∈ I then aA(

⊔
i∈I c) ∈ Con2. The

ordering v2 is given by the following rules: (1) v1⊆v2, (2) d v2 aA(
⊔

i∈I ci) if d ∈

Con1 and d v1 gA(
⊔

i∈I ci), and (3) aA(
⊔

i∈I ci) v2 aA(
⊔

j∈J cj) if gA(
⊔

i∈I ci) v1

gA(
⊔

j∈J cj). Furthermore, for all i ∈ A, for any aA(d) ∈ Con2, s2i (aA(d)) = aA(d)

and for each e ∈ Con1, s2i (e) = s1i (e).

The next theorem states the correctness of the above construction. Intuitively, the
lattice C2(S) above must be an scs and the announcement of a certain fact in c ∈ S
must behave similarly to common knowledge or global information of the same fact.

Theorem 6. Let C1 = (Con1, Con1
0,v1, ...) be a continuous space-compact n-scs

(n-ecs) and let S ⊆fin Con10. Let C2(S) = (Con2, Con2
0,v2, ...) as in Def. 12, then

(1) C2(S) is a continuous, space-compact n-scs (n-ecs), (2) ∀aA(c) ∈ Con2, aA(c) ∈
Con20, and (3) ∀d ∈ Con1, ∀aA(c) ∈ Con2, d v2 aA(c) iff d v1 gA(c).

Related Work. There is a huge volume of work on epistemic logic and its applications
to distributed systems; [11] gives a good summary of the subject. This work is all aimed
at analyzing distributed protocols using epistemic logic as a reasoning tool. While it has
been very influential in setting the stage for the present work it is not closely connected
to the present proposal to put epistemic concepts into the programming formalism.

Epistemic logic for process calculi has been discussed in [7, 9, 14]. In all of these
works, however, the epistemic logic is defined outside of the process calculus, with the
processes as models for the logic, whereas our processes have epistemic (or spatial)
logic terms within the constraint system, as well as knowledge or space constructions
on the processes.

The issue of extending ccp to provide for distributed information has been previ-
ously addressed in [23]. In [23] processes can send constraints using communication
channels much like in the π-calculus. This induces a distribution of information among
the processes in the system. This extension, however, is not conservative wrt to ccp and
hence does not share the goal of the present paper.

Another closely related work is the Ambient calculus [6], an important calculus for
spatial mobility. Ambient allows the specification of processes that can move in and
out within their spatial hierarchy. It does not, however, address posting and querying
epistemic information within a spatial distribution of processes. Adding Ambient-like
mobility to our calculi is a natural research direction.

One very interesting approach related to ours in spirit – but not in conception or
details – is the spatial logic of Caires and Cardelli [4, 5]. In this work they also take
spatial location as the fundamental concept and develop modalities that reflect locativ-
ity. Rather than using modal logic, they use the name quantifier which has been actively
studied in the theory of freshness of names in programming languages. Their language
is better adapted to the calculi for mobility where names play a fundamental role. In ef-
fect, the concept of freshness of a name is exploited to control the flow of information.
It would be interesting to see how a name quantified scs would look and to study the
relationship with the Caires-Cardelli framework.

Finally, the process calculi in [2, 3, 10] provide for the use of assertions within π-like
processes. They are not concerned with spatial distribution of information and knowl-
edge. These frameworks are very generic and offer several reasoning techniques. There-
fore, it would be interesting to see how the ideas here developed can be adapted to them.

Acknowledgments. We thank Raluca Diaconu for her insights and discussions on some
preliminary ideas of this work. This work has been partially supported by the project
ANR-09-BLAN-0169-01 PANDA and European project MEALS.

References

1. S. Abramsky and A. Jung. Domain theory. In T. S. E. M. S. Abramsky, D. M. Gabbay, editor,
Handbook of Logic in Computer Science, vol. III. Oxford University Press, 1994.

2. J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile processes, nominal
data, and logic. In LICS, 2009.

3. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specifying service
level agreements. In ESOP, pages 18–32, 2007.

4. L. Caires and L. Cardelli. A spatial logic for concurrency - i. Inf. and Comp., 2003.
5. L. Caires and L. Cardelli. A spatial logic for concurrency - ii. Theor. Comp. Sci., 2004.
6. L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–213, 2000.
7. R. Chadha, S. Delaune, and S. Kremer. Epistemic logic for the applied pi calculus. In

FMOODS/FORTE, pages 182–197, 2009.
8. F. S. de Boer, A. D. Pierro, and C. Palamidessi. Nondeterminism and infinite computations

in constraint programming. Theor. Comput. Sci., 151(1):37–78, 1995.
9. F. Dechesne, M. R. Mousavi, and S. Orzan. Operational and epistemic approaches to protocol

analysis: Bridging the gap. In LPAR, pages 226–241, 2007.
10. F. Fages, P. Ruet, and S. Soliman. Linear concurrent constraint programming: Operational

and phase semantics. Inf. Comput., 165(1):14–41, 2001.
11. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning About Knowledge. MIT Press,

1995.
12. M. Falaschi, M. Gabbrielli, K. Marriott, and C. Palamidessi. Confluence in concurrent con-

straint programming. Theor. Comput. Sci., 183(2):281–315, 1997.
13. J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed environ-

ment. In Proc. of Principles of Distributed Computing, pages 50–61, 1984.
14. D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: a modular ap-

proach. Journal of Computer Security, 12(1):3–36, 2004.
15. S. Kripke. Semantical analysis of modal logic. Zeitschrift fur Mathematische Logik und

Grundlagen der Mathematik, 1963.
16. N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.
17. J. C. C. McKinsey and A. Tarski. The algebra of topology. The Annals of Mathematics,

second series, 1944.
18. N. P. Mendler, P. Panangaden, P. J. Scott, and R. A. G. Seely. A logical view of concurrent

constraint programming. Nordic Journal of Computing, 2:182–221, 1995.
19. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes i and ii. Information

and Computation, 100:1–77, 1992.
20. P. Panangaden. Knowledge and information in probabilistic systems. In CONCUR 2008,

volume 5201 of LNCS, page 4. Springer-Verlag, 2008. Abstract of invited talk.
21. P. Panangaden, V. Saraswat, P. Scott, and R. Seely. A hyperdoctrinal view of concurrent

constraint programming. In Semantics: Foundations and Applications, LNCS, 1993.
22. S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.
23. J.-H. Réty. Distributed concurrent constraint programming. Fundam. Inform., 1998.
24. V. A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, CMU, 1989.
25. V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foundations of concurrent con-

straint programming. In POPL’91, 1991.

