
Concurrent Common Knowledge:

Defining Agreement for

Asynchronous Systems∗

Prakash Panangaden†‡

Kim Taylor§¶

Cornell University, Ithaca, New York

Abstract

In this paper we present a new, knowledge-theoretic definition of agreement de-

signed for asynchronous systems. In analogy with common knowledge, it is called

concurrent common knowledge. Unlike common knowledge, it is a form of agreement

that is attainable asynchronously. In defining concurrent common knowledge, we give

a logic with new modal operators and a formal semantics, both of which are based on

causality and consequently capture only the relevant structure of purely asynchronous

systems. We give general conditions by which protocols attain concurrent common

knowledge and prove that two simple and efficient protocols do so. We also present

several applications of our logic. We show that concurrent common knowledge is a nec-

essary and sufficient condition for the concurrent performance of distributed actions.

We also demonstrate the role of knowledge in checkpointing and asynchronous broad-

casts. In general, applications that involve all processes reaching agreement about

some property of a consistent global state can be understood in terms of concurrent

common knowledge.

1 Introduction

Knowledge has become an important tool for reasoning about communication and coop-
eration in distributed systems [11, 8, 17, 10]. In this approach, one reasons about what
processes “know” about the states of other processes. Cooperation on a distributed task is
characterized by its requirement of some form of “group knowledge,” and communication is
viewed as a means of transferring knowledge. In [11], common knowledge is proposed as a
definition for agreement in distributed systems. Common knowledge of a fact φ implies that
“everyone knows φ and everyone knows that everyone knows φ and everyone knows that
everyone knows that everyone knows φ” and so on. Common knowledge, however, requires
simultaneous action for its achievement and is consequently unattainable in asynchronous
systems [11, 17].

∗An earlier version of this work appears in Proceedings of the Seventh Annual ACM Symposium on

Principles of Distributed Computing, August 1988.
†Supported in part by NSF grants DCR-8602072 and CCR-8818979.
‡Current address: School of Computer Science, McGill University, Montreal, Quebec, Canada H3A 2A7.
§Supported in part by an AT&T Ph.D. Scholarship.
¶Current address: Department of Computer and Information Sciences, University of California at Santa

Cruz, Santa Cruz, California 95064.

1

In this paper we discuss a new, knowledge-theoretic definition of agreement appropri-
ate for asynchronous systems. This definition has two important features: first, it uses
the causality relation between events in its definition [16] rather than physical time and,
second, this form of knowledge is actually attainable in an asynchronous system. In anal-
ogy with common knowledge, we call it concurrent common knowledge. The idea behind
concurrent common knowledge is quite natural. Given that ordinary common knowledge
must be attained simultaneously by all processes, it seems clear that a viable alternative for
asynchronous systems could use causality rather than real time.

The idea that causal structure is fundamental to the analysis of asynchronous systems
was brought into computer science by Lamport [16]. The appropriate causal analogue of
a real-time global state, i.e. a global state corresponding to the system at an instant of
real time, is a possible global state or, as it is now widely called, a consistent cut. It is
the appropriate analogue because—in asynchronous systems—no process can distinguish
whether or not a consistent cut is, in fact, a real-time global state. Intuitively, we define
everyone concurrently knows to be true at a consistent cut if all processes know that φ is true
of some “indistinguishable” consistent cut. Concurrent common knowledge of a fact φ then
implies all formulas of the form “everyone concurrently knows φ and everyone concurrently
knows that everyone concurrently knows φ,” and so on.

In order to define concurrent common knowledge, we present a logic with new modal
operators. Truth values are assigned to the formulas of this logic via a new asynchronous-

runs semantics in contrast to the commonly-used timed-runs semantics of Halpern and Moses
[11, 10]. We find this new semantics more natural for expressing our formulas as it contains
only the causal structure relevant to asynchronous systems and not real time, which is
unobservable in such systems. We give a translation of our semantics to the timed-runs
semantics; this allows us to compare rigorously concurrent common knowledge to knowledge
formulas defined in the timed-runs semantics.

We prove a general condition under which protocols achieve concurrent common knowl-
edge and give two simple and efficient protocols that do so. Several applications of our new
logic are given. We show that concurrent common knowledge is a necessary and sufficient con-
dition for performing concurrent actions in asynchronous distributed systems, analogously
to simultaneous actions and common knowledge [17] in synchronous systems. It is shown
that the checkpointing algorithm of [3] achieves two forms of concurrent common knowledge.
In general, applications that involve all processes reaching agreement about some property
of a consistent global state can be understood in terms of concurrent common knowledge;
thus we have isolated the form of knowledge underlying many existing protocols. We also
give results pertaining to broadcast message ordering and replicated data updates.

The paper is organized as follows. Section 2 contains our system model. In Section 3
we define our logic and its formal semantics. Section 4 contains our Attainment Theorem,
followed by two protocols which satisfy conditions of that theorem and hence attain con-
current common knowledge. In Section 5 several applications of our logic are presented.
In Section 6 we give a translation of our semantics into the standard timed-runs semantics
[11], and formally compare concurrent common knowledge to common knowledge and other
variants of common knowledge. Section 7 contains concluding remarks.

2

2 System Model

The definitions that we give in this section describe asynchronous, distributed systems. By
the term distributed, we mean that the system is composed of a set of processes that can
communicate only by sending messages along a fixed set of channels. The network is not
necessarily completely connected. By asynchronous, we mean that there is no global clock
in the system, the relative speeds of processes are independent, and the delivery time of
messages is finite but unbounded.

It is our intention to give a definition of the model that uses the structures that are
relevant to such systems. Thus we do not use timed runs to describe these systems [11,
10]. The resulting definitions turn out to be more natural than if we had detailed timing
information in the model description. Of course, the timed runs model is more generally
applicable than ours. In Section 6.1 we give a precise translation of our formalism in the
timed runs formalism. Our model turns out to be similar to that of Chandy and Misra [4].

The description of distributed systems is based on the behaviors of the individual com-
ponents or processes in the system. We take the notion of a local state of a process to be
primitive. Actions, as in [15, 10], are state transformers.

Definition 1. An action is a function from local states to local states. There are three types
of actions: send actions denoted send(m) where m is a message (described later), receive

actions denoted receive(m), and internal actions.

We use local states and actions to compose local histories as in [15, 10].

Definition 2. A local history, hi, of process i, is a (possibly infinite) sequence of alternating
local states—beginning with a distinguished initial state—and actions. We write such a
sequence as follows.

hi = s0
i

α1

i→ s1
i

α2

i→ s2
i

α3

i→ s3
i . . .

We use sj
i (αj

i) to refer to the jth state (action) in process i’s local history.
An event corresponds to a state transition.

Definition 3. An event is a tuple 〈s, α, s′〉 consisting of a state, an action, and a state.

The jth event in process i’s history, 〈sj−1
i , αj

i , s
j
i 〉, is denoted ej

i .
The state of a process can be obtained from its initial state and the sequence of actions or

events that have occurred up to the current state. Hence the local history may be equivalently
described as either of the following:

hi = s0
i , α

1
i , α

2
i , α

3
i . . .

hi = s0
i , e

1
i , e

2
i , e

3
i . . .

If it is additionally assumed that the local state includes a description of all past actions in
the local history (corresponding to the complete history interpretation of [11, 10]), then

hi = s0
i , s

1
i , s

2
i , s

3
i . . .

3

is also an equivalent description of the history. We will assume such an interpretation; note
that this interpretation results in a maximum amount of information being available to a
process based on its local state. We often omit the subscript or superscript on states, events,
and actions when it is obvious or irrelevant.

An asynchronous system consists of the following sets.

1. A set Proc = {1, . . . , N} of process identifiers, where N is the total number of processes
in the system.

2. A set C ⊆ {(i, j)|i, j ∈ Proc} of channels. The occurrence of (i, j) in C indicates that
process i can send messages to process j.

3. A set Hi of possible local histories for each process i in Proc.

4. A set A of asynchronous runs. Each asynchronous run is a vector of local histories,
one per process, indexed by process identifiers. Thus we use the notation

a = 〈h1, h2, h3, ...hN 〉.

Constraints on the set A are described throughout this section.

5. A set M of messages. A message is a triple 〈i, j, B〉 where i ∈ Proc is the sender of
the message, j ∈ Proc is the message recipient, and B is the body of the message. B
can be either a special value (e.g. a tag to denote a special-purpose message), or some
proposition about the run (e.g. “i has reset variable X to zero”), or both. We assume,
for ease of exposition only, that messages are unique.

Since we assume uniqueness of messages, we will typically refer to an event by its action,
e.g. send(m).

The set of channels C and our assumptions about their behavior induce two constraints
on the runs in A. The first constraint corresponds to our intuitive notion of channels: i
cannot send a message to j unless (i, j) is a channel. The second constraint says that, if the
reception of a message m is in the run, then the sending of m must also be in that run; this
implies that the network cannot introduce spurious messages or alter messages.

Constraint (1) If send(〈i, j, φ〉) ∈ hi then (i, j) ∈ C.

Constraint (2) If receive(〈i, j, φ〉) ∈ hj then send(〈i, j, φ〉) ∈ hi.

In addition, we introduce two optional channel constraints: reliability and FIFO. Reli-
ability says that if a message is sent then it is received, i.e. no message loss occurs. FIFO
indicates that channels exhibit first-in-first-out behavior. These properties are not necessary
for our definitions, but we will want to address systems that satisfy them when we address
the attainability of concurrent common knowledge. Unless otherwise stated, they will not
be assumed in the model.

Reliability Constraint: If send(〈i, j, φ〉) ∈ hi then receive(〈i, j, φ〉) ∈ hj .

4

FIFO Constraint: If αw
i = send(〈i, j, φ1〉), α

x
i = send(〈i, j, φ2〉), w < x, and there exist

actions αy
j = receive(〈i, j, φ1〉) and αz

j = receive(〈i, j, φ2〉), then y < z.

Our model of an asynchronous system does not mention time. There is, however, an
ordering of events in the system due to the fact that certain events are known to precede
other events. We can define this order using potential causality as done by Lamport [16].
Intuitively, two events exhibit potential causality if it is possible for one to have an effect
on the other. In an asynchronous system, potential causality results only from sequential
execution on single processes and from message passing between separate processes. It is
described using the happens-immediately-before relation 7→ and the happens-before relation
→.

Definition 4. Event ex
i happens-immediately-before event ey

j , denoted ex
i 7→ ey

j , if and only
if (1) ex

i and ey
j are different events in the history of some process i and ex

i occurs earlier
in the sequence, i.e. i = j and x < y, or (2) ex

i is the sending of a message and ey
j is the

reception of that message; i.e. there exists m such that ex
i = send(m) and ey

j = receive(m).

Definition 5. The happens-before relation, denoted →, is the transitive closure of happens-
immediately-before.

Thus if ex
i → ey

j , then either ex
i 7→ ey

j or there exists an event ez
k such that ex

i → ez
k and

ez
k 7→ ey

j .
Our final requirement is that → be anti-symmetric, which is necessary if the system is

to model actual executions.

Constraint (3) For no two events e1 and e2 does e1 → e2 and e2 → e1.

Our requirements on asynchronous runs are equivalent to those in [4], with the exception that
we limit message sending to occur along the set of designated channels. Chandy and Misra
express the possible behaviors of systems in terms of totally ordered sets of events called
system computations. Their conditions on system computations are that (i) projections on
each process are possible local histories, and (ii) the reception of a message is preceded by
its sending. These are equivalent to stating that the system computations are linearizations
of the → relation.

We can now use Lamport’s theory to talk about global states of an asynchronous system.
A global state is some prefix of a run, as defined below.

Definition 6. A global state of run a is an N -vector of prefixes of local histories of a, one
prefix per process.

The happens-before relation can be used to define a consistent global state [20, 3], often
termed a consistent cut, as follows.

Definition 7. A consistent cut of a run is any global state such that if ex
i → ey

j and ey
j is in

the global state, then ex
i is also in the global state.

(See Figure 1. The states of (b) form a consistent cut whereas those of (a) do not.) Note
that a consistent cut is simply a vector of local states; we will use the notation (a, c)[i] to
indicate the local state of i in cut c of run a.

We often refer to causally-related message chains as defined below.

5

��������

Q
Q

Q
Q

Q
Q�

�
�
�S

S
S
S

S
S
S

S

@
@

@
@

(b)(a)

Figure 1: Inconsistent (a) vs. consistent (b) cuts.

Definition 8. In an asynchronous run, a message chain is a (possibly infinite) sequence of
messages m1, m2, m3, . . . such that, for all i, receive(mi) → send(mi+1). Consequently,

send(m1) → receive(m1) → send(m2) → receive(m2) → send(m3)

Finally, the following lemma establishes a desirable property of asynchronous runs; its
proof is contained in Appendix A.1.

Lemma 1. In any asynchronous run of any system, each local state of each process is
included in some consistent cut of the system.

In any state of the history of process i, i cannot determine which of the possible consistent
cuts including its current state is an actual real-time global state, i.e. a set of local states
that actually occur at the same instant of physical time during the execution. In this sense,
a consistent cut is indistinguishable from a real-time global state. In defining epistemic
concepts, the notion of indistinguishability plays a key role. For this reason we have chosen
to use consistent cuts rather than real time in our logic for reasoning about asynchronous
distributed systems.

3 Semantics of Concurrent Knowledge

The definition of concurrent common knowledge follows the standard pattern of defining
a form of group knowledge and then using a greatest fixed-point operator to define the
appropriate variant of common knowledge [11].

In order to give a Kripkean interpretation of the knowledge modality, we need to iden-
tify an appropriate set of possible worlds and a family of possibility relations between those
worlds. The discussion of concurrent knowledge really involves two modal operators and,
hence, two different collections of accessibility relations in the semantics. This kind of situ-
ation is also seen in other variants of common knowledge. Discussions of eventual, epsilon,
and timestamped common knowledge [11, 18] involve a temporal modality in addition to an
epistemic modality.

6

3.1 The Logic

We will first introduce the symbols contained in our logic. Later we will define a formal
semantics by stating when a formula is satisfied by a pair (a, c), where c is a consistent cut
in asynchronous run a.

We assume that there is a set of primitive propositions Prop; these typically will be
statements like “variable x in process i is 0” or “process i has sent a message m to process
j”. We represent these by lower-case letters p, q,

We introduce two families of modal operators, each family indexed by process identifiers.
They are written Ki and Pi respectively. Intuitively, Ki(φ) represents the statement “i knows
φ,” which in terms of asynchronous systems means “φ is true in all possible consistent global
states that include i’s local state.” The formula Pi(φ) represents the statement “there is
some consistent global state in this run that includes i’s local state, in which φ is true.” P
has, roughly speaking, a role similar to a temporal modality. It is quite different, however,
from the familiar temporal operators like 3.

The next modal operator is written EC and stands for “everyone concurrently knows.”
The definition of EC(φ) is as follows.

EC(φ) =def

∧

i∈Proc

KiPi(φ)

The last modal operator that we introduce is CC , concurrent common knowledge. Anal-
ogously to common knowledge, we wish to define a state of process knowledge that implies
that all processes are in that same state of knowledge, with respect to φ, along some cut of
the run. In other words, we want a state of knowledge X satisfying

X = EC(φ ∧X).

Thus we want concurrent common knowledge to be a fixed point of EC(φ ∧X). CC will be
defined semantically as the weakest such fixed point, namely as the greatest fixed-point of
EC(φ ∧X). It therefore satisfies

CC(φ) ⇔ EC(φ ∧ CC(φ))

and informally
CC(φ) ⇒ EC(φ) ∧ (EC)2(φ) ∧ (EC)3(φ) . . . ,

i.e. that (EC)kφ holds for any k. The greatest fixed point definition is, however, stronger
than the infinite conjunction.

3.2 Formal Semantics

In an asynchronous system, the possible worlds are the consistent cuts of the set of possible
asynchronous runs A. We use pair (a, c) to stand for the consistent cut c in the asynchronous
run a. Recall that a cut is an N -vector of local states, one for each process in Proc. Two cuts
are viewed as indistinguishable by process i if they contain the same local state of process i.
This is clearly an equivalence relation.

7

`

t

t t

t

ti

(a, c) |= Piφ (a, c′) |= φ

Figure 2: Satisfaction of (a, c) |= Pi(φ).

Definition 9. We write (a, c) ∼i (a′, c′) to represent the indistinguishability of (a, c) and
(a′, c′) to i:

(a, c) ∼i (a′, c′) ⇔ (a, c)[i] = (a′, c′)[i]

The formal semantics is given via the definition of the satisfaction relation |=. Intuitively
(a, c) |= φ, “(a, c) satisfies φ,” if fact φ is true in cut c of run a. We assume that we are given
a function π that assigns a truth value to each primitive proposition p and local state s of
process i. The truth of a primitive proposition p in (a, c) is determined by π and c. This
defines (a, c) |= p. The satisfaction relation is defined in the obvious way for formulas built
up using the logical connectives. The following defines the meaning of Ki in our setting:

(a, c) |= Ki(φ) ⇔ ∀(a′, c′) ((a′, c′) ∼i (a, c) ⇒ (a′, c′) |= φ)

This is practically the same as the definition in Halpern and Moses [11], except that we use
asynchronous runs rather than timed runs.

The meaning of Pi is given by the following definition.

(a, c) |= Pi(φ) ⇔ ∃(a, c′) ((a, c′) ∼i (a, c) ∧ (a, c′) |= φ)

In other words, Pi(φ) states that there is some cut, in the same asynchronous run, including
i’s local state, such that φ is true in that cut. (See Figure 2.) Another way of viewing the
meaning of Pi is to define the equivalence relation ≈i to stand for indistinguishable cuts in
the same run; this is a refinement of the ∼i relation.

(a, c) ≈i (a′, c′) ⇔ (a = a′) ∧ (a, c) ∼i (a′, c′)

Given the definition of ≈i we can equivalently define Pi as follows.

(a, c) |= Pi(φ) ⇔ ∃(a′, c′) ((a′, c′) ≈i (a, c) ∧ (a′, c′) |= φ)

Note that φ implies Pi(φ). This makes EC(φ) =def

∧
i∈ProcKiPi(φ), concurrent knowledge,

weaker than E(φ) =def

∧
i∈ProcKi(φ), “everyone knows”.

It is not the case, in general, that Pi(φ) implies φ or even that EC(φ) implies φ. Note
that the truth of EC(φ) is determined with respect to some cut (a, c). A process cannot
distinguish which cut, of the perhaps many cuts that are in the run and consistent with its

8

local state, satisfies φ; it can only know the existence of such a cut. In particular, the cut c
may not satisfy φ. EC(φ) does imply φ, but only for certain types of facts, as we will discuss
at the end of this section. Of course, if φ⇒ ψ then EC(φ) ⇒ EC(ψ), i.e. EC is monotonic.

The remainder of our formal semantics outlines the definition of CC using greatest fixed
points. In order to define the meaning of CC using fixed points we need to define the meaning
of formulas with a free variable X in them; we allow only one free variable in such formulas.
We think of the meaning of a formula with a free variable as a function from sets of consistent
cuts to sets of consistent cuts. Let us call the set of consistent cuts W . Then we can define
the following meaning function for all formulas. We let Z stand for a generic subset of W .
The meaning of the formulas is given by the inductively defined function M. The meaning of
the primitive propositions p, q, . . . is given by a function π as discussed above. The meaning
function defined below follows very closely the definition given by Halpern and Moses [11]
and by Kozen [14].

1. M[[p]](Z) = {u ∈W |π(u, p) = true} where p is a primitive proposition.

2. M[[¬φ]](Z) = W −M[[φ]](Z).

3. M[[φ ∧ ψ]](Z) = M[[φ]](Z) ∩M[[ψ]](Z).

4. M[[X]](Z) = Z.

5. M[[Ki(φ)]](Z) = {(a, c) ∈W |∀(a′, c′) ∈W ((a, c) ∼i (a′, c′) ⇒ (a′, c′) ∈ M[[φ]](Z))}.

6. M[[Pi(φ)]](Z) = {(a, c) ∈ W |∃(a′, c′) ∈W ((a, c) ≈i (a′, c′) ⇒ (a′, c′) ∈ M[[φ]](Z))}.

If a formula does not contain a free variable then its meaning is a constant function. The
truth value definition of the semantics can be recovered by defining

(a, c) |= φ iff (a, c) ∈ M[[φ]](∅).

In fact the semantic clauses just given are exactly what one would expect for the Tarski-style
truth definition except that they have been given in terms of sets and set operations instead
of truth values and logical connectives.

We will define CC via a greatest fixed-point operator. We extend the syntax by νX.φ.
The interpretation of this proceeds as follows. The existence of the greatest fixed point
depends upon the monotonicity of M[[φ]](Z); a function f is monotonic if A ⊆ B implies
f(A) ⊆ f(B). To guarantee monotonicity, we require that free occurrences of X in φ be
positive, i.e. all occurrences of X are in the scope of an even number of negation signs. This
is clearly a syntactic property. It is easy to see (by induction on the structure of formulas)
that M[[φ]](Z) will be a monotonic function if X appears positively. Any monotonic function
on a complete lattice has a greatest fixed point [21]. The powerset 2W ordered by inclusion
is certainly a complete lattice. We can thus give meaning to νX.φ as

M[[νX.φ]](Z) = ∪{B|M[[φ]](B) = B}

and CC(φ) can be viewed as a special case of this as follows:

CC(φ) = νX.EC(φ ∧X)

9

It is not true that EC(φ∧X) defines a continuous function so the fixed point is not necessarily
attained by simply iterating through all of the integers; in this sense CC is rather like C⋄ [11].
Note that in the logic the only occurrence of greatest fixed points is through occurrences of
CC . In such occurrences one never has to interpret formulas like νX.νY.X∧Y where there
are fixed points of expressions containing more than one free variable.

This completes our definition of satisfiability, i.e. whether or not (a, c) |= φ for any
asynchronous run a, cut c in a, and any formula φ of the logic. Furthermore, we will use the
following terminology and notation to describe valid formulas that are true in all cuts of all
systems, and formulas that are valid in a system.

Definition 10. Fact φ is valid in system A, denoted A |= φ, if φ is true in all cuts of all
runs of A, i.e.

∀a ∈ A ∀c ((a, c) |= φ)

Definition 11. Fact φ is valid, denoted |= φ, if φ is valid in all systems, i.e. ∀A (A |= φ).

The fact that concurrent common knowledge is a greatest fixed point is expressed by an
induction rule. Before presenting the rule, we first give a preliminary lemma that justifies
the usual substitution rule for applying a function to its arguments. It states that applying
the function M[[ψ(X)]] to the set M[[φ]](∅) is the same as first replacing X by φ in ψ and
applying the function M[[ψ(X/φ)]] to ∅. This can be proved by an easy structural induction
on the formula.

Lemma 2. If ψ is a formula with free variable X and φ is a formula, then

M[[ψ(X)]](M[[φ]](∅)) = M[[ψ(X/φ)]](∅).

Now the following theorem gives the induction rule and establishes its soundness.

Theorem 1. The following induction rule is sound with respect to the semantics defined
previously. If φ⇒ EC(φ ∧ ψ) is valid in A then φ⇒ CC(ψ) is also valid in A.

Proof: Let F be the functional λu.M[[EC(φ ∧ ψ ∧X)]](u), where u is an element of 2W .
Recall that the meaning of CC(φ ∧ ψ) is the greatest fixed point of F .

We assume that φ⇒ EC(φ∧ ψ) is valid in A. Semantically, this means that M[[φ]](∅) ⊆
M[[EC(φ ∧ ψ)]](∅). By Lemma 2 we have that M[[EC(φ ∧ ψ)]](∅) = F (M[[φ]](∅)), so M[[φ]](∅) ⊆
F (M[[φ]](∅)). Now the monotonicity of F gives us the following chain of inclusions:

M[[φ]](∅) ⊆ F (M[[φ]](∅)) ⊆ F (F (M[[φ]](∅))) . . .

Because, in general, F need not be continuous, we cannot be sure that it suffices to iterate
F through all of the integers, i.e. up to ω. Thus, we need to define F α for arbitrary ordinals
α. Recall that ordinals are either the immediate successor of another ordinal or are limit

ordinals. For example, ω is not the immediate successor of any other ordinal; it is instead
defined as the least upper bound of all of the finite ordinals. For an ordinal of the form
α = β + 1, we have F α = F (F β). For limit ordinals, i.e. ordinals, like ω, that are not the
immediate successor of any other ordinal, F α(S) = ∪β<α(F β(S)).

10

Thus M[[φ]](∅) ⊆ ∪αF
α(M[[φ]](∅)), where α ranges through the ordinals. Knaster [12] and

Tarski [21] have proved that ∪αF
α(M[[φ]](∅)) is a fixed point of F . Since M[[CC(φ ∧ ψ)]] is

the greatest fixed point, we have that ∪αF
α(M[[φ]](∅)) ⊆ M[[CC(φ ∧ ψ)]]. Therefore it must

be the case that M[[φ]](∅) ⊆ M[[CC(φ ∧ ψ)]]. So far, we have shown that if φ ⇒ EC(φ ∧ ψ)
is valid in A then φ⇒ CC(φ ∧ ψ) is valid in A.

Finally, we need to show that CC is monotonic, i.e. if φ⇒ ψ then CCφ⇒ CCψ. This is
immediate from the fact that the greatest fixed-point operator is monotonic. The latter is
an easy exercise in lattice theory. Thus, we have CC(φ∧ψ) ⇒ CCψ and hence φ⇒ CCψ.

As noted earlier, it follows from our definitions that

CC(φ) ⇔ EC(φ ∧ CC(φ))

is valid and that CC(φ) ⇒ (EC)k(φ) is valid for any natural number k. It does not follow
from the definitions, in general, that either

CC(φ⇒ ψ) ∧ CC(φ) ⇒ CC(ψ)

or CC(φ) ⇒ φ is valid. As noted earlier for EC(φ), this is because processes cannot distin-
guish whether or not φ holds on the same cut on which CC(φ) holds; rather, they know that
it holds on some indistinguishable cut in the current run.

The operators Pi, E
C , and CC have stronger properties for local facts. A local fact is one

that is determined solely by the local state of some process; for example, a fact regarding
a value contained only in the local memory of that process. The following definition is
equivalent to that of Chandy and Misra [4].

Definition 12. A fact φ is local to process i in system A if

A |= (φ⇒ Kiφ)

For a fact φ that is local to process i in system A, it is the case that A |= (Pi(φ) ⇒ φ).
Furthermore, if a fact φ is local to any process in system A, then A |= (EC(φ) ⇒ φ) and
A |= (CC(φ) ⇒ φ).

Theorem 2. If φ is local to process i in system A, then A |= (Pi(φ) ⇒ φ).

Proof: Suppose that φ is local to process i in system A. Suppose also that for some cut (a, c),
(a, c) |= Pi(φ). By the definition of Pi, there is some cut c′ in run a such that (a, c) ∼i (a, c′)
and (a, c′) |= φ. By locality, A |= (φ ⇒ Kiφ) and thus (a, c′) |= Kiφ. By the definition of
Kiφ, we have that (a, c) |= φ.

A corollary to the previous theorem follows because, for any fact φ and process i, EC(φ) ⇒
Pi(φ) is valid and CC(φ) ⇒ EC(φ) is valid.

Corollary 1. If fact φ is local to any process in a system A, then A |= (EC(φ) ⇒ φ) and
furthermore A |= (CC(φ) ⇒ φ).

11

4 Attainment of CCK

For ordinary common knowledge, C, it is a theorem that if C is attained then all processes
learn it simultaneously [11, 19]. An analogous theorem holds for concurrent common knowl-
edge. Before stating the theorem, we will first formalize the notions of “attainment” and
“learning.”

Definition 13. A fact φ is attained in run a if ∃c ((a, c) |= φ).

Likewise, we say that a system attains φ if every run of the system attains φ.
In this section and the following section we will often refer to “knowing” a fact in a

state rather than in a consistent cut. Recall that knowledge is dependent only on the local
state of a process, since (a, c) ∼i (a′, c′) iff (a, c)[i] = (a′, c′)[i]; therefore such terminology is
reasonable. Formally, i knows φ in state s is shorthand for

∀(a, c) ((a, c)[i] = s⇒ (a, c) |= φ).

Definition 14. Process i learns φ in state sj
i of run a if i knows φ in sj

i and, for all states
sk

i in run a, k < j, i does not know φ.

The following theorem says that if CC(φ) is attained in a run then all processes i learn
PiC

C(φ) along a single consistent cut.

Theorem 3. If CC(φ) is attained in a run a, then the set of states in which all processes
learn PiC

C(φ) forms a consistent cut in a.

Proof: CC(φ) is attained in a implies that there exists some consistent cut where CC(φ)
holds. Since CC(φ) implies

∧
i∈ProcKiPiC

C(φ), there must exist states s1, . . . , sN such that
si is the state in which i learns PiC

C(φ). We will show that cut c = 〈s1, . . . , sN〉 must be
consistent.

Suppose that c is inconsistent. Then there must be a message m, say from process j to
process k, such that receive(m) is included in state sk but send(m) is not included in state
sj. Any consistent cut c′ where (a, c′)[j] = sj cannot include the reception of m, since sj

does not include send(m). Furthermore, by the definition of sk, the reception of m occurs
before k learns PkC

C(φ). Therefore in any consistent cut c′ where (a, c′)[j] = sj, k does not
know PkC

C(φ). We next show that this is impossible.
By the definition of sj, j knows PjC

C(φ) in sj , i.e. in any consistent cut c1 where
(a, c1)[j] = sj, we have (a, c1) |= PjC

C(φ). By the definition of P , this means that there is
some consistent cut c2, (a, c2)[j] = (a, c1)[j] = sj , for which (a, c2) |= CC(φ). The definition
of CC implies furthermore that (a, c2) |=

∧
i∈ProcKiPiC

C(φ) which in turn implies (a, c2) |=
KkPkC

C(φ). This contradicts the statement above that, in any consistent cut c′ where
(a, c′)[j] = sj (including (a, c2)), k does not know PkC

C(φ). Hence the supposition that c is
inconsistent must be false, making the theorem true.

This theorem can be trivially extended to address cases in which CC(φ) is attained
periodically. Whenever CC(φ) does not hold on a particular cut but does hold on some

12

extending cut, between those cuts all processes i first reach a state in which PiC
C(φ) is

known along a single consistent cut.
The previous theorem illustrates an important difference between C(φ) and CC(φ). In

asynchronous systems, simultaneous action of any kind is impossible. Action coordinated to
occur along a consistent cut is, however, easily achievable. We proceed by first presenting
our Attainment Theorem, which gives a general criterion by which concurrent common
knowledge may be attained in distributed protocols. Following the Attainment Theorem we
give two protocols and prove that they meet the criterion of the theorem.

In order to achieve CC(φ), it will be sufficient that a system have a set S of cuts, at least
one per run, with the following property: when the local state of any process is in a cut of
S in some run, then the same local state of that process is at some cut of S in every run in
which it occurs. In other words, the process knows that it is at one of the cuts. We describe
this more formally by defining locally-distinguishable cut sets below.

Definition 15. A locally-distinguishable cut set S of a system A is a set of cuts S such that:

∀a ∈ A ∃c ((a, c) ∈ S) and

[∀i ∈ Proc ∀(a, c) ∈ S ∀(a′, c′)

((a′, c′) ∼i (a, c) ⇒ (∃(a′, d) ∈ S (a′, d) ∼i (a, c)))]

In the definition above, suppose that we let inS stand for a formula such that (a, c) |= inS
iff (a, c) ∈ S. (If such a formula did not actually exist, we could carry out an analogous
development using the set S and the meaning of formulas as functions from sets of cuts to
sets of cuts; for simplicity we use this scheme.) Given the formula inS, the second condition
for a locally-distinguishable cut set can be rewritten as simply

inS ⇒ EC(inS).

We now show the primary result of this section: any system that guarantees that there is
a locally-distinguishable cut set where a fact φ holds attains concurrent common knowledge
of φ. We will later give two protocols to guarantee that a system attains CC(φ), given
particular assumptions on the fact φ.

Theorem 4. (Attainment Theorem) If a system A has a locally-distinguishable cut set
S such that

∀(a, c) ∈ S ((a, c) |= φ)

then
∀(a, c) ∈ S ((a, c) |= CC(φ)),

i.e. the system attains concurrent common knowledge of φ.

Proof: Let inS stand for a formula such that (a, c) |= inS iff (a, c) ∈ S, as above. By
the definition of a locally-distinguishable cut set, inS ⇒ EC(inS) is valid in A. By the
conditions of the theorem, inS ⇒ φ is valid in A. Thus we have

A |= (inS ⇒ EC(φ ∧ inS)).

13

Then, by the induction rule (Theorem 1),

A |= (inS ⇒ CC(φ)).

Thus, ∀(a, c) ∈ S((a, c) |= CC(φ)).

We now proceed to a discussion of attaining CC of a fact using specific protocols. A
protocol is a partial specification on the set of runs of a system. It includes a set of actions
with conditions on those actions. These may be conditions on the entire run, such as “process
i executes α at some point in the run,” or conditions on the state preceding the action, such
as “process i sends m immediately after receiving m′.” We say that a system implements

a protocol if all runs of the system satisfy the specification. Note that one system may
implement multiple protocols.

Before giving our protocols, we must first discuss for which facts φ attaining CC(φ) is
possible. CC(φ) cannot be guaranteed to be attained by a protocol implementation if φ is
false or may be falsified during execution of the protocol. We say that φ is locally controllable

by i if, whenever i knows φ in any state, i can prevent falsifying φ for any finite number of
events. Note that a stable fact—one that, once true, remains true forever—is always locally
controllable by any process. Unstable facts that are local to a process i are also typically
locally controllable by i. An example of this is xi = 1, where xi is a local variable of i. Any
fact that becomes known to some process and is locally controllable by that process can
become concurrent common knowledge among all processes.

By our definitions, in order for a system to implement the following protocols the fact φ
must become known at some point in all runs. Alternatively, we could weaken our require-
ments so that CC(φ) is only attained if φ is ever known, and only runs in which φ becomes
known must contain an element of the locally-distinguishable cut set. For simplicity we use
the current scheme.

We assume that processes can control the receipt of messages. Furthermore, a protocol
can indicate that messages are not to be sent or received by a process at certain times.

The two protocols that follow differ in three primary ways: their message complexities,
the degree to which they prevent communication events from occurring, and the requirement
of FIFO channels. Protocol 1 causes less suspension of communication but requires FIFO
channels, whereas Protocol 2 requires fewer protocol messages and does not require FIFO
behavior. We will discuss these issues further after presenting the protocols and proving
their correctness.

In the presentation of each protocol, a cut state refers to the local state of a particular
process that is included in the protocol cut. Local distinguishability is guaranteed because
each cut state occurs immediately upon the completion of specific actions by the process.

Our first protocol is similar to the checkpointing protocol of Chandy and Lamport [3]
and to echo algorithms of Chang [5]. It causes messages to be sent along every channel in
the system. Intuitively, it creates a consistent cut because—since channels are FIFO—any
message sent after execution of the protocol must be received after any messages the protocol
sent along the same channel. Below, CCK identifies messages of the protocol.

Protocol 1. Attainment of CC(φ).

14

A
A
A
A
A
A HHHHHHHHHHH

�
�
�

�
�
�

%
%

%
%

%
%

(b)(a)

i

j

i

j

sisi

m(φ,CCK)

sjsj

m

(φ,CCK)

Figure 3: Proof of Theorem 5: (a) case 1, (b) case 2.

• The initiator I, at some point in its local history where I knows φ, sends the message
〈I, j, (φ, CCK)〉 to all neighbors j and then immediately reaches its cut state. Be-
tween sending the first message and reaching the cut state, I receives no messages and
prevents falsifying φ.

• All other processes, i, upon first receiving a message of the form 〈j, i, (φ, CCK)〉, sends
〈i, k, (φ, CCK)〉 to all neighbors k 6= j and then immediately reaches its cut state.
Between sending the first message and reaching the cut state, i receives no messages.

Theorem 5. Let A be a system with reliable, FIFO channels in which φ is locally control-
lable by I. If A implements Protocol 1, then A attains CC(φ).

Proof: For each process i, let si be the cut state indicated in the specification of the protocol.
We show that states s1, s2, . . . , sN form a consistent cut by contradiction. Suppose to the
contrary that there is a message m sent after si but received before sj. Note thatm cannot be
one of the CCK-labeled protocol messages, since cut states are not reached until all protocol
messages have been sent. There are two cases to consider: (1) i sends a protocol message
to j, or (2) i does not send a protocol message to j, which implies that i received its first
protocol message from j.

In case (1), i must have sent m to j after si, by assumption, and consequently after
sending 〈i, j, (φ, CCK)〉 to j. Since channels are FIFO, the protocol message must reach j
before message m. Unless j has already reached its cut state when receiving 〈i, j, (φ, CCK)〉,
it sends out its protocol messages and reaches its cut state before receiving any further
messages. In either case, j reaches sj before receiving m and the assumption that m was
received before sj is false. (See Figure 3(a).)

In case (2), the protocol message from j arrives before si and consequently before the
sending ofm. By assumption m is received before sj. Since j must send all protocol messages
before reaching its cut state with no intervening receives, m must be received by j before
sending the protocol message to i. (See Figure 3(b).) However, this implies causal circularity,
since

receive(m) → send(j, i, (φ, CCK)) → receive(j, i, (φ, CCK))

→ send(m) → receive(m).

15

Again the assumption that m was received before sj must be false.
Let S be the set of possible consistent cuts characterized as above. Every run of a

system implementing the protocol contains one of these cuts. Since the state of each process
contained in the cut always immediately follows the sending of the protocol messages (and is
therefore distinguishable), S is a locally-distinguishable cut set. Since φ holds initially and
on any cut up through I’s completion of the protocol, for any (a, c) in S we have (a, c) |= φ.
The theorem then follows from Theorem 4.

In Protocol 2, three sets of messages Prepare, Cut, and Resume are sent respectively
from the initiator to all processes, back to the initiator, and back to processes. We assume
that messages between the initiator and each process are forwarded as necessary by other
processes on paths of length d or less, where d is the diameter of the network (recall that the
network is not completely connected, so there may not be channels between the initiator and
some processes). The sending of non-protocol messages is suppressed between non-initiators
sending Cut and receiving Resume.

Protocol 2. Attainment of CC(φ).

1. The initiator I, at some point in its local history when I knows φ, sends the message
〈I, j, (φ, Prepare)〉 to each process j 6= I. Also, the initiator prevents falsifying φ from
the beginning of step (1) until the end of step (3).

2. Each process j 6= I, upon receiving 〈I, j, (φ, Prepare)〉, begins suppression of non-
protocol send events, sends 〈j, I, (φ, Cut)〉 to the initiator, and then reaches its cut
state.

3. The initiator I, after receiving 〈j, I, (φ, Cut)〉 from all processes j 6= I, immediately
reaches its cut state and then sends 〈I, j, (φ,Resume)〉 to all processes j 6= I.

4. Each process j 6= I, upon receiving 〈I, j, (φ,Resume)〉, resumes sending of non-protocol
messages.

Theorem 6. Let A be a system with reliable channels in which φ is locally controllable by
I. If A implements Protocol 2, then A attains CC(φ).

Proof: Again, for each process i let state si be the cut state indicated in the protocol. We
show by contradiction that this set of states forms a consistent cut. Suppose message m is
sent after one of these states but received before another. There are three cases to consider:
(1) m is from I to some j 6= I, (2) m is from some j 6= I to I, and (3) m is from some i 6= I
to some j 6= I.

In case (1), illustrated in Figure 4(a), let m1, ...mk be the sequence of forwarded Cut
messages from j to the initiator. In the figure, “×” denotes the cut states sj and sI . State
sj immediately follows the sending of m1. State sI immediately follows the initiator’s last
reception of a Cut message from its children (after but not necessarily immediately after the
reception of mk). Since the inconsistent message m is received before sj, it is received before
send(m1), which immediately precedes sj. Clearly send(m1) happens-before receive(mk).

16

s

s

s

s

�
�

�

�
�

�

���������������

J
J
J

J
J
J

�
�
@

@

�
�
@

@

T
T
T b

b
b

b
b

b
b

b
b

b
b

b
b T

T
T

@
@
�

�

�
�
@

@ sI

sj

sI

sj

receive(m)

(b)

I

j

mk

m1 = Resume

send(m)(Sends Suspended)

receive(m)

mk = Cut

m1

j

I

(a)

send(m)

Figure 4: Proof of Theorem 6: (a) case 1, (b) case 2.

But receive(mk) is received by the initiator before sI and hence before sending m. Thus the
inconsistency of m produces a causal cycle, and hence an invalid run.

In case (2), illustrated in Figure 4(b), the sending of an inconsistent message m by j
cannot occur until non-protocol sends are resumed, which happens after Resume is received
by j. Let m1, ...mk be the sequence of forwarded Resume messages from the initiator to j,
so receive(mk) happens-before send(m). If m is received before sI then it is received before
I sends m1, and again an invalid circularity results.

Case (3), in which the inconsistent message m is between two non-initiators, is essentially
a concatenation of case (1) and case (2). After the reception of m, j must send a forwarded
Cut message to the initiator, which later sends a forwarded Resume message to i. Message
m cannot be sent by i until after the Resume is received, with the same result. Therefore
the states indicated form a consistent cut. The remainder of the proof confirms a locally-
distinguishable cut set where φ holds exactly as in the proof of Theorem 5.

Protocol 2 does not require FIFO channels and uses only 3nd messages, where d is the
diameter of the network. If all channels are bi-directional, this can be further optimized
using a spanning tree of the network, to require only 3(n − 1) messages [22]. In contrast,
Protocol 1 does require FIFO channels and uses up to two messages per pair of neighboring
processes, or O(n2) messages. However, Protocol 2 suspends send events between its phases;
communication from the initiator is required to resume send activity, which in turn occurs
only after the initiator receives communication from every process indirectly through its
children. Protocol 1 only suspends activity while a process is sending protocol messages to

17

its neighbors. Hence Protocol 1 interferes less with the underlying system. The trade-off
between these two protocols depends on the degree that the system may be degraded by
the suspension of activity. This suspension is termed inhibition and is studied extensively in
[22, 6, 7].

We have shown in this section that concurrent common knowledge is attainable in asyn-
chronous systems by giving two simple and efficient protocols that do so. This makes it a
potentially useful form of knowledge, as it describes states that can and do arise in such
systems. Given a problem that can be formulated in terms of CC , a solution immediately
follows from these results.

5 Applications

The logic that we have presented, along with the semantics for concurrent knowledge and
concurrent common knowledge, can have the following roles in the development and analysis
of distributed algorithms: (1) simplification of solutions and proofs for problems that can be
formulated in terms of concurrent knowledge or concurrent common knowledge, (2) charac-
terization of implicit agreement present in certain algorithms, and (3) a tool for reasoning
about asynchronous distributed algorithms, particularly with respect to causality.

This section contains several examples in which these goals are realized. We prove nec-
essary and sufficient conditions for concurrent actions to take place in distributed systems.
We prove a sufficient condition for broadcasts from a common initiator to arrive in their
original order at all locations in the network, and apply this to updating replicated data.
We show that concurrent common knowledge characterizes the knowledge between two pro-
cesses attained by a single message transfer along reliable FIFO channels. Finally, we give
a novel analysis of the Chandy-Lamport checkpointing algorithm with regard to both pro-
cess states and channel states. Importantly, the expressiveness of our logic has led to short,
straightforward proofs for these applications. We assume reliable channels throughout this
section.

5.1 Concurrent Actions

In the theorem that follows, we use our logic to exhibit a necessary and sufficient condition
for the performance of concurrent actions in distributed systems. Concurrent actions are sets
of actions that are to be performed concurrently—immediately following a single consistent
cut of the system—or not at all. The relationship between concurrent common knowledge
and concurrent actions is analogous to that between common knowledge and simultaneous

actions [17] in synchronous systems.

Definition 16. A vector of actions α = 〈α1, α2, ..., αN〉 is a concurrent action of system A
iff the following holds. If any element αi occurs in history a[i] of A, following state si, then
there is a consistent cut (a, c) = 〈s1, s2, . . . sN〉 and for every j, αj follows state sj.

For example, suppose that each of a set of processes has a local clock, and those local
clocks are to be reset concurrently. Then

18

{ αi | αi = “reset local clock i ”}

is the corresponding vector of actions. We use the operator Pi to give a necessary and
sufficient condition on the concurrent performance of actions in the next theorem.

In the theorem, if φi is a precondition of an action then i will execute the action immedi-
ately following (a, c)[i] iff (a, c) |= φi. Reasonable preconditions are local, i.e. φi ⇒ Kiφi is
valid in the system. This follows automatically from the positive introspection axiom if φi

is of the form Kiψ for any ψ. We assume locality of preconditions.

Theorem 7. Let α = 〈α1, α2, . . . , αN〉, for each i let φi be the precondition of αi, and let
φ ≡

∧
i∈Proc φi. Then α is a concurrent action in A iff

∧

i∈Proc

(φi ⇒ KiPiφ)

is valid in A.

Proof: First we show that if the formula is not valid then α is not a concurrent action. If the
formula is not valid then, for some i and some (a, c) we have (a, c) |= (φi ∧ ¬KiPiφ). Since
(a, c) |= ¬KiPiφ, there is some cut (a′, c′) ∼i (a, c) such that (a′, c′) |= ¬Piφ. By locality,
(a′, c′) |= φi, so i executes αi in a′. However, it follows from (a′, c′) |= ¬Piφ that for all c′′

such that (a′, c′′) ∼i (a′, c′), we have (a′, c′′) |= ¬φ. Thus all other processes j do not execute
αj concurrently with αi in a′, and α is not a concurrent action in A.

Next we show that if the formula is valid in A then α is a concurrent action. Suppose that,
for all i and all (a, c), φi ⇒ KiPiφ holds and that process i executes αi following state (a, c)[i].
By the definitions of Ki and Pi, there must be a cut (a, c′) such that (a, c′)[i] = (a, c)[i] and
where φ holds. By the definition of precondition all processes j perform action αj following
(a, c′)[j]. Therefore the validity of φi ⇒ KiPiφ in A guarantees concurrent performance.

This result is extended by the corollaries below; they give necessary and sufficient condi-
tions on concurrent performance based on concurrent common knowledge.

Corollary 2. Given the conditions of Theorem 7, if α is a concurrent action of A then
φ⇒ CCφ is valid in A.

Proof: From Theorem 7, we have that α is a concurrent action of A implies the validity of∧
i∈Proc(φi ⇒ KiPiφ) in A. This is turn implies that

∧
i∈Proc φi ⇒

∧
i∈ProcKiPiφ is valid in

A; this formula is equivalent to φ⇒ ECφ. By the induction axiom, we have that φ⇒ CCφ
is valid in A.

Corollary 3. Given the conditions of Theorem 7, if
∧

i∈Proc(φi ⇒ CCφ) is valid in A, then
α is a concurrent action of A.

Proof: By the definition of CC , CC(φ) ⇒ EC(φ) ⇒
∧

i∈ProcKiPi(φ) is valid. Thus if∧
i∈Proc(φi ⇒ CCφ) is valid in A then

∧
i∈Proc(φ ⇒ KiPi(φ)) is valid in A. By Theorem 7,

this implies that α is a concurrent action of A.

19

5.2 Broadcast Ordering

In this section we consider the problem of one process broadcasting a sequence of facts
φ1, φ2, ... to all processes such they arrive everywhere in the order that they are sent.

Definition 17. In an asynchronous run, a broadcast of φ by process i is a set ofN−1 message
chains, possibly having some messages in multiple chains, such that (1) each message chain
begins with a message from i, (2) all messages contain φ in the message body, and (3) each
process j 6= i is the recipient of the last message of one of the message chains. Additionally,
we say that process i initiates the broadcast when it sends the first message in its history
that is the first message of one of the message chains.

Note that both Protocol 1 and Protocol 2 contain broadcasts.
In general, broadcasting a series of facts one at a time—sending the first messages of all

chains of one broadcast before sending any of the next—does not guarantee that they arrive
in the same order everywhere, even in FIFO systems, because messages may take different
routes of differing transmission speeds. We give a theorem and corollary relating sufficient
conditions so that (1) facts are guaranteed to arrive in the correct order everywhere, and (2)
all processes know that they arrive in the correct order everywhere. Let ρ(φ) denote “fact φ
has been received by all processes.”

Theorem 8. If i knows Pi(ρ(φk)) before initiating a broadcast of φk+1, then φk is guaranteed
to arrive before message φk+1 at all processes.

Proof: Consider any run a in which i knows Pi(ρ(φk)) before initiating a broadcast of φk+1.
By the definition of Pi, there must be a consistent cut (a, c′) where ρ(φk) holds; furthermore,
(a, c′)[i] precedes the beginning of all of the broadcast message chains for φk+1. If φk+1

arrived at some process j before φk, hence before (a, c′)[j], then the message chain from i to
j must begin after (a, c′)[i] and end before (a, c′)[j], making cut c′ inconsistent.

This is a good example of a simple situation where KiPiψ is sufficient to perform an
action rather than the stronger traditional knowledge Kiψ. Since it is not necessary to know
that all messages have been received at the current instant of real time in order to know
Piρ(φk), this alleviates the latency of waiting for acknowledgements.

A result of this theorem is that Protocol 1 and Protocol 2 can be used to insure that
multiple messages sent to all processes are ordered properly. Just as CC(α) is attained with
the protocols invoked with locally-controllable parameter α, the fact ρ(α) becomes concurrent
common knowledge also. This follows from the Attainment Theorem (Theorem 4) because
ρ(α) always holds on the locally-distinguishable cuts of the protocols. Thus the protocols
can achieve CCρ(φk), which in turn implies KiPiρ(φk).

The theorem above does not imply that the non-initiating processes know that they have
received messages in the proper order. This is clearly guaranteed, however, if it is common
knowledge that KiPiρ(φk) is a precondition to i initiating the broadcast of φk+1.

Corollary 4. If it is common knowledge that, for all facts φk, KiPiρ(φk) is a precondition
to i initiating the broadcast of φk+1, then all processes know that they receive the facts in
the order that they are sent by i.

20

5.3 Updates to Replicated Data

In this example, we use the results on broadcast message ordering to develop a protocol for
maintaining consistency of updates to replicated data items. Consider a replicated data item
x, where xi indicates i’s copy of the data. Suppose that process I must perform a sequence
of updates to x such that these updates occur in the same order at all copies as they do at
I.

Operation Ordering Problem: When a process I performs a series of oper-
ations, Op1, Op2, ... that modify its copy xI of replicated variable x, ensure that
the operations are carried out on each additional copy xi so that Op1(xi) →
Op2(xi) →

Let ψk denote “operation Opk has been performed on xI .” The sequence numbers are
a notational convenience and are not necessary in the messages sent by processes. In the
previous section we observed that Protocol 1 and Protocol 2 can insure that a series of
broadcasts sent by I arrive at all processes in the order that they are sent. Therefore, a
method which uses one of those protocols for broadcasting operations and in which each
process performs operation Opk immediately upon reaching its cut state—i.e. upon learning
CCρ(ψk)—solves the Operation Ordering Problem. Using Protocol 1 as a basis, we obtain
the following protocol. It assumes FIFO channels.

Protocol 3. Update of Replicated Data x.

• The initiator I, after performing operation Opk(xI) and before performing operation
Opk+1(xI), sends 〈I, j, ψk〉 to all neighbors j. While sending the protocol messages, I
receives no messages.

• All other processes, i, upon first receiving a message of the form 〈j, i, ψk〉, sends
〈i, k, ψk〉 to all neighbors k 6= j, and then performs Opk(xi). Between sending the
first message and performing Opk(xi), i receives no messages.

In contrast, a typical method for ordering operations would be to give each a unique
sequence number, then buffer operations until all of those with lower numbers have ar-
rived and been executed. This requires unbounded messages—to accommodate sequence
numbers—and buffering of information, neither of which is necessary in Protocol 3.

Note, however, that even concurrent common knowledge of the operations does not guar-
antee that concurrent updates from multiple initiators are ordered the same everywhere;
nor does the sequence number method above. If process i makes φ1 concurrent common
knowledge and process j makes φ2 concurrent common knowledge, some other processes
may perform Op1 first whereas others perform Op2 first. Timestamped common knowledge
[11, 18], CT , can guarantee that concurrent broadcasts from different initiators are ordered
the same everywhere. As we will discuss in Section 6.2.4, if local clocks are logical clocks

and if the timestamp of interest is known to be reached by all processes, timestamped com-
mon knowledge implies concurrent common knowledge when the appropriate local times
are reached. However, protocols to achieve CT [18] require two rounds of messages during

21

which underlying communication is suspended, as in Protocol 2. There do not appear to be
lower-latency protocols such as Protocol 1 for CT . Also, CC does not require the use of local
clocks.

Broadcast protocols which achieve each of these two forms of knowledge, CC and CT ,
may be combined to handle replicated data updates efficiently. A CT protocol can be used
to obtain locks for concurrency control of transactions. Once locks are obtained, a CC

protocol which is faster and causes less latency can be used to issue operations within each
transaction. A similar scheme is used in the ISIS project [1], using two broadcast primitives,
CBCAST (causal broadcast) and ABCAST (atomic broadcast). This example illustrates
situations in practical systems where two different forms of knowledge are both appropriate
characterizations of agreement.

5.4 Single Message Transfer

In this section we show that concurrent common knowledge characterizes the knowledge
between two processes attained by a single message transfer along a reliable FIFO channel.
A formula subscripted with a set of process identifiers, such as {i, j}, refers to the subsystem
containing only that set of processes.

Theorem 9. A single message m sent along a reliable FIFO channel from i to j achieves

CC
{i,j}(“m has been received”).

Proof: The states immediately following the sending and receiving of m form a locally-
distinguishable cut in the {i, j} subsystem. Furthermore, “m has been received” holds on
this cut. By the Attainment Theorem (Theorem 4), concurrent common knowledge of the
fact holds as well.

Theorem 9 enables us to better explain the role of certain messages in the checkpointing
example which follows.

5.5 Checkpointing

Our example is an analysis of the agreement implicit in a variant of the well-known check-
pointing protocol by Chandy and Lamport [3]. The protocol is used to record global states—
including that of channels—for the purpose of detecting global system properties or for roll-
back recovery. It is designed for asynchronous systems with reliable FIFO channels as in our
model.

The protocol works by using rules for sending and receiving special types of messages
called markers. Initialization occurs by one process following the marker sending rule.

Marker sending rule for a process i: Before sending or receiving any other messages, i
sends one marker to each neighbor j, then records its state.

Marker receiving rule for a process j: Upon receiving a marker from i, if j has not
recorded its state, then j follows the marker sending rule, then records the state of
channel (i, j) as the empty sequence. Otherwise, j records the state of channel (i, j)

22

as the sequence of messages received from i after j’s state was recorded and before j
received the marker from i.

A perhaps subtle but important difference between this protocol and Protocol 1 is that
a marker is sent along every channel, including a marker back along the channel where a
process received its first marker. These extra messages give information about the state of
channels during the checkpoint. The next theorem summarizes the agreement attained in
the protocol regarding both the process states and the channel states.

The theorem statement makes use of some additional notation. Given any consistent
global state, currenti will denote i’s local state. Savedi denotes the set of states checkpointed
by process i. Learni(ψ) indicates the local state in which i learns ψ. Finally, we extend →
to include states in the obvious way.

Theorem 10. In any run of the Chandy-Lamport protocol in a system with reliable FIFO
channels:

1. CC(φstates) is attained, where

φstates = ∀i(currenti ∈ Savedi)

2. for each channel (i, j), CC
{i,j}(φchannels) is attained, where

φchannels = ∀m
((send(m) → LearniPiC

C(φstates)) ⇒ (receive(m) → currentj))

and m is a message from i to j.

Informally, the first statement above says that there is a consistent cut of the system
in which all processes have concurrent common knowledge that all processes are taking a
checkpoint. We will not give a proof as this is a simple variation of Protocol 1.

The second statement says that—within each (i, j) subsystem—it becomes concurrent
common knowledge that all messages sent prior to i recording its state have been received
by j. Hence when this is attained, the messages in the (i, j) channel during the checkpoint
are exactly those that have been received since j recorded its state. This follows from the
fact that all messages from i to j are in one of three states at the checkpoint:

1. Received before the checkpoint. These are part of j’s local state at the time of the
checkpoint.

2. In the channel during the checkpoint. All messages not in (1) received prior to
LearnjPj(φchannels) must be in this set.

3. Sent after the checkpoint. These are not received by j until after LearnjPj(φchannels).

Proof of Theorem 10, part 2: From Theorem 9, the reception of the marker by j
becomes concurrent common knowledge between i and j in the subsystem cut formed by
the states immediately following the sending and receiving of the marker. Since no messages

23

are sent between the sending of the marker and LearniPi(C
C(φstates)), and channels are

FIFO, all non-marker messages sent prior to LearniPi(C
C(φstates)) must be received before

the marker. Therefore, at the subsystem cut it becomes concurrent common knowledge of i
and j that all messages sent prior to LearniPi(C

C(φstates)) have been received.

Any problem that requires only the detection of some property of a consistent global
state can be solved using the Chandy-Lamport protocol. Some examples of this type of
problem are termination detection [9], deadlock detection [2], and rollback recovery [13].
Hence concurrent common knowledge can be used for a solution and formal analysis of such
problems.

6 Comparisons

In this section we compare our semantics and the definition of concurrent common knowledge
to other standard knowledge-theoretic semantics and agreement definitions. First, we give
a translation from our asynchronous-runs semantics to the timed-runs semantics of Halpern
and Moses [11]. Then we compare CC to common knowledge and to other weakenings of
common knowledge, namely epsilon common knowledge Cǫ, eventual common knowledge
C⋄, and timestamped common knowledge CT .

6.1 Translation to Timed Runs Semantics

Timed runs have been used by Halpern and Moses to provide formal semantics for common
knowledge and the other variants of common knowledge that they introduce. For our pur-
poses, the asynchronous runs provide a better choice since time does not enter our system
model. Nevertheless, it has become standard to use timed runs to model a variety of different
systems; we will show that our logic can be given a timed-runs semantics as well. Also, this
will be useful in the following section when we compare CC to knowledge forms defined in
the timed-runs model. We show that our semantics in terms of timed runs is essentially
equivalent to the asynchronous runs semantics.

The translation proceeds by first defining an appropriate set of possible timed runs RA

and a primitive proposition function πRA
, given an initial set of possible asynchronous runs

A and a primitive proposition function πA. Next, we define our new modal operators using
timed-runs semantics. Finally, we state a theorem which formally relates our asynchronous-
runs semantics to the timed-runs semantics, and prove it by structural induction on the
formulas in the logic.

6.1.1 The Set of Possible Timed Runs

We first give a definition for timed runs using our notation that is consistent with that of
[11].

Definition 18. A timed run r is a sequence of N -vectors of local states (or equivalently,
event or action sequences) indexed by a possibly-infinite sequence of natural numbers, such
that, for each processor i, (r, t)[i] is a prefix of (r, t + 1)[i]. We let r[i] denote the sequence
(r, 1)[i], (r, 2)[i],

24

We associate an asynchronous run a with timing(a), the set of all timed runs having
the same events and causal structure. To preserve causal structure, we will require that the
real-time values associated with events be consistent with the happens-before relation. Let
time(r, e) be the time value t of the latest global state (r, t) preceding the occurrence of
event e; time is a partial function from runs and events to natural numbers.

Definition 19. Given a run r and event e in r[i], time(r, e) is the natural number t such
that e 6∈ (r, t)[i] ∧ e ∈ (r, t+ 1)[i].

Definition 20. Given an asynchronous run a, timing(a) is the set of all timed runs r such
that:

1. A state is in r iff it is in a, i.e.

(∀t ∀i ∃c (r, t)[i] = (a, c)[i]) and (∀c ∀i ∃t (a, c)[i] = (r, t)[i]).

2. Causal structure of events is preserved, i.e. for all events e1 and e2, if e1 → e2 then
time(e1) < time(e2).

Note that for any one asynchronous run there are, in general, infinitely many corresponding
timed runs. However, there is exactly one asynchronous run corresponding to each timed
run, because a timed run has exactly one causal structure. Now we can define the set of
timed runs to be the union of all asynchronous timings, so that, given A, we can define
RA =def ∪a∈Atiming(a). Throughout this section, unless otherwise noted, the ranges of
quantification for asynchronous runs and timed runs are the sets A and RA, respectively.

We next prove that every real-time global state has a corresponding consistent cut. Note
that we can assert the equality of real-time global states and consistent cuts since they are
both N -vectors of local states.

Theorem 11. Given a run r in timing(a), ∀t ∃!c ((r, t) = (a, c)).

Proof: The proof is by contradiction. By condition (1) in the definition of timing(a), every
local state of r is a local state of a. Therefore for the theorem to be false, for some t the local
states of (r, t) must be inconsistent. Thus run r must contain events e1 and e2 such that
e1 → e2, e2 is contained in (r, t), and e1 is not contained in (r, t). Since e1 is in r but not in
(r, t), time(r, e1) ≥ t and similarly time(r, e2) < t. However, this contradicts condition (2)
of the definition of timing(a), which requires that if e1 → e2 then time(r, e1) < time(r, e2).
Uniqueness follows because a set of local states uniquely specifies a cut in an asynchronous
run.

In view of the preceding theorem, we can define Cut(r, t) to be the consistent cut corre-
sponding to real-time global state (r, t).

Definition 21. Cut(r, t) is the pair (a, c) such that r is in timing(a) and (r, t) = (a, c).

It is also true that for any (a, c) there is some (r, t) such that Cut(r, t) = (a, c). This is
a straightforward consequence of the definitions of consistent cuts and timing(a); we leave
the proof of the theorem to the reader.

25

Theorem 12. ∀(a, c) ∃(r, t) (Cut(r, t) = (a, c))

We next define the primitive proposition function πRA
from the primitive proposition

function πA in the obvious way.

Definition 22. πRA
((r, t), φ) =def true iff πA(Cut(r, t), φ) = true.

6.1.2 Timed-Runs Semantics

The timed-runs semantics for the ordinary logical connectives, the primitive propositions,
the knowledge modality Ki, and the greatest fixed-point operator are exactly as in Halpern
and Moses [11]. In this subsection we only discuss the new modal operator, Pi. In order
to avoid confusion, we use the symbols |=T and |=A to stand for timed-run semantics and
asynchronous-runs semantics, respectively.

First we define the relation 1 on timed runs, to represent timed runs that are timings of
the same asynchronous run.

Definition 23. Given timed runs r, r′ ∈ RA, we write r 1 r′ iff there exists an asynchronous
run a ∈ A such that r ∈ timing(a) and r′ ∈ timing(a).

Clearly a real-time global state (r′, t′) of run r′ is also a consistent cut of run r if r 1 r′.
This motivates the following definition for the meaning of Pi in a timed-runs semantics.

Definition 24.

(r, t) |=T Pi(φ) ⇔ ∃(r′, t′)((r′ 1 r) ∧ ((r′, t′) ∼i (r, t)) ∧ (r′, t′) |= φ)

The definition of EC is derivable from the definitions of ∧, Ki, and Pi and is as follows:

(r, t) |=T E
Cφ⇔

∧

i∈Proc

∀(r′, t′)[(r′, t′) ∼i (r, t) ⇒

∃(r′′, t′′)((r′′ 1 r′) ∧ ((r′′, t′′) ∼i (r′, t′)) ∧ (r′′, t′′) |=T φ)]

Finally, (r, t) |=T C
Cφ is defined using the same greatest fixed-point interpretation as in [11]

and as in our asynchronous runs semantics.

6.1.3 The Equivalence of the Two Semantics

Two preliminary facts are trivial consequences of our definitions.

Fact 1. Let (a, c) = Cut(r, t) and (a′, c′) = Cut(r′, t′). Then

(a) (a, c) ∼i (a′, c′) iff (r, t) ∼i (r′, t′), and
(b) a = a′ iff r 1 r′.

The following theorem relates the truth of formulas in our asynchronous-runs semantics
to the truth of formulas in the timed-runs semantics.

Theorem 13. (r, t) |=T φ⇔ Cut(r, t) |=A φ

26

Proof: By structural induction on formulas.

1. Primitive propositions: Follow immediately from the definition of πRA
.

2. ¬,∧: From the structural induction hypothesis, (r, t) |=T φ ⇔ Cut(r, t) |=A φ, it
follows immediately that (r, t) |=T ¬φ ⇔ Cut(r, t) |=A ¬φ and (r, t) |=T φ ∧ ψ ⇔
Cut(r, t) |=A φ ∧ ψ.

3. Ki: (⇒) It is given that (r, t) |=T Kiφ, i.e. that:

∀(r′, t′)((r′, t′) ∼i (r, t) ⇒ (r′, t′) |=T φ)

By Theorem 12 and Fact 1(a):

∀(a, c)[(a, c) ∼i Cut(r, t) ⇒ ∃(r′′, t′′)((r′′, t′′) ∼i (r, t) ∧ Cut(r′′, t′′) = (a, c))]

Since (r, t) |=T Kiφ, we have (r′′, t′′) |=T φ. By the structural induction hypothesis we
then have that ∀(a, c)((a, c) ∼i Cut(r, t) ⇒ (a, c) |=A φ); therefore Cut(r, t) |=A Kiφ
as desired.

(⇐) It is given that Cut(r, t) |=A Kiφ, i.e. that

∀(a, c)((a, c) ∼i Cut(r, t) ⇒ (a, c) |=A φ).

From Fact 1(a),

∀(r′, t′)((r′, t′) ∼i (r, t) ⇒ Cut(r′, t′) ∼i Cut(r, t)).

Since Cut(r, t) |=A Kiφ it follows that

∀(r′, t′)((r′, t′) ∼i (r, t) ⇒ Cut(r′, t′) |=A φ).

Then ∀(r′, t′)((r′, t′) ∼i (r, t) ⇒ (r′, t′) |=T φ) follows from the structural induction
hypothesis; hence (r, t) |=T Kiφ.

4. Pi: (⇒) It is given that (r, t) |=T Piφ, i.e.

∃(r′, t′)((r′ 1 r) ∧ (r′, t′) ∼i (r, t) ∧ (r′, t′) |=T φ).

Let (a, c) = Cut(r, t) and (a′, c′) = Cut(r′, t′). By Fact 1, a = a′ and (a, c) ∼i (a′, c′).
Therefore

∃(a, c′)((a, c′) ∼i (a, c) ∧ (a, c′) = Cut(r′, t′) ∧ (r′, t′) |=T φ).

(a, c′) |=A φ by the induction hypothesis, so that (a, c) |=A Piφ.

(⇐) It is given that Cut(r, t) |=A Piφ, so that

∃(a, c′)((a, c′) ∼i Cut(r, t) ∧ (a, c′) |=A φ).

By Theorem 12 there exists (r′, t′) such that Cut(r′, t′) = (a, c′). By Fact 1,
(r′, t′) ∼i (r, t) and r′ 1 r. Then

∃(r′, t′)((r′ 1 r) ∧ (r′, t′) ∼i (r, t) ∧ Cut(r′, t′) |=A φ),

giving the desired result by the induction hypothesis.

27

5. CC : For CC we return to the view that formulas are functions from sets of global states
to sets of global states; again we use subscripts to distinguish the timed-runs semantics
from the asynchronous-runs semantics. We also use the notation that, for any set of
consistent cuts Z, Z∗ is the set {(r, t)|Cut(r, t) ∈ Z}.

We need to show that (r, t) is contained in the greatest fixed point of MT [[EC(φ ∧X)]]
iff Cut(r, t) is contained in the greatest fixed point of MA[[EC(φ ∧X)]]; in other words,
we want to show that set B is the latter greatest fixed point iff B∗ is the former.
Repeating the technique for Ki and Pi above, it can be shown that, for any Z,

(r, t) ∈ MT [[EC(φ ∧X)]](Z∗) iff Cut(r, t) ∈ MA[[EC(φ ∧X)]](Z).

It then follows that B∗ is a fixed point of MT [[EC(φ ∧X)]] iff B is a fixed point of
MA[[EC(φ ∧X)]], i.e.

(r, t) ∈ B∗ ⇔ (r, t) ∈ MT [[EC(φ ∧X)]](B∗)

iff

Cut(r, t) ∈ B ⇔ Cut(r, t) ∈ MA[[EC(φ ∧X)]](B).

It just remains to be shown that B is the greatest fixed point iff B∗ is the greatest fixed
point also. Suppose that B is but B∗ is not. Then there is some set C∗, not a subset
of B∗, such that

B∗ ∪ C∗ = MT [[EC(φ ∧X)]](B∗ ∪ C∗).

However, since (r, t) is contained in MT [[EC(φ ∧X)]](Z∗) iff Cut(r, t) is contained in
MA[[EC(φ ∧X)]](Z), this would be imply that

B ∪ C = MA[[EC(φ ∧X)]](B ∪ C).

This contradicts the assumption that B is the greatest fixed point. An analogous
argument holds in the reverse direction, thus concluding the proof.

6.2 Other Knowledge Forms

There have been other common knowledge variants that are based on replacing simultaneity
with weaker temporal notions [11]; namely, epsilon common knowledge, Cǫ, eventual common
knowledge, C⋄, and timestamped common knowledge, CT . In this section we compare
concurrent common knowledge to common knowledge and to each of these variants. As
the names indicate, epsilon common knowledge corresponds to agreement within ǫ time
units, for some ǫ, eventual common knowledge corresponds to agreement at some global
state of the system, and timestamped common knowledge corresponds to agreement at local
states having the same local clock value. The strength of timestamped common knowledge,
consequently, depends upon characteristics of the local clocks used.

In the discussions to follow, we will demonstrate situations in which one knowledge form
is attained but another is not. Recall that we say a fact φ is attained in run a iff there is a
cut c such that (a, c) |=A φ. Similarly, we say that a fact φ is attained in timed run r iff there
is a time t such that (r, t) |=T φ. Recall that if r ∈ timing(a) then r is one of the possible

28

timed runs corresponding to asynchronous run a. When comparing CC to a knowledge form,
say CX , defined in the timed-runs model, we will consider whether or not attaining CXφ in
a run r implies attaining CCφ in the asynchronous run a such that r ∈ timing(a), or vice
versa.

In Section 6.2.1 we demonstrate that common knowledge C is strictly stronger than CC ,
by showing that C ⇒ CC is valid and that there are situations in which CCφ is attainable
but Cφ is not. In Section 6.2.2, we define Cǫ and show that it is incomparable to CC in a
strict sense; namely, there are systems and facts φ for which Cǫφ is attained and CCφ is not,
and vice versa.

In Section 6.2.3, we demonstrate that CC and C⋄ are also incomparable. It should be
intuitively clear that eventually agreeing on a fact does not guarantee causal consistency;
the converse, however, may not be so clear. It turns out that eventual common knowledge
guarantees that a fact φ is known at points in the run. Concurrent common knowledge, in
contrast, only guarantees knowledge of Piφ for each i, which is weaker. Consequently, CC

and C⋄ are indeed incomparable.
In Section 6.2.4, we demonstrate that, in general, timestamped common knowledge, CT ,

is incomparable to concurrent common knowledge. We also demonstrate that, in the special
case of local clocks being logical clocks [16], CTφ implies CCφ at a consistent cut where local
time T is reached by all processes.

6.2.1 Common Knowledge

Cφ implies all formulas of the form Ekφ for any natural number k, where E is defined as
follows.

Eφ =def

∧

i∈I

Kiφ

More precisely, C is defined as the greatest fixed point of E(φ ∧ X), where X is the free
variable in the greatest fixed-point operator. We show that this is strictly stronger than CC

below.

Theorem 14. Common knowledge is strictly stronger than concurrent common knowledge,
i.e. Cφ ⇒ CCφ is valid but CCφ ⇒ Cφ is not valid. Furthermore, there are systems and
facts φ for which CCφ is attainable but Cφ is not.

Proof: To see that Cφ ⇒ CCφ is valid, recall that φ ⇒ Piφ is valid. Consequently, the
validity of Kiφ ⇒ KiPiφ follows and furthermore, Eφ ⇒ ECφ is valid. Since CCφ is the
greatest fixed point of EC(φ∧X) and Cφ is the greatest fixed point of E(φ∧X), the desired
result follows.

From [11], common knowledge of any fact not initially common knowledge of a system
is unattainable in any asynchronous system. However, concurrent common knowledge of
certain facts is attainable in such systems. For example, in a two-processor system in which
exactly one message m is sent, concurrent common knowledge of “m has been received”
is attained along a cut immediately following the send and reception of m. (See proof of
Theorem 15.) Thus there are systems and facts φ for which CCφ is attainable and Cφ is
not; it follows that CCφ⇒ Cφ is not valid.

29

6.2.2 Epsilon Common Knowledge

Epsilon common knowledge corresponds to agreement within an interval of ǫ time units, for
some natural number ǫ. Its definition is consequently dependent upon the timed-runs model,
since we cannot express “ǫ time units” in the asynchronous runs model. Eǫ, “everyone knows
within ǫ,” is defined as follows [11].

(r, t) |= Eǫφ⇔ ∃t′ ∃ǫ [(t′ ≤ t ≤ ǫ)∧

∀i ∃ti (t′ ≤ ti ≤ ǫ ∧ (r, ti) |= Kiφ)]

Epsilon common knowledge is then the greatest fixed point of Eǫ(φ∧X), where X is the free
variable in the greatest fixed-point operator. We show that CC and Cǫ are incomparable in
a strict sense: that there are systems and facts φ for which CCφ is attained and Cǫφ is not,
and vice versa.

Theorem 15. Epsilon common knowledge is incomparable to CC , i.e. neither one implies
the other. Moreover, there are systems and facts φ for which CCφ is attained but Cǫφ is
not, and vice versa.

Proof: First, we demonstrate a system S1 and fact φ1 for which CCφ1 is attained, but
Cǫφ1 is not. Let system S1 contain only two processes, i and j. In this system, the only
communication occurs when, at some point, i sends a message m to j along a reliable
channel with unbounded transmission time. Let a be any run of this system. Let c be the
consistent cut of a consisting of i’s local state immediately after sending m and j’s local
state immediately after receiving m. Clearly c is a cut, since no message is sent after it. It
is distinguishable, because its occurrence in each local state is determined by specific events,
namely the sending and receiving of m. Let φ1 be the fact “message m has been received.”
Since φ1 always holds on cut c, from Theorem 4 it follows that (a, c) |=A CCφ1. Therefore
CCφ1 is attained in any run of the system.

Now consider any r in timing(a). For Cǫφ1 to be attained, there must be a t such that
(r, t) |=T Cǫφ1. This implies further that for some ti with ǫ time units of t, (r, ti) |=T Kiφ1.
However, process i never knows φ1, because every local state of i in r is part of a possible
real-time state in which message m has not yet been received. Consequently, there is no t
for which (r, t) |=T Cǫφ1. Therefore S1 is a system in which CCφ1 is attained, but Cǫφ1 is
never attained.

Next, we demonstrate a system S2 and fact φ2 for which Cǫφ2 is attained but CCφ2 is not.
In system S2, there are three processes i, j, and k which communicate along reliable channels
having transmission time bounded by ǫ. Process k can only send messages simultaneously
to both and i and j. At some point k does send a message m simultaneously to i and j.
Also, i and j periodically send messages to each other at arbitrary times.

Let φ2 be the fact “message m has been sent by k.” Cǫφ2 holds as soon as m is sent by
k. However, we will demonstrate that CCφ2 can never hold. Suppose that CCφ2 is attained
in a run r of S2. By Theorem 3, i and j must learn CCφ2 along a single consistent cut of r.
Let Learn(i) and Learn(j) denote the states of i and j in that cut. We will demonstrate by
induction that neither Learn(i) nor Learn(j) can occur within nǫ after i (j) receives m, for
any n. It then follows that CCφ2 can never hold.

30

The base case is for n = 0. Learn(i) must be no earlier than i’s reception of m, and
similarly for j; otherwise, processor i (j) could not know Piφ2 (Pjφ2). Now we assume that,
for some n ≥ 0, Learn(i) cannot occur within nǫ after i receives m, and similarly for process
j. Suppose that Learn(i) occurs as early as nǫ after i receives m and before (n + 1)ǫ after
i receives m. Process i may receive m as many as ǫ time units before j, and by assumption
Learn(j) does not occur before nǫ after j receives m. It follows that a message m′, sent
after Learn(i) and before (n + 1)ǫ after i receives m, could arrive at j before Learn(j).
Consequently, the cut in which i and j learn CCφ2 would be inconsistent. This contradicts
the assumption that Learn(i) occurs between nǫ and (n+1)ǫ after i receives m. A symmetric
argument holds for process j.

By induction, neither Learn(i) nor Learn(j) can occur within nǫ after i (j) receives m,
for any n. Consequently, CCφ2 can never hold.

6.2.3 Eventual Common Knowledge

Eventual common knowledge corresponds to agreement at some (not necessarily consistent)
global state of a run. We express it using standard definitions in the timed-runs model [11].

E⋄, “everyone will eventually have known,” is defined as follows.

(r, t) |= E⋄φ⇔ ∀i ∃ti (ti ≥ 0 ∧ (r, ti) |= Kiφ)

Note that, unless facts are stable, E⋄φ does not imply that Eφ ever holds.
Like the other common knowledge variants, C⋄φ is defined as the greatest fixed point of

E⋄(φ ∧X). C⋄φ implies, but is strictly stronger than, (E⋄)kφ for all k.

C⋄φ⇒ ∀k (E⋄)kφ

We prove that C⋄φ is not only incomparable to CCφ, but that there are runs in which each
is attained but the other is not for some fact.

Theorem 16. Eventual common knowledge is incomparable to concurrent common knowl-
edge, i.e. CCφ does not imply C⋄φ and C⋄φ does not imply CCφ. Moreover, there are
systems in which CCφ is attained and C⋄φ is not for some fact φ, and vice versa.

Proof: First, we demonstrate a fact φ and a system in which CCφ is attained, but C⋄φ is
not. Consider again system S1 from the proof of Theorem 15, containing only two processes
i and j. Process i sends a single message m to j along a reliable channel with unbounded
transmission time. Fact φ1 is “message m has been received.” As before, CCφ1 is attained
in any run of S1; however, i never knows φ1. Since C⋄φ1 implies that eventually Kiφ1 holds,
C⋄φ1 cannot be attained in any run of S1.

Next, we demonstrate a fact φ and a system in which C⋄φ is attained, but CCφ is not.
Consider a system S3, again with only two processes, i and j. In this system, i sends
some number of messages, possibly zero, to j along reliable, non-FIFO channels. We denote
the messages m1, m2, m3 . . . where message mk is sent before message mk+1. The sequence
numbers are notational and not contained in the messages. Process j never sends a message
to i. Let φ3 be “i has sent at least one message to j.” Consider any run r of S3 in which i sends

31

at least one message to j. For any t after i sends the the first message to j, (r, t) |=T C
⋄φ3.

Thus C⋄φ3 is attained in S3.
Now suppose that CCφ3 is attained in any asynchronous run a of S3. By Theorem 3,

the states in which i and j learn CCφ3 form a consistent cut of a. Process i cannot learn φ3

until it has sent at least one message, since φ3 does not hold on any cut in which i has not
sent a message. Process j cannot learn φ3 until it has received at least one message, since it
is possible that i will send no messages and φ3 will never hold.

By the arguments above, i must learn CCφ3 after sending message mk for some k, and
j must learn CCφ3 after receiving l messages from i for some l ≥ 1. It is possible—due to
the fact that the channels are non-FIFO—that message mk+1 is one of the first l messages
to arrive at j. Thus the cut where CCφ3 is learned may include the reception of mk+1 but
not its send event, making the cut inconsistent. This contradicts our assumption that CCφ3

is attained in any asynchronous run of S3.

6.2.4 Timestamped Common Knowledge

Timestamped common knowledge [11, 18] corresponds to agreement at local states having
the same local clock value. It is sufficient for our purposes to use the asynchronous-runs
model for comparison; we give the appropriate definitions for that model. Let clock(a, c, i)
be the value of i’s local clock at cut c in run a. Then timestamped knowledge, KT

i is defined
as follows.

(a, c) |=A K
T
i φ iff ∀c′(clock(a, c′, i) = T ⇒ (a, c′) |=A Kiφ)

Note that the satisfaction of KT
i φ is dependent only upon the run a, not upon the cut c.

The definition of ET follows the usual pattern.

ETφ =def

∧

i∈I

KT
i φ

Now, timestamped common knowledge is defined as the greatest fixed point of ET (φ ∧X).
The strength of timestamped common knowledge depends upon characteristics of the

local clocks used. For example [11]:

1. If it is common knowledge that all clocks always show identical times, then at T on
any clock, CTφ⇔ Cφ holds.

2. If φ is a stable fact and it is epsilon common knowledge that all clocks are within ǫ
time units of each other, then at T on any clock, CTφ⇒ Cǫφ holds.

3. If φ is a stable fact and it is eventual common knowledge that all local clocks read T
eventually, then at time T on any clock, CTφ⇒ C⋄φ holds.

One type of local clock is termed a logical clock [16]. Logical clocks have the property that,
if event a happens-before event b, then the local clock value at which a occurs is less than
the local clock value at which b occurs. This implies that local states having the same clock
values are incomparable with respect to happens-before, and consequently form a consistent
cut. It might seem that if it is common knowledge that local clocks are logical clocks then

32

CTφ implies CCφ. However, there are two problems with this. One issue is that CTφ alone
does not guarantee that the clock value T is ever reached by any process. Consequently CTφ
may hold although not all processes know it; in particular, not those whose clocks never
reach T . If T is never reached by any process, then CT (false) holds. This is the case for
CTφ regardless of the local clock properties; it is also the reason that statements like “if it
is eventual common knowledge that all local clocks read T eventually” are necessary in the
three comparisons above. We will use Reached(T) to denote that clock value T is reached
by all processes in a run.

If it is common knowledge that all local clocks are logical clocks, then attainment of
CT (Reached(T) ∧ φ) does guarantee attainment of CCφ. Still, it is not the case that
CT (Reached(T) ∧ φ) implies CCφ; another issue is that CTφ holds throughout the run,
not just when clocks read T . Only when the clocks read T does CTφ imply CCφ. We use
the notation At(T) as follows:

(a, c) |=A At(T) iff ∀i clock(a, c, i) = T

Thus At(T) implies both that T is reached by all local clocks and that, on this cut, all clocks
have the value T . It is indeed the case that

CT (At(T) ∧ φ) ⇒ CCφ

is valid, as we will show in our next theorem.
It is not the case that with logical clocks CCφ implies CTφ for some T . The reasons for

this are that (1) logical clocks do not guarantee that every consistent cut contains states
having the same local clock value, and (2) as for eventual common knowledge, timestamped
common knowledge implies that every process knows a fact, which is not guaranteed by
concurrent common knowledge.

We formalize these observations regarding timestamped common knowledge with logical
clocks in the next two theorems.

Theorem 17. Assume that it is common knowledge that local clock values are logical clocks.
Then if CT (Reached(T)∧ φ) is attained in a run of system S then CCφ is attained also, and
furthermore

CT (At(T) ∧ φ) ⇒ CCφ

is valid in S.

Proof: Suppose that CT (Reached(T)∧φ) is attained in run a of a system S. Consider any set
of local states in which all clock values read T ; there must be at least one set since Reached(T)
holds. From the definition of logical clocks, the set must form a consistent cut; call it c. From
the definition of CTφ, we have (a, c) |=A φ. Cut c is distinguishable from the occurrence
of the local clock value T and the knowledge of Reached(T). Therefore, from Theorem 4,
(a, c) |=A CCφ. Thus attainment of CT (Reached(T) ∧ φ) guarantees attainment of CCφ.
Furthermore, since CT (At(T) ∧ φ) implies the conditions on cut c above, CT (At(T) ∧ φ) ⇒
CC(φ) is valid in S.

33

Theorem 18. If it is common knowledge that local clock values are logical clocks, CCφ
does not imply CTφ for any T . Moreover, there are systems and facts φ for which CCφ is
attained but CTφ is not attained for any T .

Proof: Consider a system S ′
1 as follows. As in system S1 of Section 6.2.2, there are only two

processes i and j. At some point process i sends a single message m to process j. In addition,
i has a local clock which begins with the value 1, and increments to 2 immediately after i
sends m. Process j has a local clock which begins at 2, and increments to 3 immediately
after j receives m. It is simple to verify that the clock values indicated obey the conditions
for logical clocks, since m is sent at local time 1 and received at local time 2. Let φ1 be
the fact “message m has been received.” CCφ1 is attained in runs of this system exactly as
in Section 6.2.2. However, there is no time T at which φ1 holds when each process reaches
T . Furthermore, i never knows φ1, which is necessary by the definition of CTφ. By either
argument, CTφ1 is not attained for any T in any run of this system.

Finally, we consider general local clocks. Since attaining CCφ does not guarantee attain-
ment of CTφ in the case of logical clocks, clearly it does not for the general case. Unlike
for logical clocks, in the general case CT (Reached(T) ∧ φ) does not guarantee attainment of
CCφ.

Theorem 19. For general local clocks, there are systems in which CT (Reached(T) ∧ φ) is
attained and CCφ is not, for some fact φ.

Proof: Consider system S ′
3 as follows: as in S3 in the proof of Theorem 16, there are two

processors i and j, and i sends a series of messages—possibly zero—to j along non-FIFO
channels. Process j sends no messages to i. Also, in S ′

3, each local clock is initialized to zero
and increments each time a message is sent or received. Recall fact φ3, “i has sent at least
one message to j.” It is straightforward to see that CT (Reached(T) ∧ φ3) is attained in any
run of this system in which at least one message is sent, for T = 1. However, CCφ3 is not
attained in any run, exactly as in the proof of Theorem 16.

Although CT (At(T) ∧ φ) implies CCφ for systems using logical clocks, this does not
preclude the relevance of concurrent common knowledge for such systems. CT (At(T) ∧ φ),
as shown, is a stronger condition than CCφ. It implies a useful property for some distributed
applications which CCφ does not; namely, if two facts φ1 and φ2 become timestamped
common knowledge with different timestamps, then all processors learn CT1(At(T1) ∧ φ1)
and CT2(At(T2) ∧ φ2) in the same order. Known algorithms to achieve CT with logical
clocks [18] use two-phase algorithms such as Protocol 2. There do not appear to be low-
latency protocols such as Protocol 1 for timestamped common knowledge. Furthermore,
concurrent common knowledge does not require processes to keep a local clock value. Thus,
for some applications CCφ may be a more desirable, though weaker, form of knowledge than
CT (At(T) ∧ φ). One example in which both forms are useful is given in Section 5.3.

7 Conclusions

In this paper we have given a new knowledge-based definition of agreement that applies
to asynchronous systems. We have defined the concept in terms of the causality relation

34

between events, which is an appropriate replacement for the concept of time when one is
discussing asynchronous systems [16]. We have defined concurrent common knowledge using
a modal logic and semantics that are designed specifically to capture the causal structure
relevant to asynchronous systems. We have shown that concurrent common knowledge is
attainable by two simple and efficient algorithms and given several applications using it and
other elements of the new logic. It is the attainability and broad applicability of concur-
rent common knowledge that makes it an important concept for asynchronous distributed
computing.

One of the contributions of our work is that we have given a knowledge-theoretic definition
that applies whenever one needs to reason about the global states of asynchronous systems.
Thus we have pinned down the form of knowledge a protocol designer should try to attain
when developing a protocol to reach agreement about some property of the global state. We
have also used our logic to prove necessary and sufficient conditions for performing concurrent
actions in asynchronous distributed systems.

There have been other proposals for weakened forms of common knowledge that are also
attainable asynchronously, namely eventual common knowledge and timestamped common
knowledge [11]. They use various temporal modalities in order to weaken the original defini-
tion of common knowledge. Concurrent common knowledge is strictly weaker than common
knowledge but is, in general, incomparable, with the other forms above. In the case of times-
tamped common knowledge, if the clocks used in the definition are logical clocks as in [18]
and the timestamp of interest is guaranteed to be reached by all processes, then timestamped
common knowledge implies concurrent common knowledge when the appropriate local times
are reached. However, in practice timestamped common knowledge involves longer latency
and requires the suspension of system events for an interval. It also requires maintaining local
clocks, which concurrent common knowledge does not. Thus achieving concurrent common
knowledge may be more practical when it is sufficient for a particular application.

In the future, we hope to use our logic to understand better the communication require-
ments of a wider variety of asynchronous distributed protocols, and to aid in developing new
and improved protocols. We also hope to extend the usefulness of our logic by addressing
the issue of faulty environments.

Acknowledgements

We have benefited from discussions with Ken Birman, Ajei Gopal, Gil Neiger, Fred Schneider,
Sam Toueg and especially Joe Halpern.

A Appendix

A.1 Proof of Consistent-Cut Existence

In this section we prove Lemma 1. This lemma says that, in any asynchronous run of any
system, each local state of each process is included in some consistent cut of the system.

Proof of Lemma 1: Fix an asynchronous run, a, of a system. Consider any local
state of any process, say state sx

i on process i. Let ex
i be the last event executed in sx

i .

35

t

t

t

t

t

aaaaaaaaaa

�����������

S
S
S
S

S
S
S

S

"""""""

m′m′′

m′′′
m0

Figure 5: Proof of Lemma 1: Message chains during iterative construction.

We will iteratively construct a consistent cut c of a such that (a, c)[i] is equal to sx
i . Let

MinSends(k) for any k be the minimum (earliest) local state of process k in run a which
includes the sending of all messages received by i from k in local state sx

i . Initialize a vector
of local states c as follows: (a, c)[i] = sx

i and for any j 6= i, (a, c)[j] = MinSends(j)). We
refer to this as the initial state vector. Of course this vector is not necessarily a consistent
cut. On each step of the iteration, find a message m′ from any process j to any other process
k whose reception is in c but whose sending is not (if such a message doesn’t exist then we
are finished). Set (a, c)[j] to be the minimum local state in a[j] which includes the sending of
m′; note that the old (a, c)[j] is a strict prefix of the original. In order to meet the conditions
of the theorem, we must show that (1) the iterations terminate and that (2) the value of
(a, c)[i] never changes.

We first make an observation to be used extensively in the remainder of the proof: for any
inconsistent message m′ in the above construction, there is a message chain beginning with
m′ and ending with a message received within the initial state vector. Consider any message
m′ as above, from process j to process k. Then either (a, c)[k] is an element of the initial
state vector or the last event of (a, c)[k] is the sending of a message m′′, where m′′ was the
inconsistent message of some previous iteration. In the latter case receive(m′) → send(m′′).
This argument can be continued resulting in a message chain

send(m′) → receive(m′) → send(m′′) → receive(m′′) ...→ receive(m0)

where receive(m0) is in the initial state vector. (See Figure 5. The solid circles represent
the initial state vector.)

We now show that the iteration terminates; suppose that it does not. At any iteration
there are only finitely many inconsistent messages, since prefixes contain a finite number
of receive events. Thus for the iteration to be non-terminating there must be an infinite
message chain of the form described above. By the pigeonhole principle, in such a chain
there must be two messages, say m1 and m2, that are sent by the same process. If m1 → m2

in the chain then also m2 → m1 because there is a local state which includes m2 but not m1.
This cannot occur in any valid run. Therefore the iteration terminates.

Finally, we show that the local state of i is not changed, i.e. upon termination (a, c)[i] =
sx

i . Suppose that during the iteration state (a, c)[i] is changed, due to a message m′ sent by
i. Again, there must be a chain of messages as above ending with receive(m0) in the original
states and send(m′) → receive(m0). There are two cases depending on what process has

36

receive(m0). (1) If it is process i then there is a circularity in → similar to the proof of
termination above, as the message chain begins and ends with the same process. (2) Suppose
that it is a process j 6= i. Recall that ex

i is the last event of sx
i and hence of the original

(a, c)[i]. Recall also that, by the definition of MinSends, the last event of j in the initial
state vector is the sending of a message to i, call it mj, which is received before or at event
ex

i . We thus have that mj is sent after receive(m0) and received before or at ex
i , so that

receive(m0) → ex
i . However, ex

i → send(m′) and send(m′) → receive(m0), resulting in an
invalid circularity. Hence the final (a, c)[i] is equal to sx

i .

References

[1] Ken Birman and Thomas Joseph. Reliable communication in the presence of failures.
A.C.M. Transactions on Computer Systems, 5(1), February 1987.

[2] G. Bracha and S. Toueg. Distributed deadlock detection. Distributed Computing,
2(3):127–138, 1987.

[3] M. Chandy and L. Lamport. Finding global states of a distributed system. A.C.M.

Transactions on Computer Systems, 3(1):63–75, 1985.

[4] M. Chandy and J. Misra. How processes learn. Distributed Computing, 1(1):40–52,
1986.

[5] E.J.H. Chang. Echo algorithms: depth parallel operations on graphs. I.E.E.E. Trans-

actions on Software Engineering, SE-8(4):391–400, 1982.

[6] Carol Critchlow. On inhibition and atomicity in asynchronous consistent-cut proto-
cols. Technical Report 89-1069, Cornell University Department of Computer Science,
December 1989.

[7] Carol Critchlow and Kim Taylor. The inhibition spectrum and the achievement of causal
consistency. In Proceedings of the Ninth ACM Symposium on Principles of Distributed

Computing, pages 31–42, August 1990.

[8] C. Dwork and Y. Moses. Knowledge and common knowledge in a byzantine environment:
The case of crash failures. In J. Halpern, editor, Proceedings of the Conference on

Theoretical Aspects of Reasoning About Knowledge, pages 149–170. Morgan Kaufmann,
1986. To appear in Information and Computation.

[9] N. Francez. Distributed termination. A.C.M. Transactions on Programming Languages

and Systems, 2(1):42–55, January 1980.

[10] J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed systems.
Distributed Computing, 3(4):139–179, 1989.

[11] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37(3):549–587, July 1990.

37

[12] B. Knaster. Un théoréme sur les functions d’ensembles. Annals of the Polish Mathe-

matical Society, 6:133–134, 1928.

[13] Richard Koo and Sam Toueg. Checkpointing and rollback-recovery for distributed sys-
tems. IEEE Transactions On Software Engineering, SE-13(1):23–31, January 1987.

[14] Dexter Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[15] L. Lamport. Paradigms for distributed computing. Methods and tools for specification,

an advanced course (M. Paul and H.J. Siegert, eds.), Lecture Notes in Computer Science
190, pages 19–30,454–468, 1985.

[16] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the A.C.M., 21(7):558–565, 1978.

[17] Y. Moses and M. Tuttle. Programming simultaneous actions using common knowledge.
Algorithmica, 3:121–169, 1988.

[18] Gil Neiger and Sam Toueg. Substituting for real time and common knowledge in asyn-
chronous distributed systems. In Proceedings of the Sixth A.C.M. Symposium on Prin-

ciples of Distributed Computing, pages 281–293, 1987. To appear in J.A.C.M.

[19] R. Parikh and R. Ramanujam. Distributed processing and the logic of knowledge. In
Proceedings of the Brooklyn College Workshop on Logics of Programs, pages 256–268,
1985.

[20] D. L. Russell. Process backup in producer-consumer systems. In Proceedings of the

A.C.M. Symposium on Operating Systems Principles, November 1977.

[21] A. Tarski. A lattice-theoretic fixpoint theorem and its applications. Pacific Journal of

Mathematics, 5:285–309, 1955.

[22] Kim Taylor. The role of inhibition in asynchronous consistent-cut protocols. In Lecture

Notes in Computer Science 392: Distributed Algorithms (Proceedings of the Third In-
ternational Workshop on Distributed Algorithms, Nice, France, September 1989), J.-C.
Bermond and M. Raynal, Editors, pages 280–291. Springer-Verlag, 1989.

38

