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The present paper uses spectral theory of linear operators to construct approximately

minimal realizations of weighted languages. Our new contributions are: (i) a new

algorithm for the SVD decomposition of finite-rank infinite Hankel matrices based on

their representation in terms of weighted automata, (ii) a new canonical form for

weighted automata arising from the SVD of its corresponding Hankel matrix and (iii) an

algorithm to construct approximate minimizations of given weighted automata by

truncating the canonical form. We give bounds on the quality of our approximation.

1. Introduction

When one considers quantitative systems it becomes meaningful to ask about the ap-

proximate minimization of transition systems or automata. This concept, meaningless

for ordinary automata, is appropriate for many types of systems: weighted automata,

probabilistic automata of various kinds, and timed automata. The present paper focuses

on weighted automata where we are able to exploit spectral theory of linear operators

to construct approximately minimal realizations of weighted languages. Our main con-

tributions are:

— A new algorithm for the SVD decomposition of finite-rank infinite Hankel matrices

based on their representation in terms of weighted automata (Sections 5 and 6).

— A new canonical form for weighted automata arising from the SVD of its correspond-

ing Hankel matrix (Section 4).

— An algorithm to construct approximate minimizations of given weighted automata

by truncating the canonical form (Section 7).

Minimization of automata has been a major subject since the 1950s, starting with the

now classical work of the pioneers of automata theory. Recently there has been activity

on novel algorithms for minimization based on duality (Bezhanishvili et al., 2012; Bonchi

et al., 2014) which are ultimately based on a remarkable algorithm due to Brzozowski

† This work was completed while the authors was at Lancaster University.
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from the 1960s (Brzozowski, 1962). The general co-algebraic framework permits one to

generalize Brzozowski’s algorithm to other classes of automata like weighted automata.

Weighted automata are also used in a variety of practical settings, such as machine

learning where they are used to represent predictive models for time series data and text.

For example, weighted automata are commonly used for pattern recognition in sequences

occurring in speech recognition (Mohri et al., 2008), image compression (Albert and

Kari, 2009), natural language processing (Knight and May, 2009), model checking (Baier

et al., 2009), and machine translation (de Gispert et al., 2010). The machine learning

motivations of our work are discussed at greater length in Section 8, as they are the main

impetus for the present work. There has also been interest in this type of representations

in the general theory of quantitative systems, including concurrency theory (Boreale,

2009) and semantics (Bonchi et al., 2012).

While the detailed discussion of the machine learning motivations appears in the related

work section, it is appropriate to make a few points at the outset. First, the formalism of

weighted finite automata (WFA) serves as a unifying formalism; examples of models that

are subsumed include: hidden Markov models (HMM), predictive representations of state

(PSR), and probabilistic automata of various kinds. Second, in many learning scenarios

one has to make a guess of the number of states in advance of the learning process; the

resulting algorithm is then trying to construct as best it can a minimal realization within

the given constraint. Thus our work gives a general framework for the analysis of these

types of learning scenarios.

The present paper extends and improves the results of our previous work (Balle et al.,

2015), where the singular value automaton was defined for the first time. The contents

of this paper are organized as follows. Section 2 defines the notation that will be used

throughout the paper and reviews a series of well-known results that will be needed.

Section 3 develops some basic results on analytic properties of rational series computed

by weighted automata. Section 4 establishes the existence of the singular value automa-

ton, a canonical form for weighted automata computing square-summable rational series.

Section 5 proves some fundamental equations satisfied by singular value automata and

provides an algorithm for computing the canonical form. Section 6 shows how to imple-

ment the algorithms from the previous section using two different methods for computing

the Gramian matrices associated with a factorization of the Hankel matrix. Section 7 de-

scribes the main application of singular value automata to approximate minimization

and proves an important approximation result. Section 8 discusses related work in ap-

proximate minimization, spectral learning of weighted automata, and the theory of linear

dynamical systems. We conclude with Section 9, where we point out interesting future

research directions.

2. Notation and Preliminaries

Given a positive integer d, we denote [d] = {1, . . . , d}. We use R to denote the field of

real numbers, and N = {0, 1, . . .} for the commutative monoid of natural numbers. In

this section we present notation and preliminary results about linear algebra, functional

analysis, and weighted automata that will be used throughout the paper. We state all our
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results in terms of real numbers because this is the most common choice in the literature

on weighted automata, but all our results remain true (and the proofs are virtually the

same) if one considers automata with weights in the field of complex numbers C.

2.1. Linear Algebra and Functional Analysis

We use bold letters to denote vectors v ∈ Rd and matrices M ∈ Rd1×d2 . Unless explicitly

stated, all vectors are column vectors. We write I for the identity matrix, diag(a1, . . . , an)

for a diagonal matrix with a1, . . . , an in the diagonal, and diag(M1, . . . ,Mn) for the

block-diagonal matrix containing the square matrices Mi along the diagonal. The ith co-

ordinate vector (0, . . . , 0, 1, 0, . . . , 0)> is denoted by ei and the all ones vector (1, . . . , 1)>

is denoted by 1. For a matrix M ∈ Rd1×d2 , i ∈ [d1], and j ∈ [d2], we use M(i, :) and

M(:, j) to denote the ith row and the jth column of M respectively. Given a matrix

M ∈ Rd1×d2 we denote by vec(M) ∈ Rd1·d2 the vector obtained by concatenating the

columns of M so that vec(M)((i− 1)d2 + j) = M(i, j). Given two matrices M ∈ Rd1×d2
and M′ ∈ Rd′1×d′2 we denote their tensor (or Kronecker) product by M⊗M′ ∈ Rd1d′1×d2d′2 ,

with entries given by (M⊗M′)((i− 1)d′1 + i′, (j − 1)d′2 + j′) = M(i, j)M′(i′, j′), where

i ∈ [d1], j ∈ [d2], i′ ∈ [d′1], and j′ ∈ [d′2]. For simplicity, we will sometimes write

M⊗2 = M ⊗M, and similarly for vectors. A rank factorization of a rank n matrix

M ∈ Rd1×d2 is an expression of the form M = QR where Q ∈ Rd1×n and R ∈ Rn×d2
are full-rank matrices; i.e. rank(Q) = rank(R) = rank(M) = n. When Q is a square

invertible matrix, we use the shorthand notation Q−> to denote the transpose of its

inverse (Q−1)>.

Given a matrix M ∈ Rd1×d2 of rank n, its singular value decomposition (SVD)† is a

decomposition of the form M = UDV> where U ∈ Rd1×n, D ∈ Rn×n, and V ∈ Rd2×n
are such that: U>U = V>V = I, and D = diag(σ1, . . . , σn) with σ1 ≥ · · · ≥ σn > 0.

The columns of U and V are thus orthonormal and are called left and right singular

vectors respectively, and the σi are its singular values. The SVD is unique (up to sign

changes in associate singular vectors) whenever all inequalities between singular values

are strict. The Moore–Penrose pseudo-inverse of M is denoted by M† and is the unique

matrix (if it exists) such that MM†M = M and M†MM† = M†. It can be computed

from the SVD M = UDV> as M† = VD−1U>.

For 1 ≤ p ≤ ∞ we will write ‖v‖p for the `p norm of vector v. The correspond-

ing induced norm on matrices is ‖M‖p = sup‖v‖p=1 ‖Mv‖p. We recall the following

characterizations for induced norms with p ∈ {1,∞}: ‖M‖1 = maxj
∑
i |M(i, j)| and

‖M‖∞ = maxi
∑
j |M(i, j)|. In addition to induced norms we will also use Schatten

norms. If M is a rank-n matrix with singular values s = (σ1, . . . , σn), the Schatten

p-norm of M is given by ‖M‖S,p = ‖s‖p. Most of these norms have given names:

‖ · ‖2 = ‖ · ‖S,∞ = ‖ · ‖op is the operator (or spectral) norm; ‖ · ‖S,2 = ‖ · ‖F is the

Frobenius norm; and ‖ · ‖S,1 = ‖ · ‖tr is the trace (or nuclear) norm. For a matrix M the

† To be more precise, this is a compact singular value decomposition, since the inner dimensions of the

decomposition are all equal to the rank. In this paper we shall always use the term SVD to mean
compact SVD.
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spectral radius is the largest modulus ρ(M) = maxi |λi(M)| among the eigenvalues λi(M)

of M. For a square matrix M, the series
∑
k≥0 Mk converges if and only if ρ(M) < 1, in

which case the sum yields (I−M)−1.

Recall that if a square matrix M ∈ Rd×d is symmetric then all its eigenvalues are

real. A symmetric matrix M is positive semi-definite when all its eigenvalues are non-

negative; we denote this fact by writing M ≥ 0, where 0 is a zero d × d matrix. The

Loewner partial ordering on the set of all d×d matrices is obtained by defining M1 ≥M2

to mean M1 −M2 ≥ 0. The fact that this gives a partial order follows from the fact

that the positive semi-definite operators form a cone. In particular, M1 ≥ M2 implies

the trace inequality Tr(M1) ≥ Tr(M2).

Sometimes we will name the columns and rows of a matrix using ordered index sets I
and J . In this case we will write M ∈ RI×J to denote a matrix of size |I| × |J | with

rows indexed by I and columns indexed by J .

Recall that a Banach space is a complete normed vector space (X, ‖ · ‖X). A Hilbert

space is a Banach space (X, ‖ ·‖X) where the norm arises from an inner product: ‖x‖2X =

〈x, x〉X . A Hilbert space is separable if it admits a countable orthonormal basis. The

operator norm of a linear operator T : X → Y between two Banach spaces is given by

‖T‖op = sup‖x‖X≤1 ‖Tx‖Y . The operator is bounded (and continuous) if ‖T‖op is finite.

An operator T : X → Y is compact if the closure in the topology of Y of the image under

T of the unit ball in X is a compact set in Y . A sufficient condition for compactness is

to be a bounded finite-rank operator.

Our main interest in compact operators is motivated by the existence of a decomposi-

tion equivalent to SVD for compact operators in Hilbert spaces. Note that for a bounded

operator T : X → Y between separable Hilbert spaces it is possible to choose countable

orthonormal basis F = (fj)j∈J and E = (ei)i∈I for X and Y respectively, and write

down an infinite matrix T ∈ RI×J for T with entries given by T(i, j) = 〈ei, T fj〉Y . In

the case of finite-rank bounded operators the Hilbert–Schmidt decomposition (Zhu, 1990)

provides a decomposition for the infinite matrix associated with an operator analogous

to the compact SVD decomposition for finite matrices. In particular, if T has rank n,

then the decomposition theorem yields singular values σ1 ≥ · · · ≥ σn > 0 and singular

vectors vi ∈ X and ui ∈ Y for i ∈ [n] such that for all x ∈ X we have

Tx =

n∑
i=1

σi〈vi, x〉Xui . (1)

By writing the singular vectors ui and vi in terms of the bases E and F we can write

this decomposition as T = UDV> with U ∈ RI×n and V ∈ RJ×n satisfying the same

properties as the SVD for finite matrices.

2.2. Weighted Automata and Rational Functions

Let Σ be a fixed finite alphabet with |Σ| <∞ symbols, and Σ? the set of all finite strings

with symbols in Σ. We use ε to denote the empty string. Given two strings p, s ∈ Σ? we

write w = ps for their concatenation, in which case we say that p is a prefix of w and s is

a suffix of w. We denote by |w| the length (number of symbols) in a string w ∈ Σ?. Given



Singular Value Automata 5

q1

1
1

q2

−1
−2

a, 1

b, 0

a,−1

b,−2

a, 3
b, 5

a,−2

b, 0

(a)

α =

[
1

−2

]
Aa =

[
1 −1

−2 3

]

β =

[
1

−1

]
Ab =

[
0 −2

0 5

]
(b)

Fig. 1: (a) Example of WFA A with two states. Within each circle we denote the

state number qi and the corresponding final weight. The initial weights are denoted

using arrows pointing to each state, and the transition weights are given by arrows

between states. For example, fA(ba) = 1× (−2)× 3× (−1) + 1× (−2)× (−2)× 1 +

(−2) × 5 × 3 × (−1) + (−2) × 5 × (−2) × 1 = 60. (b) Corresponding initial vector

α, final vector β, and transition matrices Aa and Ab.

a set of strings X ⊆ Σ? and a function f : Σ? → R, we denote by f(X) the summation∑
x∈X f(x) if defined. For example, we will write f(Σt) =

∑
|x|=t f(x) for any t ≥ 0.

The notation Σ<t (resp. Σ≤t) denotes all string of length less than (resp. at most) t. As

customary, we use Σ+ to denote the set of non-empty strings.

Now we introduce our notation for weighted automata. We want to note that we will

not work with weights in arbitrary semi-rings; this paper only considers automata with

real weights and the usual addition and multiplication operations. In addition, instead

of resorting to the usual description of automata as directed graphs with labelled nodes

and edges, we will use a linear-algebraic representation which is more convenient for

our purposes. Thus, a weighted finite automata (WFA) of dimension n over Σ is a tuple

A = 〈α,β, {Aa}a∈Σ〉 where α ∈ Rn is the vector of initial weights, β ∈ Rn is the

vector of final weights, and for each symbol a ∈ Σ the matrix Aa ∈ Rn×n contains the

transition weights associated with a. An example is provided in Figure 1. Note that in

this representation a fixed initial state is given by α (as opposed to formalisms that

only specify a transition structure), and the transition endomorphisms Aa and the final

linear form β are given in a fixed basis on Rn (as opposed to abstract descriptions where

these objects are represented as basis-independent elements objects on an abstract n-

dimensional vector space).

We will use dim(A) to denote the dimension of a WFA, to which we sometimes also

refer to as the number of states in the WFA. The state-space of a WFA of dimension n is

identified with the integer set [n]. Every WFA A realizes a function fA : Σ? → R which,

given a string x = x1 · · ·xt ∈ Σ?, produces

fA(x) = α>Ax1
· · ·Axt

β = α>Axβ ,

where we defined the shorthand notation Ax = Ax1
· · ·Axt

that will be used throughout

the paper. In terms of the graphical description of A, the value fA(x) can be interpreted
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as the sum of the weights of all paths labeled by x from an initial to a final state, where

the weight of a path is the product of the initial weight, the corresponding transition

weights, and the final weight:

fA(x) =
∑

(q0,...,qt)∈[n]t+1

α(q0)

(
t∏
i=1

Axi
(qi−1, qi)

)
β(qt) ,

where t = |x|. A function f : Σ? → R is called rational‡ if there exists a WFA A such

that f = fA. The rank of a rational function f is the dimension of the smallest WFA

realizing f . We say that a WFA A is minimal if dim(A) = rank(fA).

Hankel matrices provide a powerful characterization of rationality that will be heavily

used in the sequel. Let H ∈ RΣ?×Σ?

be an infinite matrix whose rows and columns are

indexed by strings. We say that H is Hankel§ if for all strings p, p′, s, s′ ∈ Σ? such that

ps = p′s′ we have H(p, s) = H(p′, s′). Given a function f : Σ? → R we can associate

with it a Hankel matrix Hf ∈ RΣ?×Σ?

with entries Hf (p, s) = f(ps). Conversely, given a

matrix H ∈ RΣ?×Σ?

with the Hankel property, there exists a unique function f : Σ? → R
such that Hf = H. The following well-known theorem characterizes all Hankel matrices

of finite rank.

Theorem 2.1 ((Berstel and Reutenauer, 2011)). For any function f : Σ? → R,

the Hankel matrix Hf has finite rank n if and only if f is rational with rank(f) = n. In

other words, rank(f) = rank(Hf ) for any function f : Σ? → R.

2.3. Probabilistic Automata

Probabilistic automata will be used as a recurring example throughout the paper. Here

we introduce the main definitions and stress some key differences arising from subtle

changes in the definition that can make a difference in terms of the analytic properties of

this kind of automata. Generally speaking, a probabilistic automaton is a WFA A whose

weights have a probabilistic interpretation and such that the values fA(x) of the function

computed by A represent the likelihood of an event associated with string x.

A generative probabilistic automaton (GPA) is a WFA A such that the function fA com-

putes a probability distribution on Σ?. That is, we have fA(x) ≥ 0 and
∑
x∈Σ? fA(x) = 1.

In addition, we say a GPA A = 〈α,β, {Aa}〉 is proper (pGPA) if its weights have a prob-

abilistic interpretation, i.e.

1 Initial weights represent a probability distribution over states: α ≥ 0 and α>1 = 1.

‡ Some authors call these functions recognizable and use a notion of rationality associated with belong-
ing to a set of functions closed under certain operations. Since both notions are equivalent for the
computation model of WFA we consider in this paper, we purposefully avoid the distinction between

rationality and recognizability.
§ In real analysis a matrix M is Hankel if M(i, j) = M(k, l) whenever i + j = k + l, which implies that

M is symmetric. In our case we have H(p, s) = H(p′, s′) whenever ps = p′s′, but H is not symmetric
because string concatenation is not commutative whenever |Σ| > 1.
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a, 1/3
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[
1

0

]
Aa =

[
1/4 1/4

0 1/3

]

β =

[
0

1/3

]
Ab =

[
0 1/2

1/3 0

]

Fig. 2: Example of pGPA A with two states.

2 Transition weights and final weights represent probabilities of emitting a symbol and

transitioning to a next state or terminating: Aσ ≥ 0¶, β ≥ 0, and
∑
σ∈Σ Aσ1+β = 1.

An example is provided in Figure 2. It is shown in (Denis and Esposito, 2008) that not

all GPA are pGPA, and that there exists probability distributions on Σ? that cannot be

computed by any pGPA.

A dynamic probabilistic automaton (DPA) is a WFA A defining a probability distri-

bution DA over streams in Σω and such that the function fA on finite strings computes

the probability under DA of cones of the form xΣω for x ∈ Σ?. That is, we have the

semantics fA(x) = PDA
[xΣω], which implies that fA(Σt) = 1 for all t ≥ 0. Again, we

say that a DPA A = 〈α,β, {Aa}〉 is proper (pDPA) if its weights have a probabilistic

interpretation as follows:

1 Initial weights represent a probability distribution over states: α ≥ 0 and α>1 = 1.

2 Final weights are all equal to one: β = 1.

3 Transition weights represent probabilities of emitting a symbol and transitioning to

a next state: Aσ ≥ 0 and
∑
σ∈Σ Aσ1 = 1.

An example is provided in Figure 3. As with GPA, there exist improper DPA, and distri-

butions DA on Σω that cannot be computed by any pDPA (Denis and Esposito, 2008).

An important subclass of pDPA are those for which there is no state with deterministic

emissions. A pDPA A = 〈α,β, {Aa}〉 is det-free if we have ‖Aσ‖∞ < 1 for each σ ∈ Σ.

Note that if A has n states and there exists σ such that ‖Aσ‖∞ = 1, then there exists

i ∈ [n] such that Aσ1(i) = 1 and therefore from state i the automaton A always emits

symbol σ.

3. Banach and Hilbert Spaces of Rational Functions

In the literature on formal language theory, functions f : Σ? → R are sometimes regarded

as weighted languages and weighted automata computing them as linear representations.

From an algebraic point of view, one can identify a weighted language f with an element of

the vector space RΣ?

. This vector space contains several subspaces that play an important

¶ Note that these inequalities have scalars in their RHS and should be interpreted as entry-wise in-

equalities, and not as claims about positive semi-definite matrices.
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Fig. 3: Example of det-free pDPA A with two states.

role in the theory developed in this paper. Furthermore, some of these spaces can be

endowed with additional operations and norms, yielding a wide variety of algebraic and

analytic structures. To the best of our knowledge, analytic properties of these spaces have

never been systematically studied before in the automata theory literature. This section

introduces the basic facts and definitions that will be needed in the rest of the paper.

We also take this as an opportunity to prove basic facts about these spaces and pinpoint

ideas that need to be developed further. Overall, we hope this provides the foundations

for a much needed analytic theory of rational functions.

A fundamental linear subspace of RΣ?

is the space of all rational functions, which we

denote byR(Σ). ThatR(Σ) is a linear subspace follows from the simple observations that

if f, g ∈ R(Σ) and c ∈ R, then cf and f + g are both rational (Berstel and Reutenauer,

2011). An important subspace of R(Σ) is the space of all f ∈ RΣ?

with finite support,

which we denote by C00(Σ). That is, f ∈ C00(Σ) if and only if | supp(f)| < ∞, where

supp(f) = {x : f(x) 6= 0} is the support of f . It is immediate from this definition

that C00(Σ) is a linear subspace of RΣ?

. The containment C00(Σ) ⊂ R(Σ) follows from

observing that every function with finite support is rational (Berstel and Reutenauer,

2011).

Another important family of subspaces of RΣ?

are the ones containing all functions

with finite p-norm for some 1 ≤ p ≤ ∞, which is given by ‖f‖pp =
∑
x∈Σ? |f(x)|p for

finite p, and ‖f‖∞ = supx∈Σ? |f(x)|; we denote this space by `p(Σ). Note that these are

Banach spaces, and as with the usual theory of Banach spaces over sequences we have

`p(Σ) ⊂ `q(Σ) for p < q. Of these, `2(Σ) can be endowed with the structure of a separable

Hilbert space with the inner product 〈f, g〉 =
∑
x∈Σ? f(x)g(x). Recall that in this case

we have the Cauchy–Schwarz inequality 〈f, g〉2 ≤ ‖f‖22 ‖g‖22. In addition, we have its

generalization, Hölder’s inequality : given f ∈ `p(Σ) and g ∈ `q(Σ) with p−1 + q−1 ≤ 1,

then ‖f · g‖1 ≤ ‖f‖p‖g‖q, where (f · g)(x) = f(x)g(x) is the Hadamard product between

two languages.

By intersecting any of the previous subspaces with R(Σ) one obtains `pR(Σ) = R(Σ)∩
`p(Σ), the normed vector space containing all rational functions with finite p-norm. In

most cases the alphabet Σ will be clear from the context and we will just write R,

C00, `p, and `pR. It is important to note that although the `p spaces can be endowed

with the structure of a Banach or Hilbert space, the `pR spaces cannot, because they are

not complete; i.e. it is possible to find sequences of functions in `pR whose limit in the

topology induced by the corresponding norm is not rational. For example, consider the
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function given by f(x) = (k + 1)−|x| if x is a palindrome and f(x) = 0 otherwise. Since

supp(f) is the set of all palindromes then f is not rational (Berstel and Reutenauer,

2011), and in addition ‖f‖1 <∞ by construction. Thus, we have we have f ∈ `p \ R for

any 1 ≤ p ≤ ∞. Now, for any l ≥ 0 let fl(x) = f(x) if |x| ≤ l and fl(x) = 0 otherwise.

Since fl has finite support for every l ≥ 0 we have fl ∈ `pR. Finally, it is easy to check that

liml→∞ ‖f − fl‖p = 0, implying that we have a sequence of functions in `pR converging

to a non-rational function. Therefore none of the `pR spaces is complete. Nonetheless,

the following result shows that all `p spaces with 1 ≤ p < ∞ can be obtained as the

completion of their corresponding `pR space.

Theorem 3.1. For any 1 ≤ p <∞, the Banach space `p coincides with the completion

of `pR with respect to ‖ · ‖p.

Proof. Fix 1 ≤ p <∞. Since C00 ⊂ `pR, it suffices to show that C00 is dense in `p with

respect to the topology induced by ‖·‖p. Let f ∈ `p and for any l ≥ 0 define fl(x) = f(x)

if |x| ≤ l and fl(x) = 0 otherwise. Clearly we have fl ∈ C00 by construction. To see that

fl → f in the topology of `p as l → ∞ we write sl = ‖fl − f‖pp =
∑
|x|>l |f(x)|p and

observe that we must have sl → 0. Otherwise we would have liml→∞
∑
|x|=l |f(x)|p > 0,

which is a contradiction with ‖f‖pp =
∑
x∈Σ? |f(x)|p <∞.

3.1. Bounded Hankel Operators

Recall that Theorem 2.1 gives a characterization of the functions f : Σ? → R which have

a Hankel matrix with finite rank. Using the concepts introduced above we can interpret

the Hankel matrix as an operator on Hilbert spaces and ask when this operator satisfies

some nice properties. The main result of this section is a characterization of the rational

functions whose Hankel matrix induces a bounded operator on `2.

Recall that a matrix T ∈ RΣ?×Σ?

can be interpreted as the expression of a (possibly

unbounded) linear operator T : `2 → `2 in terms of the canonical basis (ex)x∈Σ? . In

the case of a Hankel matrix Hf , we can see it is associated with an operator Hf corre-

sponding to the operation g 7→ Hfg with (Hfg)(x) =
∑
y f(xy)g(y) (assuming the series

converges). An operator T : `2 → `2 is bounded if ‖T‖op = sup‖g‖2≤1 ‖Tg‖2 <∞. Not all

Hankel operators Hf are bounded, but we shall give a necessary and sufficient condition

for Hf to be bounded when f is rational. We start with the following a technical lemma.

Lemma 3.2. Let A = 〈α,β, {Aa}〉 be a WFA such that fA(x) ≥ 0 for all x ∈ Σ?. Define

A =
∑
σ Aσ and let ρ = ρ(A) be its spectral radius. Then the following hold:

1 If A is minimal and fA ∈ `1R, then ρ < 1.

2 If ρ < 1, then fA ∈ `1R.

Proof. We start by recalling that if A = 〈α,β, {Aa}〉 is a minimal WFA with n states,

then there exist sets of prefixes P = {p1, . . . , pn} and suffixes S = {s1, . . . , sn} such

that the sets of vectors {α>Ap1 , . . . ,α
>Apn} and {As1β, . . . ,Asnβ} define two bases

for Rn (Berstel and Reutenauer, 2011). For convenience we will write α>pi = α>Api and

βsj = Asjβ.
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Now assume fA ∈ `1R and suppose λ is an arbitrary eigenvalue of A. We need to

show that |λ| < 1. Let v be any eigenvector with eigenvalue λ and suppose ‖v‖2 = 1.

Using the basis given by P and S we can find coefficients such that v =
∑
i∈[n] γiαpi =∑

j∈[n] δjβsj . For any k ≥ 0 we can now write the following:

|λ|k = |λ|kv>v =
∣∣v>(λkv)

∣∣ =
∣∣v>Akv

∣∣
=

∣∣∣∣∣∣
(∑

i

γiα
>
pi

)(∑
σ

Aσ

)k∑
j

δjβsj

∣∣∣∣∣∣
≤
∑
i,j

|γi||δj |
∑

x∈piΣksj

|fA(x)| .

Since we have fA ∈ `1R by hypothesis, for fixed i and j we have
∑
k≥0

∑
x∈piΣksj

|fA(x)| ≤∑
x∈Σ? |fA(x)| < ∞. Therefore we can conclude that

∑
k≥0 |λ|k < ∞, which necessarily

implies |λ| < 1.

To obtain the converse suppose ρ(A) < 1 and note that because fA is non-negative we

have

‖fA‖1 =
∑
x∈Σ?

|f(x)| =
∑
x∈Σ?

f(x) =
∑
k≥0

α>Akβ <∞ . (2)

Note that this implication does not require the minimality of A.

The following theorem is the main result of this section.

Theorem 3.3. Let f : Σ? → R be a rational function. The Hankel operator Hf is

bounded if and only if f ∈ `2R.

Proof. It is easy to see that the membership f ∈ `2 is a necessary condition for the

boundedness of Hf . Indeed, by noting that f appears as the first column of Hf we have

f = Hfeε, and since ‖eε‖2 = 1 we have ‖f‖2 = ‖Hfeε‖2 ≤ ‖Hf‖op.

Next we prove sufficiency. Let g ∈ `2 with ‖g‖2 = 1 and for any x ∈ Σ? define the

function fx(y) = f(xy). With this notation we can write

‖Hfg‖22 =
∑
x∈Σ?

∑
y∈Σ?

f(xy)g(y)

2

=
∑
x∈Σ?

〈fx, g〉2

≤ ‖g‖22
∑
x∈Σ?

‖fx‖22 =
∑
x∈Σ?

∑
y∈Σ?

f(xy)2

=
∑
z∈Σ?

(1 + |z|)f(z)2 , (3)

where we used Cauchy–Schwarz’s inequality, and the fact that a string z can be written

as z = xy in 1 + |z| different ways.

Recall that f ∈ `2R implies f2 ∈ `1R. Let A = 〈α,β, {Aa}〉 be a minimal WFA for

f2 and write A =
∑
σ Aσ. Note we have ρ = ρ(A) < 1 by Lemma 3.2. Suppose A =

WJW−1 is the Jordan canonical form of A and let m denote the maximum algebraic

multiplicity of any eigenvalue of A. By computing the kth power of the largest Jordan
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block

Jλ =


λ 1 0 · · · 0

0 λ 1 · · · 0
...

...
...

. . .
...

0 0 0 λ 1

0 0 0 0 λ

 ∈ Rm
′×m′

associated with the maximal eigenvalue |λ| = ρ (with m′ ≤ m) one can see there exists

a constant c > 0 such that the following holds for all k ≥ 0:∑
x∈Σk

f(x)2 = α>Akβ = α>WJkW−1β ≤ ckm−1ρk .

This is a standard calculation in the analysis of non-reversible Markov chains; see Fact 3

in (Rosenthal, 1995) for more details. Now we use that ρ < 1, in which case this bound

yields ∑
z∈Σ?

|z|f(z)2 =
∑
k≥0

k
∑
z∈Σk

f(z)2 ≤ c
∑
k≥0

kmρk <∞ .

Plugging this into (3) we can conclude that ‖Hfg‖2 is finite and therefore Hf is bounded.

4. The Singular Value Automaton

The central object of study in this paper is the singular value automaton (SVA). Es-

sentially, this is a canonical form for weighted automata which is tightly connected to

the singular value decomposition of the corresponding Hankel matrix. We will start this

section by establishing some fundamental preliminary results on the relation between

minimal WFAs and rank factorizations of Hankel matrices. By assuming that one such

Hankel matrix admits a singular value decomposition, the relation above will lead us di-

rectly to the definition of singular value automaton. We then proceed to explore necessary

conditions for the existence of SVA. These will essentially say that only rational func-

tions in `2R admit a singular value automaton, provide some easily testable conditions,

and guarantee the existence of an SVA for a large class of probabilistic automata.

4.1. Correspondence between Minimal WFA and Rank Factorizations

An important operation on WFA is conjugation by an invertible matrix. Let A =

〈α,β, {Aa}〉 be a WFA of dimension n and suppose Q ∈ Rn×n is invertible. Then

we can define the conjugate of A by Q as:

A′ = AQ = Q−1AQ = 〈Q>α,Q−1β, {Q−1AaQ}〉 . (4)

It follows immediately that fA = fA′ since, at every step in the computation of fA′(x), the

products QQ−1 vanish. This means that the function computed by a WFA is invariant

under conjugation, and that given a rational function f , there exist infinitely many WFA
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realizing f . The following result offers a full characterization of all minimal WFA realizing

a particular rational function.

Theorem 4.1 ((Berstel and Reutenauer, 2011)). If A and B are minimal WFA

realizing the same function, then B = AQ for some invertible Q.

The goal of this section is to provide a “lifted” version of this result establishing a

connection between every pair of rank factorizations of the Hankel matrix Hf , and then

show that these rank factorizations are in bijection with all minimal WFA for f . We start

by recalling how every minimal WFA realizing f induces a rank factorization for Hf .

Suppose f is a rational function and A = 〈α,β, {Aa}〉 is a WFA realizing f . The

forward matrix of A is defined as the infinite matrix PA ∈ RΣ?×n with entries given by

PA(p, :) = α>Ap for any string p ∈ Σ?; sometimes we will refer to the strings indexing

rows in a forward matrix as prefixes. Similarly, let SA ∈ RΣ?×n be the backward matrix of

A given by SA(s, :) = (Asβ)> for any string s ∈ Σ?; strings indexing rows in a backward

matrix are commonly called suffixes. Now note that for every p, s ∈ Σ? we have

Hf (p, s) = f(ps) = (α>Ap) (Asβ) =
∑
i∈[n]

PA(p, i)SA(s, i) = PA(p, :)S>A(:, s) . (5)

Therefore, we see that the forward and backward matrix of A yield the factorization

Hf = PAS>A. This is known as the forward–backward (FB) factorization of Hf induced

by A (Balle et al., 2014a).

Recall that a WFA A with n states is called reachable when the space spanned by all

the forward vectors has dimension n; that is:

dim span{α>Ax | x ∈ Σ?} = rank(PA) = n . (6)

Similarly, A is called observable if the dimension of the space spanned by the backward

vectors equals n; that is:

dim span{Axβ | x ∈ Σ?} = rank(SA) = n . (7)

Note that when A is minimal, the number of columns of the forward and backward

matrices equals the rank of Hf , and therefore the FB factorization is a rank factorization.

Therefore, it follows from Theorem 2.1 the useful characterization of minimality saying

that a WFA A is minimal if and only if it is both reachable and observable.

The following result shows that every rank factorization of Hf is actually an FB

factorization. We can understand this result as a refinement of Theorem 2.1 in the sense

that given a finite-rank Hankel matrix, it provides a characterization of all its possible

rank factorizations.

Proposition 4.2. Let f be rational and suppose Hf = PS> is a rank factorization.

Then there exists a minimal WFA A realizing f which induces this factorization.

Proof. Let B be any minimal WFA realizing f and denote n = rank(f). Then we

have two rank factorizations PS> = PBS>B for the Hankel matrix Hf . Therefore, the

columns of P and PB both span the same n-dimensional sub-space of RΣ?

, and there

exists a change of basis Q ∈ Rn×n such that PBQ = P. This implies we must also have
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S> = Q−1S>B . It follows that A = BQ is a minimal WFA for f inducing the desired rank

factorization.

4.2. Definition of Singular Value Automaton

It is well-known that the compact singular value decomposition of a matrix is a rank-

revealing decomposition in the sense that the intermediate dimensions of the decomposi-

tion correspond to the rank of the matrix. This decomposition can be used to construct

rank factorizations for said matrix. The singular value automaton links this idea with

the minimal WFA identified in Proposition 4.2.

Recall that if Hf is a Hankel matrix of rank n admitting a singular value decomposition,

then there exists a square matrix D = diag(σ1, . . . , σn) ∈ Rn×n and two infinite matrices

U,V ∈ RΣ?×n with orthonormal columns (i.e. U>U = V>V = I) such that Hf =

UDV> with U,V ∈ RΣ?×n. By splitting this decomposition into two parts we obtain

the rank factorization Hf = (UD1/2)(VD1/2)>. Thus, whenever Hf admits an SVD,

we can invoke Proposition 4.2 to conclude there exists a minimal WFA realizing f whose

induced FB rank factorization coincides with the one we obtained above from SVD.

Putting this into a formal statement we get the following theorem.

Theorem 4.3. Let f be a rational function and suppose Hf admits a compact SVD

Hf = UDV>. Then there exists a minimal WFA A for f inducing the rank factorization

Hf = (UD1/2)(VD1/2)>. That is, A is a WFA for f with FB rank factorization given

by PA = UD1/2 and SA = VD1/2.

The WFA given by the above theorem can be considered as a canonical form for a ra-

tional function whose Hankel matrix admits an SVD. This is made formal in the following

definition. Next section will provide conditions for the existence of this automaton.

Definition 4.4. Let f ∈ `2R. A singular value automaton (SVA) for f is a minimal WFA

A realizing f such that the FB rank factorization of Hf induced by A has the form given

in Theorem 4.3.

Note the SVA provided by Theorem 4.3 is unique up to the same conditions in which

SVD is unique. In particular, it is easy to verify that if the Hankel singular values of

f ∈ `2R satisfy the strict inequalities σ1 > · · · > σn, then the transition weights of the

SVA A of f are uniquely defined, and the initial and final weights are uniquely defined

up to sign changes.

4.3. Rational Functions Admitting an SVA

By leveraging the fact that every compact operator on a Hilbert space admits a singular

value decomposition and our Theorem 3.3 characterizing rational functions with bounded

Hankel operator, we immediately get a characterization of rational functions admitting

an SVA.

Theorem 4.5. A rational function f : Σ? → R admits an SVA if and only if f ∈ `2R.
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Proof. Since a finite-rank bounded operator is compact and therefore admits a compact

SVD, Theorem 3.3 and Theorem 4.3 imply that every f ∈ `2R admit an SVA. On the

other hand, if a rational function admits an SVA, then its Hankel Hf matrix admits

a compact SVD and therefore Hf is bounded. Applying Theorem 3.3 we see that this

implies f ∈ `2R.

In view of this result, when given a rational function as a WFA, one just has to check

that the function has finite `2 norm to ensure the existence of an SVA for that function.

A direct way to test this based on Lemma 3.2 is given below.

Theorem 4.6. Let A be a WFA and let B be a minimisation of the automaton A⊗ A
computing f2

A. Then we have fA ∈ `2R if and only if ρ(
∑
σ∈Σ Bσ) < 1.

Proof. Let B =
∑
σ∈Σ Bσ. The if part follows from observing that ρ(

∑
σ∈Σ Bσ) < 1

implies that
∑
x∈Σ? Bx =

∑
t≥0 Bt converges, and therefore ‖fA‖22 =

∑
x∈Σ? β

>
0 Bxβ∞

is finite. The only if part is a direct application of Lemma 3.2.

The above theorem gives a direct way to check if for a given A we have fA ∈ `2R
by using a WFA minimisation algorithm and computing the spectral radius of a given

matrix. If A has n states, then B can be obtained by minimising an automaton with n2

states, which takes time O(n6) (Berstel and Reutenauer, 2011) and yields a WFA B with

n′ ≤ n2 states. Computing the spectral radius of B takes time O(n′3) (Trefethen and

Bau III, 1997), so the overall complexity of testing fA ∈ `2R based in the above theorem

is O(n6). The following theorem gives sufficient conditions for fA ∈ `2R, some of which

can be checked without the need to run a WFA minimisation algorithm.

Theorem 4.7. Let A be a WFA computing a function fA. Any of the following condi-

tions implies fA ∈ `2R:

1 fA ∈ `1R,

2 ρ(
∑
σ Aσ ⊗Aσ) < 1,

3 ‖
∑
σ Aσ ⊗Aσ‖p < 1 for some 1 ≤ p ≤ ∞,

4 ‖
∑
σ AσA>σ ‖2 < 1.

Proof. The first item follows from the inclusion `1R ⊂ `2R. To get (2) note that by

Lemma 3.2 the condition implies f2
A ∈ `1R and therefore fA ∈ `2R. Condition (3) follows

from the property of the spectral radius ρ(M) ≤ ‖M‖p. The last condition follows from

the main result in (Lototsky, 2015) showing that ρ(
∑
σ Aσ ⊗Aσ) ≤ ‖

∑
σ AσA>σ ‖2.

We can use these conditions to identify classes of probabilistic automata that compute

functions in `2R and therefore have an SVA. We will need the following technical lemma.

Lemma 4.8. The following inequality holds for any set of square matrices {A1, . . . ,Am}:∥∥∥∥∥∥
∑
k∈[m]

Ak ⊗Ak

∥∥∥∥∥∥
∞

≤ ‖[A1 . . .Am]‖∞

∥∥∥∥∥∥∥
 A1

...

Am


∥∥∥∥∥∥∥
∞

= ‖[A1 . . .Am]‖∞
∥∥[A>1 . . .A

>
m]
∥∥

1
.
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Proof. Recall that the induced matrix norm with p = ∞ is given by ‖M‖∞ =

maxi
∑
j |M(i, j)|. Then the desired inequality can be obtained as follows:∥∥∥∥∥∥
∑
k∈[m]

Ak ⊗Ak

∥∥∥∥∥∥
∞

= max
i1,i2∈[n]

n∑
j1,j2=1

∣∣∣∣∣∑
k

Ak(i1, j1)Ak(i2, j2)

∣∣∣∣∣
≤ max
i1,i2∈[n]

∑
k

n∑
j1,j2=1

|Ak(i1, j1)||Ak(i2, j2)|

= max
i1,i2∈[n]

∑
k

 n∑
j1=1

|Ak(i1, j1)|

 n∑
j2=1

|Ak(i2, j2)|


≤ max

i1

∑
k

 n∑
j1=1

|Ak(i1, j1)|

max
i2

n∑
j2=1

|Ak(i2, j2)|


= max

i

∑
k

‖Ak‖∞

 n∑
j=1

|Ak(i, j)|


≤
(

max
k
‖Ak‖∞

)max
i

∑
k

n∑
j=1

|Ak(i, j)|


=

∥∥∥∥∥∥∥
 A1

...

Am


∥∥∥∥∥∥∥
∞

‖[A1 . . .Am]‖∞ .

The second equality follows from the duality between the norms ‖ · ‖1 and ‖ · ‖∞.

Corollary 4.9. If A is a GPA or a det-free pDPA, then fA ∈ `2R.

Proof. For A GPA it follows directly from Theorem 4.7 by noting that we have ‖fA‖1 =

1. Now suppose A = 〈α,β, {Aa}〉 be a det-free pDPA, so by construction we have∑
a∈Σ Aa1 = 1 and ‖Aa‖∞ < 1 for all a ∈ Σ. Note that the first property implies

‖[Aa1 . . .Aak ]‖∞ = 1 and the second property implies∥∥∥∥∥∥∥
 Aa1

...

Aak


∥∥∥∥∥∥∥
∞

< 1 . (8)

Therefore, using Lemma 4.8 we see that ‖
∑
a∈Σ Aa⊗Aa‖∞ < 1 and therefore by (3) in

Theorem 4.7 we get fA ∈ `2R.

Note that the det-free condition on pDPA is necessary to ensure fA ∈ `2R as witnessed

by the example in Figure 4.
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q1

1
1

q2

1

a, 1/2

b, 1/2

a, 1

α =

[
1

0

]
Aa =

[
1/2 0

0 1

]

β =

[
1

1

]
Ab =

[
0 1/2

0 0

]

Fig. 4: Example of pDPA A with two states which is not det-free. Note that

fA(bak) = 1/2 for all k ≥ 0 and therefore fA /∈ `2R.

5. Fundamental Equations of SVA

In this section we establish two fundamental facts about SVA that follow from a system-

atic study of the properties of its observability and reachability Gramian matrices (cf.

definitions in Section 5.1). These matrices, which can be defined for any WFA realizing

a function in `2R, bear a strong relation with the change of basis needed to transform an

arbitrary minimal WFA into its SVA form. By studying this relation we will derive an

efficient algorithm for the computation of SVA canonical forms provided that we know

how to compute the Gramians associated with a WFA. Two algorithms for computing

such Gramians are developed in Section 6. The second of these algorithms is based on

fixed-point equations for the Gramians that are derived in Section 5.3, which also play a

key role on the analysis of an approximate minimisation approach given in Section 7.

5.1. Observability and Reachability Gramians

Let f be rational function and Hf = PS> be a FB factorization for the Hankel matrix of

f induced by a (non-necessarily minimal) WFA A with n states. Suppose that P is such

that the inner products of its columns 〈P(:, i),P(:, j)〉 =
∑
x∈Σ? P(x, i)P(x, j) are finite

for every i, j ∈ [n]. Then the positive semidefinite matrix Gp = P>P ∈ Rn×n is well-

defined. We call Gp the reachability gramian of A. Similarly, suppose the same condition

on the inner products holds for the columns of S. Then the matrix Gs = S>S ∈ Rn×n
is well-defined and we will call it the observability gramian of A. These definitions are

motivated by the following result.

Proposition 5.1. Let A be a WFA with n states and suppose that its reachability and

observability gramians are well-defined. Then the following hold:

1 A is reachable if and only if rank(Gp) = n;

2 A is observable if and only if rank(Gs) = n;

3 A is minimal if and only if rank(Gp) = rank(Gs) = n.

Proof. Recall that A is reachable whenever rank(P) = n, which implies that Gp is

the gramian of n linearly independent vectors and therefore rank(Gp) = n. On the other

hand, if rank(Gp) = n, then by the bound on the rank of a product of matrices we have

n = rank(Gp) = rank(P>P) ≤ max{rank(P>), rank(P)} = rank(P) ≤ n , (9)
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from where we conclude that rank(P) = n and therefore A is reachable.

The observable case follows exactly the same reasoning, and the claim about minimality

is just a consequence of recalling that A is minimal if and only if it is both reachable and

observable.

Note the above result assumed the gramians are well-defined in the first place. Nonethe-

less, a similar result can be obtained without such assumptions if one is willing to work

with finite versions of these matrices obtained by summing only strings up to some fixed

(large enough) length. In particular, defining for any t ≥ 0 the matrices

G(t)
p =

∑
x∈Σ≤t

P(x, :)>P(x, :) , (10)

G(t)
s =

∑
x∈Σ≤t

S(x, :)>S(x, :) , (11)

it is possible to see that when t ≥ n we have rank(G
(t)
p ) = rank(P) and rank(G

(t)
s ) =

rank(S). However, we shall not pursue this direction here. Instead we look for necessary

and sufficient conditions guaranteeing the finitness of the gramian matrices.

Proposition 5.2. Let A be a minimal WFA realizing a rational function f . The reach-

ability and observability gramians of A are well-defined if and only if f ∈ `2R.

Proof. SupposeA is a minimal WFA with n states realizing a function f ∈ `2R. It follows

from Theorems 4.3 and 3.3 that there exists an invertible matrix Q such that B = AQ is

an SVA. Since B induces the FB factorization given by PB = UD1/2 and SB = VD1/2,

we see that the corresponding gramian matrices are well-defined and since U>U =

V>V = I we have GB,p = GB,s = D. Now recall that the FB factorization induced

by A has PAQ = PB and Q−1S>A = S>B . Therefore the gramian matrices associated

with A are also well-defined since they can be obtained as GA,p = Q−>GB,pQ
−1 and

GA,s = QGB,sQ
>.

Now suppose A has well-defined gramian matrices Gp = P>P and Gs = S>S. This

implies that the trace Tr(GpGs) is finite, which can be used to show that f ∈ `2R as

follows:

‖f‖22 =
∑
x∈Σ?

f(x)2 ≤
∑
x∈Σ?

(|x|+ 1)f(x)2 = Tr(HfH
>
f ) (12)

= Tr(PS>SP>) = Tr(P>PS>S) = Tr(GpGs) <∞ . (13)

Note that the minimality assumption is not needed when showing that A having well-

defined gramians implies fA ∈ `2R. On the other hand, the minimality of A is essential

to show that fA ∈ `2R implies that both gramians are well-defined, as witenessed by the

example in Figure 5.
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q1

1
1

q2

0

a, 1/2

b, 1/2

a, 1

α =

[
1

0

]
Aa =

[
1/2 0

0 1

]

β =

[
1

0

]
Ab =

[
0 1/2

0 0

]

Fig. 5: Example of non-minimal WFA A computing a function in `2R for which the

forward Gramian is not defined. To see that A is not minimal note that fA can

be computed by the one state WFA obtained by removing q2 from A. Note that

Gp(2, 2) is not defined since (α>AbA
k
ae2)2 = 1/4 for all k ≥ 0.

5.2. Gramians and SVA

The reason for introducing the reachability and observability gramians in the previous

section is because these matrices can be used to reduce any given (minimal) WFA to

its SVA form. The details of this construction are presented in this section, and they

drawn upon some ideas already present in the proof of Proposition 5.2. Essentially, this

section provides a reduction from the computation of the SVA to the computation of the

gramians. The later problem is studied in detail in Section 6.

Let A be a minimal WFA with n states realizing a function f ∈ `2R. By Proposition 5.2

we know that the gramians GA,p and GA,s are defined. Furthermore, Theorems 4.3

and 3.3 guarantee the existence of an invertible matrix Q such that B = AQ is an SVA

for f . Let D be the diagonal matrix containing the singular values of the Hankel matrix of

f . By inspecting the proof of Proposition 5.2, we see that these facts imply the following

important equations:

GB,p = D = Q>GA,pQ , (14)

GB,s = D = Q−1GA,sQ
−> . (15)

These equations say that given A we can obtain its corresponding SVA by finding an

invertible matrix Q simultaneously transforming the Gramians of A into two equal di-

agonal matrices. The following results provide a way to do this by taking the Cholesky

decompositions of the Gramian matrices and computing an additional SVD.

Lemma 5.3. Let A be a minimal WFA with n states realizing a function f ∈ `2R.

Suppose the Gramians Gp and Gs satisfy Gp = Gs = D = diag(σ1, . . . , σn) with

σ1 ≥ · · · ≥ σn > 0. Then A is an SVA, and D is the matrix of singular values of Hf .

Proof. Let Hf = PS> be the FB factorization induced by A. Since Gp = P>P and

Gs = S>S are diagonal and full rank, we see that the columns of P (resp. S) are

orthogonal. Now take U = PD−1/2 and V = SD−1/2 and note that these two matrices

have orthonormal columns since U>U = V>V = I. Noting that Hf = PS> = UDV>

is a decomposition satisfying the constraints of an SVD we conclude that A is an SVA.
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Theorem 5.4. Let A be a minimal WFA with n states realizing a function f ∈ `2R with

Gramians Gs and Gp. Let Gs = LsL
>
s and Gp = LpL

>
p be their Cholesky decomposi-

tions. Suppose L>p Ls has singular value decomposition UDV>. Then the WFA B = AQ

with Q = L−>p UD1/2 is an SVA for A. Furthermore, we have Q−1 = D1/2V>L−1
s .

Proof. In the first place note that minimality of A implies that Gp and Gs are full

rank. Thus the factors Lp and Ls are invertible, L>p Ls has full rank, and both Q and

Q−1 are well defined. To check the equality Q−1 = D1/2V>L−1
s we just write(

L−>p UD1/2
)(

D1/2V>L−1
s

)
= L−>p

(
UDV>

)
L−1
s = I . (16)

Next we check that Q is such that GB,p = GB,s = D:

GB,p = Q>GpQ =
(
D1/2U>L−1

p

) (
LpL

>
p

) (
L−>p UD1/2

)
= D ,

GB,s = Q−1GsQ
−> =

(
D1/2V>L−1

s

) (
LsL

>
s

) (
L−>s VD1/2

)
= D ,

where we used that U>U = V>V = I. Therefore, we can apply Lemma 5.3 to conclude

that B is an SVA.

The previous theorem motivates the following simple algorithm for computing the SVA

of a function f ∈ `2R provided that a minimal WFA A and its corresponding gramian

matrices are given. We shall address the computation of the gramian matrices in the next

section. For now we note that the constraint of A being minimal is not essential, since

its possible to minimize a WFA with n states in time O(n3) (Berstel and Reutenauer,

2011). Furthermore, given a minimal WFA A it is possible to check the membership

fA ∈ `2R using any of the tests discussed in Section 4.3, which provides a way to verify

the pre-condition necessary to ensure the existence of the gramian matrices.

Algorithm 1: ComputeSVA

Input: A minimal WFA A realizing f ∈ `2R, and the gramians GA,p and

GA,s

Output: An SVA B for f

1 Compute the Cholesky decompositions Gs = LsL
>
s and Gp = LpL

>
p

2 Compute the SVD UDV> of L>p Ls
3 Let B = AQ with Q = L−>p UD1/2

4 return B

The running time of ComputeSVA(A) in terms of floating point operations (flops) can

be bounded using the following well-known facts about numerical linear algebra (see e.g.

(Trefethen and Bau III, 1997)):

— Computing the product of two matrices d×dmatrices takes time O(d3) if implemented

naively, and can be done in time O(dω) for some constant ω < 2.4 using sophisticated

algorithms that only yield practical improvements on very large matrices.
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— The singular value decomposition of a matrix M ∈ Rd×d can be computed in time

O(d3), and the Cholesy decomposition of a positive definite matrix G ∈ Rd×d can

also be computed in time O(d3).

— The inverse of an invertible lower triangular matrix L ∈ Rd×d can be computed in

time O(d3) using Gaussian elimination.

Therefore, if the input A to Algorithm 1 has n states, its total running time is O(n3 +

|Σ|nω).

The following important observation about the product of two Gramians follows from

the results showing how to compute an SVA from the Gramian matrices of a minimal

WFA.

Corollary 5.5. Let A be a minimal WFA with n states realizing a function f ∈ `2R. Then

the product of the gramians W = GA,sGA,p is a diagonalizable matrix with eigenvalues

given by λi(W) = σi(Hf )2 for i ∈ [n]. Furthermore, if Q is an invertible matrix such

that AQ is an SVA, then Q diagonalizes W; that is W = QD2Q−1.

Proof. Let B = AQ be an SVA for f as above. By multiplying (14) and (15) together

we see that

GB,sGB,p = D2 = Q−1GA,sGA,pQ = Q−1WQ . (17)

Therefore, W is diagonalizable and its eigenvalues are the squares of the Hankel singular

values of f . Additionally, the above expression shows that Q necessarily is a matrix of

eigenvectors for W.

5.3. Gramian Fixed-Point Equations

In addition to their definitions in terms of a FB factorization, the gramian matrices of

a WFA can be characterized in terms of fixed-point equations. This point of view will

prove useful later both for theoretical arguments as well as for developing algorithms for

computing them.

Theorem 5.6. Let A = 〈α,β, {Aa}〉 be a WFA with n states such that the correspond-

ing gramians Gp and Gs are well-defined. Then X = Gp and Y = Gs are solutions to

the following fixed-point equations:

X = αα> +
∑
a∈Σ

A>a XAa , (18)

Y = ββ> +
∑
a∈Σ

AaYA>a . (19)
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Proof. Recall that Gp = P>P with P ∈ RΣ?×n, and the row of P corresponding to

x ∈ Σ? is given by α>Ax. Expanding this definitions we get

Gp =
∑
x∈Σ?

(A>xα)(α>Ax)

= αα> +
∑
x∈Σ+

(A>xα)(α>Ax)

= αα> +
∑
a∈Σ

∑
x∈Σ?

A>a (A>xα)(α>Ax)Aa

= αα> +
∑
a∈Σ

A>a

(∑
x∈Σ?

(A>xα)(α>Ax)

)
Aa ,

where we just used that A>x = (Ax1
· · ·Axt

)> = A>xt
· · ·A>x1

and that any string y ∈ Σ+

satisfies y = xa for some x ∈ Σ? and a ∈ Σ. The derivation for Gs follows exactly the

same pattern.

We note here that in the simple case where |Σ| = 1 equations (18) and (19) are special

cases of the well-known discrete Lyapunov equation.

Another important remark about this result is that the same argument used in the

proof can be used to show that the matrices G
(t)
p and G

(t)
s defined in equations (10) and

(11) satisfy the following recurrence relations for any t ≥ 0:

G(t+1)
p = αα> +

∑
a∈Σ

A>a G(t)
p Aa , (20)

G(t+1)
s = ββ> +

∑
a∈Σ

AaG
(t)
s A>a . (21)

Thus, for any WFA A with n states it will be convenient to define the mappings Fp, Fs :

Rn×n → Rn×n given by

Fp(X) = αα> +
∑
a∈Σ

A>a XAa , (22)

Fs(Y) = ββ> +
∑
a∈Σ

AaYA>a . (23)

With this notation, the results from this section can be summarized by saying that for

any t ≥ 0 we have G
(t)
p = F t+1

p (0), and when the Gramian Gp is defined then it is a

fixed point of the form Fp(X) = X which can be obtained as limt→∞ F tp(0). The same

results apply to Gs by replacing Fp with Fs.

These maps satisfy an important property when applied to positive semi-definite ma-

trices.

Lemma 5.7. The maps Fp and Fs defined in (22) and (23) are monotonically increasing

with respect to the Loewner order.

Proof. Let X and Y be positive semi-definite matrices satisfying X ≥ Y. We need to

show Fp(X) ≥ Fp(Y). Recalling that for any matrices M ≥ 0 and Q one has Q>MQ ≥ 0,
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we see that

Fp(X)− Fp(Y) =
∑
a

A>a (X−Y)Aa ≥ 0 , (24)

since positive semi-definite matrices are closed under addition. The claim for Fs follows

from a similar argument.

Finally, we conclude this section by stating a simple observation about the sequences

G
(t)
p and G

(t)
s that will prove useful in the sequel.

Lemma 5.8. One has G
(t+1)
p ≥ G

(t)
p and G

(t+1)
s ≥ G

(t)
s for any t.

Proof. These just follow from (10) and (11) by observing that the differences

G(t+1)
p −G(t)

p =
∑
|x|=t+1

P(x, :)>P(x, :) ,

G(t+1)
s −G(t)

s =
∑
|x|=t+1

S(x, :)>S(x, :) ,

are positive semi-definite matrices.

5.4. Applications of Gramians

We have seen so far that having the Gramians of a minimal WFA A computing a rational

function fA ∈ `2R is enough to efficiently find the SVA of A. We now show how having

the Gramians of A is also useful to compute several other quantities associated with fA,

including its `2 norm.

Theorem 5.9. Let A = 〈α,β, {Aa}〉 be a WFA computing a rational function f . Then

the following hold:

1 If the Gramian Gs is defined then ‖f‖22 = α>Gsα.

2 If the Gramian Gp is defined then ‖f‖22 = β>Gpβ.

3 If both Gramians are defined then ‖Hf‖2op = ρ(GpGs) and ‖Hf‖2S,2 = Tr(GpGs).

Proof. Suppose Gs is defined. Letting x̄ denote the reverse of a string x, the first

equation follows from

‖f‖22 =
∑
x∈Σ?

f(x)2 =
∑
x∈Σ?

(
α>Axβ

) (
β>A>x̄α

)
= α>

(∑
x∈Σ?

Axββ
>A>x̄

)
α

= α>

(∑
x∈Σ?

S(x, :)>S(x, :)

)
α = α>Gsα .

By writing f(x)2 = (β>A>x̄α)(α>Axβ), the proof of ‖f‖22 = β>Gpβ follows from the

same argument.

Now suppose both Gramians are defined and recall from Proposition 5.2 that this

implies f ∈ `2R. Therefore ‖Hf‖op and ‖Hf‖S,2 are both finite. The desired equations

follow directly from Corollary 5.5 by noting that ρ(GpGs) = λ1(GpGs) = σ1(Hf )2 =

‖Hf‖2op and Tr(GpGs) =
∑n
i=1 λi(GpGs) =

∑n
i=1 σi(Hf )2 = ‖Hf‖2S,2.
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Note that this last result shows that if either the reachability or observability Gramian

of a possibly non-minimal WFA A are defined, then we have fA ∈ `2R. This gives a crite-

rion for testing a WFA for finite `2 norm in addition to those provided by Theorem 4.7.

It is also interesting to contrast this results with Proposition 5.2, in which we showed

that if A is minimal and fA ∈ `2R, then both Gramians are necessarily defined.

6. Computing the Gramians

In this section we present several algorithmic approaches for computing the SVA of a

rational function in `2R given in the form of an arbitrary minimal WFA. By Algorithm 1

this problem reduces to that of computing the Gramian matrices associated with the

given WFA. The first approach works in the particular case where the fixed-point gramian

equations have a unique solution, in which case the gramians can be efficiently computed

by solving a system of linear equations. The second, more general algorithm is based on

the computation of the least solution to a semi-definite system of matrix inequalities.

6.1. The Unique Solution Case

The main idea behind our first algorithm for computing the gramian matrices of a WFA

is based on directly exploiting the definitions of these matrices. In particular, since Gp =

P>P, we have that Gp(i, j) is the inner product between the ith and the jth columns

of P. By noting that each of these columns is in fact a rational function, we see that

computing Gp can be reduced to the problem of computing the inner product of two

rational functions. Since it is possible to find a closed-form solution to this inner product

computation, this observation can be exploited to compute Gp directly by obtaining these

inner products one at at time. However, we will observe that a significant amount of these

calculations can actually be reused from entry to entry. This motivates the development

of an improved procedure that efficiently exploits this structure by amortizing the shared

computations among all entries in Gp. Of course, by symmetry the very same arguments

can be applied to the gramian Gs.

We start with the following simple observation about solutions to the gramian fixed-

point equations.

Lemma 6.1. Let A = 〈α,β, {Aa}〉 be a WFA with n states and X ∈ Rn×n an arbitrary

matrix. Recall that x = vec(X) ∈ Rn2

is the vector obtained by concatenating the

columns of X. Then the following hold:

1 X is a solution of X = αα>+
∑
a A>a XAa if and only if x is a solution of (α⊗α)> =

x>(I−
∑
a Aa ⊗Aa),

2 X is a solution of X = ββ>+
∑
a AaXA>a if and only if x is a solution of (β⊗β) =

(I−
∑
a Aa ⊗Aa)x.

Proof. The result follows immediately from the well-known relations vec(vv>) = v⊗v

and vec(AXB>) = (B⊗A) vec(X), and the linearity of the vec(•) operation.
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Now we can show that the fixed-point equations have a unique solution when a simple

condition is satisfied. This yields an efficient algorithm for computing Gp and Gs when

an easily testable condition holds.

Theorem 6.2. Let A = 〈α,β, {Aa}〉 be a WFA with n states and denote by ρ the

spectral radius of the matrix
∑
a Aa ⊗Aa. If ρ < 1 then the following are satisfied:

1 x = vec(Gp) is the unique solution to (α⊗α)> = x>(I−
∑
a Aa ⊗Aa)

2 y = vec(Gs) is the unique solution to (β ⊗ β) = (I−
∑
a Aa ⊗Aa)y

Proof. Recall that the WFA B = 〈α ⊗ α,β ⊗ β, {Aa ⊗ Aa}〉 satisfies fB = f2
A.

Therefore we have fB(x) ≥ 0 for all x ∈ Σ?. Using the assumption on ρ and Lemma 3.2

we see that fB ∈ `1R and therefore fA ∈ `2R, which by Proposition 5.2 implies that

GA,p and GA,s are well-defined. Therefore Theorem 5.6 and Lemma 6.1 tell us that both

(α⊗α)> = x>(I−
∑
a Aa ⊗Aa) and (β ⊗ β) = (I−

∑
a Aa ⊗Aa)y have at least one

solution.

Suppose y,y′ ∈ Rn2

are two solutions to equation (β ⊗ β) = (I −
∑
a Aa ⊗ Aa)y.

This implies that (I −
∑
a Aa ⊗ Aa)y = (I −

∑
a Aa ⊗ Aa)y′, from where we deduce

that y − y′ = (
∑
a Aa ⊗Aa)(y − y′). Thus, either y = y′ or y − y′ is an eigenvector

of
∑
a Aa ⊗Aa with eigenvalue 1. Since the latter is not possible because we assumed

ρ < 1, we conclude that the solution is unique. The same argument applies to (α⊗α)> =

x>(I−
∑
a Aa ⊗Aa).

6.2. The General Case

In the case where the automaton A = 〈α,β, {Aa}〉 is such that λ = 1 is an eigenvalue

of
∑
a Aa ⊗Aa, then the linear system considered in the previous section will not have

a unique solution. For example, this might occur when A is minimal but A ⊗ A is not.

Therefore, in general we will need some extra information about the gramian matrices

in order to find them among the subset of possible solutions of the linear systems given

by Lemma 6.1. This information is provided by our next lemma, which states that the

gramian matrices are the least positive-semidefinite solutions of some linear matrix in-

equalities. Throughout this section we assume that A = 〈α,β, {Aa}〉 is a WFA with n

states such that the corresponding gramians Gp and Gs are well-defined, and therefore

the linear systems in Lemma 6.1 admit at least one solution.

Lemma 6.3. The following hold:

1 The Gramian Gp is the least positive semi-definite solution to the linear matrix

inequality

X ≥ αα> +
∑
a∈Σ

A>a XAa . (25)

2 The Gramian Gs is the least positive semi-definite solution to the linear matrix

inequality

Y ≥ ββ> +
∑
a∈Σ

AaYA>a . (26)
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Proof. Since the proofs of both statements follow exactly the same structure, we give

only the proof for Gp. From Theorem 5.6 it follows that Gp satisfies (25). Now let X be

another positive semi-definite matrix satisfying (25). We will show by induction that for

every t ≥ 0 we have

X ≥
∑
x∈Σ≤t

A>xαα>Ax +
∑

x∈Σt+1

A>x XAx . (27)

First note that the case t = 0 follows immediately from (25). Now assume the inequality

is true for some t and consider the case t+ 1. We have

X ≥
∑
x∈Σ≤t

A>xαα>Ax +
∑

x∈Σt+1

A>x XAx

≥
∑
x∈Σ≤t

A>xαα>Ax +
∑

x∈Σt+1

A>xαα>Ax +
∑

x∈Σt+2

A>x XAx

=
∑

x∈Σ≤t+1

A>xαα>Ax +
∑

x∈Σt+2

A>x XAx ,

where the second inequality uses (25) and the fact that Y ≥ Z implies M>YM ≥
M>ZM for any matrix M. By rewriting (27) and noting that

∑
x∈Σt+1 A>x XAx ≥ 0 for

any t ≥ 0, we see that∑
x∈Σ≤t

A>xαα>Ax ≤ X−
∑

x∈Σt+1

A>x XAx ≤ X . (28)

Since Gp is defined we must have Gp = limt→∞
∑
x∈Σ≤t A>xαα>Ax, and therefore

Gp ≤ X.

As a direct consequence of the above lemma we get the following characterization for

the Gramian matrices of any WFA A with fA ∈ `2R.

Theorem 6.4. The Gramian Gp (resp. Gs) is the least positive semi-definite fixed point

of (18) (resp. (19)).

Proof. For Gp the result follows from Lemma 6.3 since any fixed-point of (18) satisfies

(25); the same holds for Gs.

Using this characterization we can derive an efficient algorithm for finding the Gramian

matrices even when the linear systems given by Lemma 6.1 have more than one solution.

The solution is based on solving a semi-definite optimization program. For simplicity

we only present the optimization problem for finding the Gramian Gs and note that

a completely symmetric argument also works for Gp. We start by introducing some

notation. Let M = I+
∑
a Aa⊗Aa ∈ Rn2×n2

and y0 = M†(β⊗β). Also, let y1, . . . ,yd ∈
Rn2

be a basis of linearly independent vectors for the column-space of the matrix I −
M†M. For 0 ≤ i ≤ d we write Yi ∈ Rn×n to denote the matrix such that yi = vec(Yi).

Finally, we let π denote the linear map representing the orthogonal projection onto the

space of n × n symmetric matrices, which is given by π(Y) = (Y + Y>)/2. With this
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notation we define the following semi-definite optimization problem:

minimize
t1,...,td∈R

d∑
i=1

ti Tr(Yi) (29)

subject to π(Y0) +

d∑
i=1

tiπ(Yi) ≥ 0 , (30)

Y0 −Y>0 +

d∑
i=1

ti(Yi −Y>i ) = 0 . (31)

Theorem 6.5. Let t∗1, . . . , t
∗
d be the optimal solution to (29). Then the matrix Y∗ =

Y0 +
∑d
i=1 t

∗
iYi is the least positive semi-definite solution of Y = ββ> +

∑
a AaYA>a .

Proof. We start by observing that all solutions to Y = ββ> +
∑
a AaYA>a are of the

form Y = Y0 +
∑d
i=1 tiYi for some t1, . . . , td. This follows from the fact that the Moore-

Penrose pseudo-inverse can be used to show that every solution of the linear system

β ⊗ β = (I−
∑
a Aa ⊗Aa)y can be written in the form M†(β ⊗ β) + (I−M†M)z for

some z ∈ Rn2

. Since any solution of this form can be rewritten as y0 +
∑d
i=1 tiyi, the

claim follows directly by the linearity of the vec(·) operation.

Next we show that any matrix of the form Y = Y0 +
∑d
i=1 tiYi satisfying (30) and

(31) is symmetric and positive semi-definite. Indeed, if (31) is satisfied then π(Y) = Y

since

Y − π(Y) =

(
Y0 −

Y0 + Y>0
2

)
+

d∑
i=1

ti

(
Yi −

Yi + Y>i
2

)

=
Y0 −Y>0

2
+

d∑
i=1

ti
Yi −Y>i

2
= 0 .

Therefore Y is symmetric and (30) implies Y = π(Y) ≥ 0, so Y is positive semi-definite.

Finally suppose Y and Y′ are two positive semi-definite solutions of (19) with Y ≤ Y′.

Then by linearity of the trace we have Tr(Y) ≤ Tr(Y′). Therefore, the least positive semi-

definite solution to (19) is also the positive semi-definite solution with minimum trace

Y∗ obtained by solving (29).

7. Application: Approximate Minimization of WFA

The fact that given a (minimal) WFA realizing a function in `2R we can efficiently compute

its corresponding SVA opens the door to multiple applications. In this section we focus

on the application of SVA to the design and analysis of algorithms for model reduction.

To motivate the need for such algorithms, consider the situation where one has a WFA

modelling a system of interest and the need arises for testing whether the system satisfies

a given property. If testing this property requires multiple evaluations of the function

computed by the WFA, the cost of this computation will grow with the number of

states, and if the system is large the repeated evaluation of millions of queries might take

a very long time. But if the decision about the property being satisfied does not depend
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too much on the individual answers of each query, it might be acceptable to provide

approximate answers for each of these queries. If in addition these approximate queries

can be performed much faster than exact queries, then the whole testing process can be

sped up by trading-off accuracy and query processing time. In the rest of this section we

formalise the problem of approximate evaluations of WFA, and provide a solution based

on the truncation of SVA canonical forms.

7.1. Problem Formulation

We now proceed to give a formal definition of the approximate minimization problem

for WFA. Roughly speaking, this corresponds to finding a small WFA computing a good

approximation to the function realized by a large minimal WFA. A solution to this

problem will yield a way to speed up approximate evaluation of WFA.

Let A be a minimal WFA with n states computing a rational function f ∈ `2R. Given

a target number of states n̂ < n, we want to find a WFA Â with n̂ states computing a

function f̂ which minimizes ‖f − f̂‖2 among all rational function of rank at most n̂. This

problem can be formulated as an optimization problem as follows:

inf
rank(f̂)≤n̂

‖f − f̂‖2 . (32)

The first observation we make about this problem is that, although it is not explicitly

encoded in (32), any solution f̂ will have finite `2 norm. Indeed, it is easy to see that

‖f̂‖2 ≤ ‖f‖2 + ‖f − f̂‖2 = ‖f‖2 + inf
rank(f̂)≤n̂

‖f − f̂‖2 ≤ 2‖f‖2 , (33)

where the last inequality uses that the rational function 0 has rank 1 and therefore it is

a feasible point of the optimization (32).

The second important observation is that, like rank constrained optimizations over

finite matrices, the optimization in (32) is not convex. To see this, let us write A =

〈α,β, {Aa}〉 for the original automaton and Â = 〈α̂, β̂, {Âa}〉 for the automaton we are

looking for, noting that any automaton with at most n̂ states can be written as a (non-

minimal) WFA with n̂. Then, by the motonicity of z 7→ z2 we can replace the objective

‖f − f̂‖2 with ‖f − f̂‖22, and see that, using the WFA representation for f − f̂ and the

closed-form expression for ‖f − f̂‖22 in terms of this WFA representation, (32) can be

rewritten as the minimization over Â of the quantity

[α> α̂>]⊗ [α> α̂>]

(
I−

∑
a∈Σ

[
Aa 0

0 Âa

]
⊗
[

Aa 0

0 Âa

])−1 [
β

−β̂

]
⊗
[

β

−β̂

]
.

(34)

Since this equivalent objective function is not convex, we have little hope of being able

to efficiently solve (32) exactly. Instead, we will take a different approach and see how

truncating the SVA for A to have n̂ states yields an approximate solution which can be

efficiently computed.
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7.2. SVA Truncation

In this section we describe an approximate minimization algorithm for WFA realizing

a function in `2R. The algorithm takes as input a minimal WFA A with n states and

a target number of states n̂, and outputs a new WFA Â with n̂ states approximating

the original WFA A. To obtain Â we first compute the SVA A′ associated to A, and

then remove the n− n̂ states associated with the smallest singular values of HfA . More

formally, by writing the block decomposition of the operators associated with the SVA A′

shown below, we get the operators for Â by taking the sub-block in the top left containing

the first n̂ rows and n̂ columns:

A′a =

[
A

(11)
a A

(12)
a

A
(21)
a A

(22)
a

]
, Âa =

[
A(11)
a

]
. (35)

Note that if we define the matrix Γ = [In̂ 0] ∈ Rn̂×n, then we have Âa = ΓA′aΓ
>. To

reflect this fact we shall sometimes write Â = ΓA′Γ>. Algorithm 2 provides a description

of the full procedure, which we call SVATruncation. Since the algorithm only involves

a call to ComputeSVA and a simple algebraic manipulation of the resulting WFA, the

running time of SVATruncation is dominated by the complexity of ComputeSVA, and

hence is polynomial in |Σ|, dim(A) and n̂.

Algorithm 2: SVATruncation

Input: A minimal WFA A with n states, a target number of states n̂ < n

Output: A WFA Â with n̂ states

1 Let A′ ← ComputeSVA(A)

2 Let Γ = [In̂ 0] ∈ Rn̂×n

3 Let Âa = ΓA′aΓ
> for all a ∈ Σ

4 Let α̂ = Γα′

5 Let β̂ = Γβ′

6 Let Â = 〈α̂, β̂, {Âa}〉
7 return Â

Roughly speaking, the rationale behind SVATruncation is that given an SVA, the

states corresponding to the smallest singular values are the ones with less influence on the

Hankel matrix, and therefore should also be the ones with less influence on the associated

rational function. However, the details are more tricky than this simple intuition. The

reason being that a low rank approximation to Hf obtained by truncating its SVD is not

in general a Hankel matrix, and therefore does not correspond to any rational function.

In particular, the Hankel matrix of the function f̂ computed by Â is not obtained by

truncating the SVD of Hf . This makes our analysis more involved than just applying

the well-known bounds for low-rank approximation based on SVD. Nonetheless, we are

able to obtain a bound of the same form that one would expect by measuring the error of

a low-rank approximation using the Frobenius norm. Along these lines, our main result

is the following theorem, which bounds the `2-distance between the rational function f
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realized by the original WFA A, and the rational function f̂ realized by the output WFA

Â.

Theorem 7.1. Let A be a minimal WFA with n states computing a function f ∈ `2R
with Hankel singular values σ1 ≥ · · · ≥ σn > 0. Let f̂ denote the function computed by

the truncated SVA Â with 1 ≤ n̂ < n states. Then the following holds:

‖f − f̂‖22 ≤
n∑

i=n̂+1

σ2
i . (36)

The proof will be given in Section 7.4. First, a few remarks about this result are in

order. The first is to observe that because σ1 ≥ · · · ≥ σn, the error decreases when n̂

increases, which is the desired behavior: the more states Â has, the closer it is to A.

The second is that (36) does not depend on which representation A of f is given as

input to SVATruncation. This is a consequence of first obtaining the corresponding SVA

A′ before truncating. Obviously, one could obtain another approximate minimization by

truncating A directly. However, in that case the final error would depend on the initial A

and in general it does not seem possible to use this approach for providing representation

independent bounds on the quality of approximation. To see the importance of starting

the truncation procedure from the SVA canonical form let us consider the following result

which follows directly from the gramian fixed-point equations for SVA.

Lemma 7.2. Let A = 〈α,β, {Aa}〉 be an SVA with n states realizing a function f ∈ `2R
with Hankel singular values σ1 ≥ · · · ≥ σn. Then the following are satisfied:

1 For all j ∈ [n],
∑
i σi
∑
a Aa(i, j)2 = σj −α(j)2,

2 For all i ∈ [n],
∑
j σj

∑
a Aa(i, j)2 = σi − β(i)2.

Proof. These equations correspond to the diagonal entries of the gramian fixed-point

equations for SVA

D = αα> +
∑
a

A>a DAa , (37)

D = ββ> +
∑
a

AaDA>a . (38)

To see why this lemma justifies the truncation of an SVA we consider the following

simple consequence. By fixing i, j ∈ [n] and a ∈ Σ, we can use the first equation to get

σiAa(i, j)2 = σj −α(j)2 −

(∑
i

σi
∑
a

Aa(i, j)2 − σiAa(i, j)2

)
≤ σj .

Applying a similar argument to the second equation, we conclude that

|Aa(i, j)| ≤ min

{√
σi
σj
,

√
σj
σi

}
=

√
min{σi, σj}
max{σi, σj}

.

This bound is telling us that in an SVA, transition weights further away from the di-

agonals of the Aa are going to be small whenever there is a wide spread between the
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q1

1
1

q2

1
−1/2

a, 1/2 a, 1/2
α =

[
1

−1/2

]
Aa =

[
1/2 0

0 1/2

]

β =

[
1

0

]

Fig. 6: Example of WFA A such that ‖fÂ‖2 ≤ ‖fA‖2, where Â is the automaton

obtained by removing the state q2. In particular, ‖fA‖22 = 1/3 and ‖fÂ‖22 = 4/3.

largest and smallest singular values; for example, |Aa(1, n)| ≤
√
σn/σ1. Intuitively, this

means that in an SVA the last states are very weakly connected to the first states, and

therefore removing these connections should not affect the output of the WFA too much.

The proof of Theorem 7.1 exploits this intuition, while at the same time leverages the

full power of the fixed-point SVA Gramian equations.

We finish this section by stating another result about Â: SVA truncation always reduces

the norm of the original function. Logically speaking, this is a preliminary to Theorem 7.1,

since it shows that the function computed by Â has finite `2 norm and already implies

the finiteness of ‖f− f̂‖2. From an approximation point of view, this result basically says

that SVA truncation can be interpreted as an algorithm for approximate minimization

“from below”, which might be a desirable property in some applications.

Theorem 7.3. Let A be a WFA computing a function f ∈ `2R of rank n and Â a

truncation of the SVA of A with n̂ < n states. The function f̂ computed by Â satisfies

f̂ ∈ `2R and ‖f̂‖2 ≤ ‖f‖2.

It is important to note that in general truncating an arbitrary WFA does not always

reduce its norm as shown by the example in Figure 6.

7.3. SVA Truncation: Bounding the Norm

The proof of the Theorem 7.3 illustrates how having different ways to represent the

function f̂ computed by the SVA truncation can be useful; this fact will also be essential

in the proof of Theorem 7.1. In particular, given an SVA A, we note that the automaton

Ã obtained by padding with zeros all the coefficients in the initial and transition weights

of A that are removed when taking its truncation in SVATruncation computes the same

function as Â.

More concretely, let us recall the notation from (35) splitting of the weights conforming

A into a block corresponding to states 1 to n̂, and another block containing states n̂+ 1

to n. We can define a similar partition for the initial and final weights of A. In particular,
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we write the following:

α =

[
α(1)

α(2)

]
,

β =

[
β(1)

β(2)

]
,

Aa =

[
A

(11)
a A

(12)
a

A
(21)
a A

(22)
a

]
.

Now the SVA truncation Â = ΓAΓ> = 〈α̂, β̂, {Âa}〉 with Γ = [In̂ 0] can be written in

terms of this block decomposition as α̂ = α(1), β̂ = β(1), and Âa = A
(11)
a .

The important observation here is that starting from A we can write other WFA

computing the same function as Â. The following construction yields a WFA Ã of size n

with this property. Define the n× n matrix

Π =

[
In̂ 0

0 0

]
(39)

and let Ã = 〈α̃, β̃, {Ãa}〉 with α̃ = Πα, β̃ = β, and Ãa = AaΠ
> = AaΠ. For

convenience we shall sometimes write Ã = AΠ. Note that the weights of Ã are given by:

α̃ =

[
α(1)

0

]
,

β̃ =

[
β(1)

β(2)

]
,

Ãa =

[
A

(11)
a 0

A
(21)
a 0

]
.

Lemma 7.4. LetA = 〈α,β, {Aa}〉 be an SVA with n states. If Â = ΓAΓ> = 〈α̂, β̂, {Âa}〉
is the truncation of A with n̂ states, and Ã = AΠ = 〈α̃, β̃, {Ãa}〉 is the the WFA with

n states defined above, then Â and Ã compute the same function f̂ .

Proof. Given x ∈ Σ? define α̃>x = α̃>Ãx and α̂>x = α̂>Âx. By using the pattern of

zeros in Ãx, a simple induction argument on the length of x shows that the following is

always satisfied:

α̃>x = [α̂>x 0] . (40)

Therefore for any x ∈ Σ? we have fÃ(x) = α̃>x β̃ = α̂>x β̃
(1)

= fÂ(x).

The advantage of having a WFA with n states computing the same function as the

SVA truncation is that now both A and Ã have Gramians of the same dimensions which

can be compared. The following lemma provides such comparison.

Lemma 7.5. Let A be an SVA with n states and reachability Gramian Gp = D. Let

Ã = AΠ the WFA with n states computing the same function as the truncation of A

with n̂ states. Then the reachability Gramian G̃p of Ã is defined and satisfies Gp ≥ G̃p.
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Proof. Recall the definition of the map Fp for A from Section 5.3 and note that the

corresponding map for Ã satisfies

F̃p(X) = α̃α̃> +
∑
a

Ã>a XÃa = ΠFp(X)Π . (41)

Taking G̃
(0)
p = 0 and G̃

(t+1)
p = F̃p(G̃

(t)
p ) we have G̃

(t+1)
p ≥ G̃

(t)
p for all t ≥ 0 (Lemma 5.8).

Furthermore, G̃p = limt→∞ G̃
(t)
p if the limit is defined.

We will simultaneously show that the limit above is defined and satisfies G̃p ≤ D.

Define the sequence X0 = D and Xt+1 = F̃p(Xt) for t ≥ 0. Clearly all the matrices

in the sequence are positive semi-definite, and furthermore we claim that they satisfy

Xt ≥ Xt+1 for all t. The case t = 0 is immediate since X1 = F̃p(D) = ΠFp(D)Π =

ΠDΠ = ΠD ≤ D = X0. For t > 0 we use induction and the fact that F̃p is monotonous

(Lemma 5.7): if Xt ≥ Xt+1, then Xt+1 = F̃p(Xt) ≥ F̃p(Xt+1) = Xt+2. Thus, since

G̃
(0)
p = 0 ≤ D = X0, for all t ≥ 0 we have G̃

(t)
p ≤ Xt ≤ D. This implies that the

monotonously increasing sequence G̃
(t)
p is bounded by D, and therefore its limit exists

and is upper bounded by D.

The above lemma will be enough to prove the desired upper bound on the norm of f̂ .

On the other hand, we note that because Ã is not a minimal WFA, the boundedness of f̂

or the existence of the reachability Gramian G̃p do not immediately imply the existence

of the observability Gramian G̃s for Ã; we will see in the next section that in fact this

Gramian is also defined.

Proof of Theorem 7.3 By Lemma 7.4 we can work with Ã instead of Â. Now, Lemma 7.5

shows the Gramian G̃p of Ã is defined, so by Theorem 5.9 the function f̂ computed by Ã

has finite `2 norm. Furthermore, since GA,p ≥ GÃ,p, the expressions for the norm ‖f‖2
in Theorem 5.9 imply that ‖f‖22 = β>GA,pβ ≥ β>GÃ,pβ = ‖f̂‖22.

7.4. SVA Trucantion: Error Analysis

In this section we prove the bound on ‖f − f̂‖2 given in Theorem 7.1, where f̂ is the

function computed by the SVA truncation of f with n̂ states. In fact, the bound will

follow from an exact closed-form expression for the error ‖f − f̂‖2 given in terms of the

Gramians of a WFA computing f̄ = f − f̂ .

We recall from last section the automaton Ã = AΠ with n states computing f̂ , where

Π = diag(In̂,0). Now we proceed to combine A and Ã to obtain a WFA computing

the difference f̄ = f − f̂ . The construction follows the same argument used to show

that the difference of two rational functions is a rational functions, and yields the WFA



Singular Value Automata 33

Ā = 〈ᾱ, β̄, {Āa}〉 with 2n states given by

ᾱ =

[
α

α̃

]
,

β̄ =

[
β

−β̃

]
,

Āa =

[
Aa 0

0 Ãa

]
= diag(Aa, Ãa) .

It is immediate to check from this constructions that Ā satisfies fĀ = f̄ . The following

lemmas establish a few preliminary facts about Ā.

Lemma 7.6. The observability Gramian G̃s of Ã is defined.

Proof. Let Hf̂ = P̃S̃> be the factorization induced by Ã and recall that G̃s = S̃>S̃ if

the corresponding inner products between the columns of S̃ are defined. Thus, to prove

that G̃s is defined it suffices to show that all the columns of S̃ have finite `2 norm, which

is equivalent to showing that ‖S̃‖F <∞. Expanding this Frobenius norm we have

‖S̃‖2F =
∑
x∈Σ?

‖Ãxβ‖22

=
∑
x∈Σ?

β>Ã>x Ãxβ

=
∑
x∈Σ?

Tr(Ãxββ
>Ã>x ) , (42)

where the last equality uses the cyclic property of the trace. Now note that using the SVA

fixed-point equation D = ββ> +
∑
a AaDA>a we can rewrite any term in the infinite

sum as

Tr(Ãxββ
>Ã>x ) = Tr

(
Ãx

(
D−

∑
a

AaDA>a

)
Ã>x

)

= Tr

(
Ãx

(
D−

∑
a

AaΠDA>a −
∑
a

Aa(I−Π)DA>a

)
Ã>x

)
.

Since Π is idempotent and commutes with diagonal matrices, we have AaΠDA>a =

AaΠDΠA>a = ÃaDÃ>a . Therefore, by linearity of the matrix trace, we can plug the

last two observations into (42) and get

‖S̃‖2F = Tr(D)−
∑
a

Tr(ÃaDÃ>a )−
∑
a

Tr(Aa(I−Π)DA>a )

+
∑
x∈Σ+

Tr(ÃxDÃ>x )−
∑
x∈Σ+

∑
a

Tr(ÃxÃaDÃ>a Ã>x )

−
∑
x∈Σ+

∑
a

Tr(ÃxAa(I−Π)DA>a Ã>x ) .

By aggregating terms we see that all terms of the form Tr(ÃxDÃ>x ) for x ∈ Σ+ cancel
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and finally get

‖S̃‖2F = Tr(D)−
∑
x∈Σ?

∑
a

Tr(ÃxAa(I−Π)DA>a Ã>x ) ≤ Tr(D) , (43)

where we used that ÃxAa(I−Π)DA>a Ã>x ≥ 0 and the trace of a positive semi-definite

matrix is always non-negative.

Lemma 7.7. Let Hf = PS> be the factorization induced by the SVA A, and Hf̂ = P̃S̃>

be the factorization induced by Ã. Then the WFA Ā computing f̄ = f − f̂ induces the

factorization Hf̄ = P̄S̄> with P̄ = [P P̃] and S̄ = [S − S̃]. Furthermore, the Gramians

Ḡp and Ḡs are defined and can be written as

Ḡp = P̄>P̄ =

[
Gp P>P̃

P̃>P G̃p

]
,

Ḡs = S̄>S̄ =

[
Gs −S>S̃

−S̃>S G̃s

]
.

Proof. The structure of P̄, S̄, Ḡp, and Ḡs follow from a straightforward computation.

That these Gramians are defined follows from noting that because all the Gramians of

A and Ã are defined, then all the columns of P, S, P̃, and S̃ have finite `2 norm.

Now we are ready to prove the main result of this section giving an exact closed-form

expression for the `2 distance between f and f̂ .

Theorem 7.8. For any truncation size 1 ≤ n̂ < n we have

‖f − f̂‖22 = Tr
(
D1/2(I−Π)(S̃S> + SS̃> − S̃S̃>)(I−Π)D1/2

)
. (44)

Proof. Recall from Theorem 5.9 that ‖f̄‖22 = ᾱ>Ḡsᾱ = Tr(ᾱ>S̄>S̄ᾱ) = Tr(S̄ᾱᾱ>S̄>),

where the last equality follows from a standard property of the trace. Note that by con-

struction of Ā we have ᾱ> = α>[I Π], which when plugged in the previous equation

yields

‖f̄‖22 = Tr

(
S̄

[
I

Π

]
αα>[I Π]S̄>

)
. (45)

Recall that A is an SVA, and therefore the fixed-point equation (18) applied to A

yields αα> = D−
∑
a A>a DAa. When combined with (45) we obtain, by linearity of the

trace:

Tr

(
S̄

[
I

Π

]
αα>[I Π]S̄>

)
= Tr

(
S̄

[
I

Π

]
D[I Π]S̄>

)
(46)

− Tr

(
S̄

[
I

Π

](∑
a

A>a DAa

)
[I Π]S̄>

)
.
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Using that [I Π] = [I I]− [0 I−Π], we decompose the first term as:

Tr

(
S̄

[
I

I

]
D[I I]S̄>

)
+ Tr

(
S̄

[
0

I−Π

]
D[0 I−Π]S̄>

)
(47)

−Tr

(
S̄

[
I

I

]
D[0 I−Π]S̄>

)
− Tr

(
S̄

[
0

I−Π

]
D[I I]S̄>

)
.

We now proceed to bound the sum of the last three terms in this expression. Note in

the first place that each of these terms is of the form Tr(MDN) = Tr(D1/2NMD1/2) =

TrD(NM), where in the last step we just introduced a bit of convenient notation. Fur-

thermore, recall that by definition of Ā we have S̄ = [S − S̃]. With these observations

we obtain the following three equations:

Tr

(
S̄

[
0

I−Π

]
D[0 I−Π]S̄>

)
= TrD

(
(I−Π)S̃>S̃(I−Π)

)
, (48)

−Tr

(
S̄

[
I

I

]
D[0 I−Π]S̄>

)
= TrD

(
(I−Π)S̃>(S− S̃)

)
, (49)

−Tr

(
S̄

[
0

I−Π

]
D[I I]S̄>

)
= TrD

(
(S> − S̃>)S̃(I−Π)

)
. (50)

By observing that we have TrD((I−Π)M) = TrD(M(I−Π)) = TrD((I−Π)M(I−Π))

for any square matrix M, we conclude that the sum of the last three terms in (47) equals

TrD
(

(I−Π)(S̃>S + S>S̃− S̃>S̃)(I−Π)
)
. (51)

To complete the proof of the equation we will now show that the sum of the remaining

terms in (46) vanish; that is:

Tr

(
S̄

[
I

I

]
D[I I]S̄>

)
− Tr

(
S̄

[
I

Π

](∑
a

A>a DAa

)
[I Π]S̄>

)
= 0 . (52)

We start by noting the following identity:

Aa[I Π] = [Aa Âa] = [I I]Āa . (53)

Therefore, using the fixed-point equation (19) we see that

Tr

(
S̄

[
I

Π

](∑
a

A>a DAa

)
[I Π]S̄>

)
= Tr

(
S̄

(∑
a

Ā>a

[
I

I

]
D[I I]Āa

)
S̄>

)

= TrD

(
[I I]

(∑
a

ĀaS̄
>S̄Ā>a

)[
I

I

])

= TrD
(

[I I]
(
S̄>S̄− β̄β̄

>
)[ I

I

])
.

Now (52) follows from simply observing that by the construction of Ā we have [I I]β̄ = 0.
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Finally we can show how the bound in Theorem 7.1 follows directly from the exact

expression for the error obtained in Theorem 7.8.

Proof of Theorem 7.1 We start noting that (44) can be rewritten as

TrD
(
(I−Π)S>S(I−Π)

)
− TrD

(
(I−Π) [I I] S̄>S̄

[
I

I

]
(I−Π)

)
. (54)

Note that the second term has the form Tr(MM>) and therefore is non-negative. Using

that A is an SVA, we see that the first term is

TrD
(
(I−Π)S>S(I−Π)

)
= Tr

(
D1/2(I−Π)D(I−Π)D1/2

)
=

n∑
i=n̂+1

σ2
i . (55)

Thus, it follows from the last two observations that (44) is at most
∑n
i=n̂+1 σ

2
i .

8. Related Work

In this section we provide wider context for our work by relating it to recent developments

in machine learning and to well established results in the theory of linear dynamical

systems.

Spectral techniques for learning weighted automata and other latent variable models

have recently drawn a lot of attention in the machine learning community. Following the

significant milestone papers (Hsu et al., 2012; Bailly et al., 2009), in which an efficient

spectral algorithm for learning hidden Markov models (HMM) and stochastic rational

languages was given, the field has grown very rapidly. The original algorithm, which is

based on singular value decompositions of finite sub-blocks of Hankel matrices, has been

extended to reduced-rank HMMs (Siddiqi et al., 2010), predictive state representations

(PSR) (Boots et al., 2009), finite-state transducers (Balle et al., 2011; Bailly et al.,

2013), and many other classes of functions on strings (Bailly, 2011; Balle and Mohri,

2012; Recasens and Quattoni, 2013). Although each of these papers works with slightly

different problems and analysis techniques, the key ingredient turns out to be always the

same: parametrize the target model as a WFA and learn this WFA from the SVD of a

finite sub-block of its Hankel matrix (Balle et al., 2014a). Therefore, it is possible (and

desirable) to study all these learning algorithms from the point of view of rational series,

which are exactly the class of real-valued functions on strings that can be computed by

WFA.

The appeal of spectral learning techniques comes from their computational superiority

when compared to iterative algorithms like Expectation–Maximization (EM) (Dempster

et al., 1977). Another very attractive property of spectral methods is the possibility of

proving rigorous statistical guarantees about the learned automaton. For example, under

a realizability assumption, these methods are known to be consistent and amenable to

finite-sample analysis in the PAC sense (Hsu et al., 2012). An important detail is that, in

addition to realizability, these results work under the assumption that the user correctly

guesses the number of latent states of the target distribution. Though this is not a real

caveat when it comes to using these algorithms in practice – the optimal number of states
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can be identified using a model selection procedure (Balle et al., 2014b) – it is one of the

barriers in extending the statistical analysis of spectral methods to the non-realizable

setting.

Tackling the non-realizability question requires, as a special case, dealing with the

situation in which data is generated from a WFA with n states and the learning algorithm

is asked to produce a WFA with n̂ < n states. This case is already a non-trivial problem

which – barring the noisiness introduced by estimating the Hankel matrix from observed

data – can in fact be interpreted as an approximate minimization of WFA. From this point

of view, we believe our results provide the fundamental tools necessary for addressing

important problems in the theory of learning weighted automata, including the robust

statistical analysis of spectral learning algorithms.

A connection between spectral learning algorithms and approximate minimization for a

small class of hidden Markov models was considered in (Kulesza et al., 2014). This paper

also presents a theoretical result bounding the error between the original and minimized

HMM in terms of the total variation distance. The bounds in this paper are incomparable

to ours. However, in a follow-up work (Kulesza et al., 2015), published concurrently with

our original paper on SVA (Balle et al., 2015), a problem similar to the one considered

here is addressed, albeit different methods are used and the results are less general that

our approximate minimization method. Another paper on which the issue of approximate

minimization of weighted automata is considered in a tangential manner is (Kiefer and

Wachter, 2014). In this case the authors again focus on an `1-like accuracy measure to

compare two automata: an original one, and another one obtained by removing transi-

tions with small weights occurring during an exact minimization procedure. Though the

removal operation is introduced as a means of obtaining a numerically stable minimiza-

tion algorithm, the paper also presents some experiments exploring the effect of removing

transitions with larger weights. With the exception of these timid results, the problem

of approximate minimization for general WFA remained largely unstudied before our

paper.

However, the case of an alphabet with one symbol, |Σ| = 1, has been thoroughly studied

from multiple points of view. In the control theory literature several methods have been

proposed for approximate minimization of time-invariant linear dynamical systems under

the names of model reduction, truncation, and approximation; see (Antoulas, 2005) for

a comprehensive presentation. One possible approach to the model reduction problem

is to consider so-called balanced realizations of a linear dynamical system and apply a

convenient truncation method to the balanced realization to obtain a smaller system

(Enns, 1984). In the one symbol case, the connection with weighted automata arises

from observing that the impulse response of a time-invariant linear dynamical system

can be parametrized as a weighted automata with one letter (and possibly vector-valued

outputs for multiple-input multiple-output systems) (Antoulas, 2005). From this point

of view, the canonical form for weighted automata given by our SVA can be interpreted

as a generalization of balanced realizations to the case where the alphabet has two or

more letters.

The study of model reduction techniques in the one symbol case can also be con-

nected to sophisticated ideas in the study of approximations for Hankel operators in the
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functional and complex analysis literatures; see e.g. (Peller, 2012) for a comprehensive

treatment of the theory of Hankel operators. In the same way we do in Section 3, when

the alphabet Σ has only one symbol the Hankel matrix of a rational function yields a lin-

ear operator between Hilbert or Bannach spaces of sequences. The spectral properties of

these Hankel operators have been thoroughly studied. For example, deep connections to

the theory of complex function on the unit disk and Fourier analysis have been uncovered

(Nikol’Skii, 2012). Along these lines one finds the celebrated AAK theorem characteriz-

ing optimal approximations of Hankel operators by Hankel operators of bounded rank

(Adamyan et al., 1971). This theorem has been widely exploited in control theory to

provide alternative approaches to balanced realizations for model reduction, thus provid-

ing a link between the abstract setting of Hankel operators and the concrete problem of

approximating of linear dynamical systems (Glover, 1984) (see also (Fuhrmann, 2011)).

One of the fundamental ideas in this line of work is realizing that for |Σ| = 1 the free

monoid Σ? can be identified with the natural numbers N, which can be canonically em-

bedded in the abelian group Z. Unfortunately for us, this approach cannot be directly

generalized to the case |Σ| > 1 because in this case the corresponding embedding yields

a free non-abelian group, and standard Fourier analysis on those groups is not available.

Although some recent attempts have been made to extend some of the results about

Hankel operators to the non-commutative case using methods from functional analysis

(Popescu, 2003), this theory is still largely underdeveloped, and the few existing results

can only be obtained via non-constructive arguments.

9. Conclusion and Future Work

In the present paper we have given a new approximate minimization technique based on

spectral theory ideas. The essential point was to use the singular value decomposition

to decide how to truncate the original automaton without losing too much accuracy. We

have given quantitative bounds on how close the approximate machine is to the original.

One crucial aspect that we have not addressed is the question of constructing the best

possible approximation given a bound on the size of the state space or, equivalently,

the dimension of the vector space on which the machine is defined. In the one-letter

case, sophisticated results from the theory of Hankel operators (Adamyan et al., 1971;

Peller, 2012) provide a satisfactory answer to this problem. However, extending this to

the multiple-letter case means extending an already deep and difficult theory to the

non-commutative case. Nevertheless, it remains an exciting challenge.

A different approach is to change the approximation measure from `2 to a more nat-

ural metric between WFA. In recent work (Balle et al., 2017) we developed a metric to

measure the distance between WFAs based on bisimulation. This metric has interesting

properties , but unfortunately it is hard to compute for the present type of approxi-

mation. Nevertheless, it might be fruitful to explore approximation schemes based on

approximate bisimulation as has been done for some types of Markov processes (Deshar-

nais et al., 2003). It would be interesting to compare the quality of such approximation

schemes with the present one.
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C. Baier, M. Größer, and F. Ciesinski. Model checking linear-time properties of proba-

bilistic systems. In Handbook of Weighted automata. 2009.

R. Bailly. Quadratic weighted automata: Spectral algorithm and likelihood maximization.

In Asian Conference on Machine Learning, pages 147–163, 2011.

R. Bailly, F. Denis, and L. Ralaivola. Grammatical inference as a principal component

analysis problem. In Proceedings of the 26th Annual International Conference on

Machine Learning, pages 33–40. ACM, 2009.

R. Bailly, X. Carreras, and A. Quattoni. Unsupervised spectral learning of finite state

transducers. In Advances in Neural Information Processing Systems, pages 800–808,

2013.

B. Balle and M. Mohri. Spectral learning of general weighted automata via constrained

matrix completion. In Advances in neural information processing systems, pages 2159–

2167, 2012.

B. Balle, A. Quattoni, and X. Carreras. A spectral learning algorithm for finite state

transducers. In Joint European Conference on Machine Learning and Knowledge Dis-

covery in Databases, pages 156–171. Springer, 2011.

B. Balle, X. Carreras, F. Luque, and A. Quattoni. Spectral learning of weighted automata:

A forward-backward perspective. Machine Learning, 2014a.

B. Balle, W. Hamilton, and J. Pineau. Methods of moments for learning stochastic

languages: Unified presentation and empirical comparison. In International Conference

on Machine Learning, pages 1386–1394, 2014b.

B. Balle, P. Panangaden, and D. Precup. A canonical form for weighted automata and

applications to approximate minimization. In Logic in Computer Science (LICS), 2015

30th Annual ACM/IEEE Symposium on, pages 701–712. IEEE, 2015.

B. Balle, P. Gourdeau, and P. Panangaden. Bisimulation metrics for weighted finite au-

tomata. In Proceedings of the 44th International Colloquium On Automata Languages

and Programming Warsaw, pages 103:1–14, 2017.

J. Berstel and C. Reutenauer. Noncommutative Rational Series with Applications. Cam-

bridge University Press, 2011.

N. Bezhanishvili, C. Kupke, and P. Panangaden. Minimization via duality. In Logic, Lan-

guage, Information and Computation - 19th International Workshop, WoLLIC 2012,



B. Balle, P. Panangaden and D. Precup 40

Buenos Aires, Argentina, September 3-6, 2012. Proceedings, volume 7456 of Lecture

Notes in Computer Science, pages 191–205. Springer, 2012.
F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A coalgebraic perspective

in linear weighted automata. Information and Computation, 211:77–105, 2012.
F. Bonchi, M. M. Bonsangue, H. H. Hansen, P. Panangaden, J. Rutten, and A. Silva.

Algebra-coalgebra duality in Brzozowski’s minimization algorithm. ACM Transactions

on Computational Logic, 2014.
B. Boots, S. Siddiqi, and G. Gordon. Closing the learning-planning loop with predictive

state representations. In Proceedings of Robotics: Science and Systems VI, 2009.
M. Boreale. Weighted bisimulation in linear algebraic form. In CONCUR 2009-

Concurrency Theory, pages 163–177. Springer, 2009.
J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite

events. In J. Fox, editor, Proceedings of the Symposium on Mathematical Theory of

Automata, number 12 in MRI Symposia Series, pages 529–561. Polytechnic Press of

the Polytechnic Institute of Brooklyn, April 1962. Book appeared in 1963.
A. de Gispert, G. Iglesias, G. Blackwood, E. Banga, and W. Byrne. Hierarchical phrase-

based translation with weighted finite-state transducers and shallow-n grammars.

Computational Linguistics, 2010.
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society, 1977.
F. Denis and Y. Esposito. On rational stochastic languages. Fundamenta Informaticae,

2008.
J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Approximating labeled

Markov processes. Information and Computation, 184(1):160–200, July 2003.
D. F. Enns. Model reduction with balanced realizations: An error bound and a frequency

weighted generalization. In Decision and Control, 1984. The 23rd IEEE Conference

on, volume 23, pages 127–132. IEEE, 1984.
P. A. Fuhrmann. A polynomial approach to linear algebra. Springer Science & Business

Media, 2011.
K. Glover. All optimal hankel-norm approximations of linear multivariable systems and

their l,∞-error bounds. International journal of control, 39(6):1115–1193, 1984.
D. Hsu, S. M. Kakade, and T. Zhang. A spectral algorithm for learning hidden markov

models. Journal of Computer and System Sciences, 78(5):1460–1480, 2012.
S. Kiefer and B. Wachter. Stability and complexity of minimising probabilistic automata.

In J. E. et al., editor, Proceedings of the 41st International Colloquium on Automata,

Languages and Programming (ICALP), part II, volume 8573 of LNCS, pages 268–279,

Copenhagen, Denmark, 2014. Springer.
K. Knight and J. May. Applications of weighted automata in natural language processing.

In Handbook of Weighted Automata. 2009.
A. Kulesza, N. R. Rao, and S. Singh. Low-Rank Spectral Learning. In Proceedings of the

Seventeenth International Conference on Artificial Intelligence and Statistics, pages

522–530, 2014.
A. Kulesza, N. Jiang, and S. Singh. Low-rank spectral learning with weighted loss func-

tions. In Proceedings of the Eighteenth International Conference on Artificial Intelli-

gence and Statistics, 2015.



Singular Value Automata 41

S. V. Lototsky. Simple spectral bounds for sums of certain kronecker products. Linear

Algebra and its Applications, 469:114–129, 2015.

M. Mohri, F. C. N. Pereira, and M. Riley. Speech recognition with weighted finite-state

transducers. In Handbook on Speech Processing and Speech Communication. 2008.

N. K. Nikol’Skii. Treatise on the shift operator: spectral function theory, volume 273.

Springer Science & Business Media, 2012.

V. Peller. Hankel operators and their applications. Springer Science & Business Media,

2012.

G. Popescu. Multivariable nehari problem and interpolation. Journal of Functional

Analysis, 200(2):536–581, 2003.

A. Recasens and A. Quattoni. Spectral learning of sequence taggers over continuous se-

quences. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pages 289–304. Springer, 2013.

J. S. Rosenthal. Convergence rates for markov chains. Siam Review, 37(3):387–405, 1995.

S. Siddiqi, B. Boots, and G. Gordon. Reduced-rank hidden markov models. In Proceedings

of the Thirteenth International Conference on Artificial Intelligence and Statistics,

pages 741–748, 2010.

L. N. Trefethen and D. Bau III. Numerical linear algebra. Siam, 1997.

K. Zhu. Operator Theory in Function Spaces, volume 138. American Mathematical

Society, 1990.


