
Bicategories of Markov Processes

Florence Clerc1, Harrison Humphrey1, and Prakash Panangaden1

School of Computer Science
McGill University

Abstract. We construct bicategories of Markov processes where the
objects are input and output sets, the morphisms (one-cells) are Markov
processes and the two-cells are simulations. This builds on the work of
Baez, Fong and Pollard, who showed that a certain kind of finite-space
continuous-time Markov chain (CTMC) can be viewed as morphisms in a
category. This view allows a compositional description of their CTMCs.
Our contribution is to develop a notion of simulation between processes
and construct a bicategory where the two-cells are simulation morphisms.
Our version is for processes that are essentially probabilistic transition
systems with discrete time steps and which do not satisfy a detailed
balance condition. We have also extended the theory to continuous space
processes.

1 Introduction

A recent paper by Baez, Fong and Pollard [1] develops a compositional framework
for Markov processes. More precisely, they work with finite-state processes with a
population associated with each state. Transitions are governed by rates and are
memoryless. Thus, they are working with continuous-time Markov chains (see
e.g. [8]). The important innovation in their work is to define “open” Markov
chains with inputs and outputs. This allows them to connect Markov chains
together and build more complex ones from simpler ones.

Our work is inspired by their treatment but differs in two significant ways.
First, we work with Markov processes viewed operationally. That is, the states
represent states of a transition system and the system moves between states
according to a probabilistic law: thus they are closer in spirit to probabilistic
automata. We do not impose a detailed balance condition; it would not make
any sense in the scenario we are examining. Importantly we allow continuous
state spaces; which forces us into some measure-theoretic considerations. The
crucial idea that we borrow from Baez et al. [1] is the use of open processes
that can be composed. Though the details are different from [1] essentially the
mathematics is inspired by their work and the work of Fong [3] on decorated
cospans.

The second significant difference is the development of a bicategorical pic-
ture. The idea here is to have two-cells that capture simulation. The concepts
of simulation and bismulation have played a central role in the development of

process algebra [5, 6, 10] and the probabilistic version has been similarly impor-
tant [4, 9]. We have used simulation morphisms similar in spirit to those used by
Desharnais et al. [2, 9].

Dedication

It is a pleasure for the third author to dedicate this paper to Kim Larsen. Kim’s
fundamental work on probabilistic bisimulation nearly 30 years ago was a break-
through and the inspiration for his own work [2] on the subject. Ever since then
he has been infected with the probability bug and has maintained ties with
Kim and his research group. This paper also deals with exactly those topics and
we hope that Kim will accept this as a tribute to his remarkable career and
achievements.

2 Discrete Markov Processes

We begin by developing the theory on finite state spaces so that we can postpone
the measure theory issues until later. It is pleasing that the measure theory and
the category theory can be more or less “factored” into separate sections.

Definition 1 Given a finite set M , a Markov kernel on M is a map τ : M ×
M → [0, 1] such that for all m ∈ M , τ(m, .) is a subprobability measure on M .
A labelled Markov process on M is a collection (τa) of Markov kernels on M
that is indexed by a set of actions Act.

Markov processes are the standard model of memoryless probabilistic dy-
namical systems like a probabilistic program executing or particles moving over
time subject to random influences. Let us fix a set of actions Act throughout
this paper. These actions correspond to interactions between the process and
the environment; for instance, a user performing control actions on a stochastic
system.

Note that here we are only requiring subprobability measures. This is be-
cause it might be the case that the process does not terminate and some of
the probability mass might be lost. We also want to have some cases where the
transition probabilities are zero which subprobability distributions allow us to
accommodate.

As in [1], we can view our labelled Markov processes as morphisms between
input and output sets.

Definition 2 Given two finite sets X,Y , a discrete labelled Markov process
(DLMP) from X to Y is a tuple (M, (τa)a∈Act, i, o) consisting of a finite set
M , a labelled Markov process (τa)a∈Act on M , and two injective morphisms
i : X →M and o : Y →M called input and output.

We also require that for a ∈ Act, y ∈ Y and m ∈M , τa(o(y),m) = 0.

The last condition says that when the process reaches a state corresponding to
the output it stops there. When we compose processes, these will become inputs
to the next process and will be subject to a new dynamics. Note that a state can
be input and output: this means that if the system is started in this state it will

just stay there. We will also write τa(m,A), where A ⊆M , to mean
∑
x∈A

τa(m,x).

The key difference between the standard definition of finite labelled Markov
process and this definition of DLMP is the use of input and output sets that
allows us to specify the state in which the system is at the start and the state
when the experiment stops.

An outside observer is allowed to influence the system using the actions in
Act, which result in a probabilistic response by the system; the response to per-
forming the action a at state m is given by the final state (sub)distribution
τa(m, ·). Particles flow through the Markov process, beginning at inputs, ac-
cording to the kernels τa, until they reach an output state. When a system hits
an output state it stops. Later we will describe how composed systems behave;
essentially the output states become the input states of the next system.

Let us illustrate this definition using the example of a pinball machine. The
position of the ball represents the state of the process. The ball is introduced
when the player starts the game; this is the input state. The ball then moves
around (this is the process) with the player using flippers (actions) to act on its
trajectory. The game ends when the ball reaches the drain (output).

Note that the requirement on the Markov kernels is not symmetric between
inputs and outputs. This is a direct consequence of the fact that input and
output correspond respectively to start and end of observation or experiment.
In that setting, a start state can lead to another start state whereas once the
experiment is over, it cannot evolve anymore.

2.1 Viewing DLMPs as morphisms

Viewing Markov processes as processes from inputs to outputs makes it tempting
to construct a category DLMP. However, we will see that there is a problem
with the composition being associative only up to isomorphism. The objects are
finite sets and the morphisms X → Y are DLMPs from X to Y .

Let us first give an intuition for this composition: this corresponds to cas-
cading the Markov processes one after the other by identifying states that were
outputs in the first DLMP with inputs in the second DLMP. Consider three
finite sets X,Y, Z and two DLMPs

M := (M, (τMa)a∈Act, iM , oM) : X → Y

and
N := (N, (τNa)a∈Act, iN , oN) : Y → Z

The category of finite sets and functions between them has pushouts. Let us
denote M +Y N the pushout of M and N along iN and oM , and let jN and jM
be the inclusion maps.

Y
oM //

iN
��

M

jM

��
N

jN
// M +Y N

The pushout M +Y N can be expressed as M +Y N := (M]N)/ ∼ where
∼ denotes the smallest equivalence relation on M + N such that for all y ∈ Y ,
jM (oM (y)) ∼ jN (iN (y)).

The composition of M and N denoted N ∗M is the DLMP with input X
and output Z defined as follows.

N ∗M := (M +Y N, (τ
′
a)a∈Act, jM ◦ iM , jN ◦ oN)

where, for m,n ∈M +Y N

τ ′a(m,n) =

τNa (m,n) if m,n ∈ jN (N)

τMa (m,n) if m,n /∈ jN (N) and m,n ∈ jM (M)

0 otherwise

Note that if m and n are both outputs of the first DLMP and inputs of the
second one, we use τN .

The universal property of the pushout in FinSet ensures that composi-
tion is associative only up to isomorphism. This will be explained in more
detail in the coming section; but note that it prevents us from constructing
a category of DLMPs. Given any finite set X, the identity 1X is the DLMP
(X, (τa)a∈Act, idX , idX), where for all a ∈ Act, and for all x, y ∈ X, τa(x, y) = 0.
Note that it is only an identity up to isomorphism.

2.2 Simulations as Morphisms between DLMPs

Given two Markov processes with the same input and output sets, it is natural to
ask whether they are related in some way or not. To this end, we first introduce
the notion of simulation, and then show how it provides a natural framework for
extending the previous construction to a bicategory.

Definition 3 Given two DLMPs N = (N, (τNa)a∈Act, iN , oN) andM = (M, (τMa)a∈Act, iM , oM)
defined with the same input and output sets, a simulation of N by M is a func-
tion f : N →M on the state spaces satisfying the following conditions:

– f ◦ iN = iM and f ◦ oN = oM , and
– for all a ∈ Act, n ∈ N and m ∈M , τMa (f(n),m) ≥ τNa (n, f−1(m)).

where f−1(m) stands for f−1({m}). In such a case, we say that M simulates
N and write f : N ⇒M.

Given two finite sets X and Y , we have the “hom-set” DLMP(X,Y) of
the previously defined “category DLMP.” The quotation marks signify that we
don’t really have a category. However, it is possible to extend the set DLMP(X,Y)
to a category with objects the DLMPs from X to Y and as morphisms simula-
tions between such DLMPs in such a way that we obtain a bicategory. We carry
this out in the next subsection.

The composition of two simulations with the same input and output sets is
given by standard function composition; it is denoted ◦. The standard composi-
tion is associative which ensures that ◦ is also associative.

Proof. Let us now check that the composition of two simulations is a simulation.
Consider two simulations f : M1 ⇒ M2 and g : M2 → M3 with Mk =
(Mk, (τ

k
a)a∈Act, ik, ok) : X → Y . Note that for any m in M1 and n in M3:

τ3a (g ◦ f(m), n) ≥ τ2a (f(m), g−1(n)) ≥ τ1a (m, (g ◦ f)−1(n))

using the fact that g and f are both simulations. Finally note that (g ◦ f) ◦ i1 =
g ◦ i2 = i3 and similarly for the output map. This proves that the composition
of two simulations is a simulation.

Given a DLMPM = (M, (τMa)a∈Act, iM , oM), the identity idM is the identity
on the underlying set idM . It is indeed an identity for the composition we have
just defined.

2.3 The Bicategory DLMP

We had started with trying to construct a category DLMP with finite sets as
objects and DLMPs as morphisms. We have constructed a categorical structure
on the hom-set DLMP(X,Y) for all finite sets X, Y . It is natural to further
extend it in order to make DLMP into a bicategory.

One of the things missing from our construction is a horizontal composition,
namely for every triple of finite sets X,Y and Z a functor

cXY Z : DLMP(Y, Z)×DLMP(X,Y)→ DLMP(X,Z)

Given two DLMPs M : X → Y and N : Y → Z, cXY Z(N ,M) is their compo-
sition N ∗M defined in Section 2.1.

Let us now define the functor cXY Z acting on the simulations. Let us consider
four DLMPs (with k = 1, 2) :

Mk = (Mk, (τ
M,k
a)a∈Act, iM,k, oM,k) : X → Y

and
Nk = (Nk, (τ

N,k
a)a∈Act, iN,k, oN,k) : Y → Z

as well as two simulations

f :M1 ⇒M2 and g : N1 ⇒ N2

Let us denote jN,k : Nk → Mk +Y Nk and jM,k : Mk → Mk +Y Nk the
pushout maps obtained by performing the horizontal composition Nk ∗Mk.

We are now ready to define their horizontal composition cXY Z(g, f) : N1 ∗
M1 ⇒ N2 ∗M2 as follows. For m ∈M1 +Y N1,

(g ∗ f)(m) =

{
jN,2 ◦ g(n′) if ∃n′ ∈ N1 such that m = jN,1(n′)

jM,2 ◦ f(m′) if ∃m′ ∈M1 such that m = jM,1(m′)

We denote cXY Z(g, f) by g ∗ f .
Note that g ∗ f(m) is well defined.

Proof. Assume that there exists n′ in N1 and m′ ∈M1 such that m = jN,1(n′) =
jM,1(m′). By definition of the pushout, there exists y in Y such thatm′ = oM,1(y)
and n′ = iN1

(y).

(jM,2 ◦ f)(m′) = (jM,2 ◦ f ◦ oM,1)(y)

= (jM,2 ◦ oM,2)(y) as f is a simulation

= (jN,2 ◦ iN,2)(y) using the pushout

= (jN,2 ◦ g ◦ iN,1)(y) as g is a simulation

= (jN,2 ◦ g)(n′)

The case where there would be n1 and n2 in N1 (resp. m1 and m2 in M1)
satisfying both the first (resp. second) condition is prevented by the injectivity
of iN,1 (resp. oM,1).

Lemma 1. The horizontal composition g ∗ f is a simulation.

Proof. Diagrammatically, the situation is the following :

M1 +Y N1

M1 N1

X Y Z

M2 N2

M2 +Y N2

g∗f

jM,1

f

jN,1

g

iM,1

iM,2

oM,1 iN,1

oM,2 iN,1

oN,1

oN,2

jM,2 jN,2

In order to prove that it is indeed a simulation, we have first to prove that
(g∗f)◦jM,1◦iM,1 = jM,2◦iM,2. Let x in X, note that iM,1(x) ∈M1, therefore by
definition of g∗f , (g∗f)◦jM,1◦iM,1(x) = jM,2◦f(iM,1(x)). But f is a simulation,
hence f(iM,1(x)) = iM,2(x) proving the desired equality. The corresponding
equality with output maps is proven similarly.

Let us denote (τka)a∈Act the Markov process corresponding to the composition
Nk ∗ Mk. There remains to prove that for all a ∈ Act, m1 ∈ M1 +Y N1 and
m2 ∈M2 +Y N2, τ2a ((g ∗ f)(m1),m2) ≥ τ1a (m1, (g ∗ f)−1(m2)). There are many
cases that correspond to the different cases for g ∗ f , τ1a and τ2a . The proof is
straightforward but tedious.

Lemma 2. The exchange law holds. Namely, let Mk,Nk with k = 1, 2, 3 be
DLMPs with Mk : X → Y and Nk : Y → Z and let us consider simulations
f1 :M1 ⇒M2, f2 :M2 ⇒M3, g1 : N1 ⇒ N2 and g2 : N2 ⇒ N3 corresponding
to

f1

��

g1

��X

M1

��M2 //

M3

GG
f2

��

Y

N1

��N2 //

N3

GG
g2

��

Z

then (g2 ◦ g1) ∗ (f2 ◦ f1) = (g2 ∗ f2) ◦ (g1 ∗ f1).

Proof. Let us denote as usual jM,k : Mk →Mk+Y Nk and jN,k : Nk →Mk+Y Nk
for k = 1, 2, 3 the corresponding pushout maps. As g1 and g2 are simulations,
we know that

jN,3 ◦ g2 ◦ g1 ◦ iN,1 = jN,3 ◦ g2 ◦ iN,2 = jN,3 ◦ iN,3

and similarly jM,3 ◦ f2 ◦ f1 ◦ oM,1 = jM,3 ◦ oM,3. By the universal property of the
pushout, there is a unique map h making the following diagram commute:

Y
iN,1 //

oM,1

��

N1
jN,1

��

jN,3◦g2◦g1

��

M1

jM,3◦f2◦f1
33

jM,1 // M1 +Y N1

h

''
M3 +Y N3

It can be easily verified that both (g2 ◦ g1)∗ (f2 ◦f1) and (g2 ∗f2)◦ (g1 ∗f1) work
for h, hence they are equal.

Lemma 3. The horizontal composition is associative up to isomorphisms, i.e.
for any finite sets X,Y, Z and W , we have natural isomorphisms called the as-
sociators

αWXY Z : cWYZ ◦ (id, cWXY)→ cWXZ ◦ (cXY Z , id)

Proof. Let us consider three DLMPs M = (M, (τMa), iM , oM) : W → X, N =
(N, (τNa), iN , oN) : X → Y and P = (P, (τPa), iP , oP) : Y → Z. Let us construct
the associator αMNP : P ∗ (N ∗M)⇒ (P ∗ N) ∗M, i.e. a simulation map

αMNP : (M +X N) +Y P →M +X (N +Y P)

We will denote the pushout maps jM+YN
M : M →M +Y N etc.

First note that X
iN−→ N

j
N+Y P

N−→ N +Y P is the input map of the DLMP
N ∗ P, making the outer diagram commute:

X

oM

��

iN // N

j
M+XN

N

��

j
N+Y P

N // N +Y P

j
M+X (N+Y P)

N+Y P

��

M
j
M+XN

M //

j
M+X (N+Y P)

M

++

M +X N

α1

((
M +X (N +Y P)

By the universal property of the pushout M +X (N +Y P), there exists a unique
map α1 : M +X N →M +X (N +Y P) making the above diagram commute.

To show that the outer diagram commutes, we calculate as follows:

α1 ◦ jM+YN
N ◦ oN = j

M+X(N+Y P)
N+Y P

◦ jN+Y P
N ◦ oN using the definition of α1

= j
M+X(N+Y P)
N+Y P

◦ jN+Y P
P ◦ iP using the pushout square of N +Y P

Y
oN //

iP

��

N
j
M+XN

N // M +X N

α1

##

j
(M+XN)+Y P

M+XN

��
P

j
N+Y P

P ##

j
(M+XN)+Y P

P

// (M +X N) +Y P

))
N +Y P

j
M+X (N+Y P)

N+Y P

// M +X (N +Y P)

By universal property of the pushout (M +X N) +Y P , there exists a unique
map (M +X N) +Y P → M +X (N +Y P) making this diagram commute. We
call this map αMNP . Note that we could have constructed the associator from
the explicit definition of the pushout given in Section 2.1.

Naturality and isomorphism of the associator follow from similar construc-
tions and the fact that all pushout maps are injective as the input and output
maps are injective.

Remember that we had defined identity DLMP 1X = (X, (0)a∈Act, idX , idX).
Similar constructions using pushouts give us two natural isomorphisms corre-
sponding to the unitors : for all M : X → Y a DLMP, we have

λM :M∗ 1X →M and ρM :M→ 1Y ∗M

Pentagon identities and triangle identities are proven using similar compu-
tations. This proves the following result: the main goal of this section.

Theorem 4 DLMP is a bicategory.

3 Continuous State Space

While the finite case is interesting to start with, in many cases of interest the
underlying state space of an LMP is not finite but an arbitrary measurable set
or perhaps a more restricted structure like a Polish space or an analytic space.
However, most of the work we did in the previous section does not rely on
LMPs having a finite state space and it becomes very tempting to extend the
bicategory DLMP we just constructed to a more general notion of LMP. It is
not as straightforward as it may seem as the output map is more complicated in
the continuous case. The restriction to analytic spaces is important for proving
the logical characterization of bisimulation or simulation. Since we are not doing
that here we will consider general measurable spaces.

3.1 LMP and simulation in the continuous case

Definition 5 Given a measurable space (M,Σ) a Markov kernel is a function
τ : M ×Σ → [0, 1] where for each m ∈M the function τ(m, ·) is a subprobability
measure on (M,Σ) and for each measurable set B ∈ Σ the function τ(·, B) :
M → [0, 1] is measurable where [0, 1] is equipped with the standard Borel-algebra.
A labelled Markov process is a collection (τa) of Markov kernels on (M,Σ) that
is indexed by a set of actions Act.

Let us now extend our previous definition of DLMPs to deal with the con-
tinuous case.

Definition 6 Given two finite sets X and Y , a continuous labelled Markov pro-
cess (CLMP) from X to Y is a tuple (M,Σ, (τa)a∈Act, i, o) consisting of (M,Σ)
a measurable space, a labelled Markov Process (τa)a∈Act, an injective function
i : X → M and a function o : Y → Σ such that for all y1 and y2 in Y
o(y1) ∩ o(y2) = ∅, satisfying the following additional condition for all a ∈ A :

for all y ∈ Y, m ∈ o(y) and B ∈ Σ τa(m,B) = 0

Note that here we have an input point but a (measurable) output set. To avoid
painfully long notations, we will also write o(Y) for the set

⋃
y∈Y o(y) ∈ Σ.

We now adapt the definition of simulation to this setting.

Definition 7 Given two CLMPs N = (N,Λ, (τNa)a∈Act, iN , oN) andM = (M,Σ, (τMa)a∈Act, iM , oM)
defined with the same input and output sets, a simulation of N byM is a measur-
able function f : N →M on the state spaces satisfying the following conditions:

– f ◦ iN = iM and oN = f−1 ◦ oM , and
– for all a ∈ Act, n ∈ N and B ∈ Σ, τMa (f(n), B) ≥ τNa (n, f−1(B)).

In such a case, we say that M simulates N and write f : N ⇒M.

3.2 The bicategory CLMP

We now extend what was done in the finite case to the continuous case in order
to construct the bicategory CLMP.

Given two finite sets X,Y , there is a category CLMP(X,Y) which has as
objects the CLMPs X → Y and as morphisms the simulations between them.
Composition is given by the standard composition on their underlying sets and
the identities are the standard identities on the underlying state spaces.

The next order of business is to define the horizontal composition both on
the CLMPs and the simulations. Let us start with the CLMPs.

Given three finite setsX, Y and Z and two CLMPsM = (M,Σ, iM , oM , τ
M) :

X → Y and N = (N,Λ, iN , oN , τ
N) : Y → Z, there are two inclusion maps

jN : N → M + N and jM : M → M + N . We then define the relation ∼ on
M +N as the smallest equivalence such that

∀y ∈ Y ∀m ∈ oM (y) jM (m) ∼ jN (iN (y))

We then define the quotient map q between measurable spaces q : (M +N,Σ +
Λ) → ((M + N)/ ∼, (Σ + Λ)/ ∼) where (Σ + Λ)/ ∼ is the smallest σ-algebra
such that q is measurable.

Note that here we are mimicking the explicit construction of the pushout
given in the finite case. We will therefore also denote (N +M)/ ∼ as N +Y M
and (Σ +Λ)/ ∼ as Σ +Y Λ. We define the horizontal composition of M and N
as:

N ∗M = (M +Y N,Σ +Y Λ, q ◦ jM ◦ iM , q ◦ jN ◦ oN , τ ′)

where the LMP is defined for m ∈M +Y N and B ∈ Σ +Y Λ as

τ ′a(m,B) =

τMa (m′, j−1M q−1(B)) if ∃m′ ∈M \ oM (Y) m = q ◦ jM (m′)

τNa (n′, j−1N q−1(B)) if ∃n′ ∈ N m = q ◦ jM (n′)

0 otherwise

Note here how the condition on the input and output maps is used : remember
that the input map is injective and that the output maps gives sets that are
pairwise disjoint. This ensures that if m1 ∼ m2 with m1 and m2 in M then
there exists y in Y such that m1 and m2 are in oM (y) and if n1 ∼ n2 with n1
and n2 in N then n1 = n2. This guarantees that τ ′a is well-defined.

The identity is the same as the one we have defined in the discrete case : let
X be a finite set and let Σ be the discrete σ-algebra on X, then the identity is

1X = (X,Σ, (τa), idX , oX)

where τa(x,B) = 0 for all x ∈ X and B ∈ Σ and oX(x) = {x}.

For every triple of finite setsX, Y and Z, we define the horizontal composition
on the simulations. Consider f :M1 ⇒M2 : X → Y and g : N1 ⇒ N2 : Y → Z
where Mk = (Mk, Σk, τ

M,k, iM,k, oM,k) and Nk = (Nk, Λk, τ
Nk , iN,k, oN,k) (k =

1, 2). We use similar notations as for the composition of CLMPs but index them
by 1 or 2 (see following diagram).

We define their horizontal composition as

g ∗ f : M1 +Y N1 →M2 +Y N2

n 7→ q2 ◦ j2N ◦ g(n′) if ∃n′ ∈ N1 n = q1 ◦ j1N (n′)

m 7→ q2 ◦ j2M ◦ f(m′) if ∃m′ ∈M1 m = q1 ◦ j1M (m′)

(M1 +Y N1, Σ1 +Y Λ1)

(M1 +N1, Σ1 + Λ1)

q1

OO

(M1, Σ1)

j1M

55

f

��

(N1, Λ1)

j1N

ii

g

��

X

iM,2 $$

iM,1

::

Y

oM,1

ii
iN,1

55

oM,2uu iN,2))

Z

oN,1

cc

oN,2{{
(M2, Σ2)

j2M))

(N2, Λ2)

j2Nvv
(M2 +N2, Σ2 + Λ2)

q2

��
(M2 +Y N2, Σ2 +Y Λ2)

This is again mimicking what happens in the finite case. Note that the re-
mark used previously to show that the horizontal composition of DLMPs is
well-defined is used here to prove that the horizontal composition of the CLMPs
is well-defined. The proofs with the associators and the unitors are similar to

the finite case except that they rely on the universal property of the quotient
instead of the universal property of the pushout.

We can now state the main result of this paper.

Theorem 8 CLMP is a bicategory.

4 Conclusions

We have developed a notion of bicategory of Markov processes where the two-
cells capture the notion of simulation. The original paper of Baez, Fong and
Pollard developed a compositional theory of a certain class of CTMCs. We have
developed an analogous theory for Markov processes in both discrete and con-
tinuous state-space versions. By adding the two-cells we have incorporated one
of the most powerful and widely used tools for reasoning about the behaviour of
Markov processes and this opens the way for compositional reasoning.

Of course, this paper is just a start. There are many interesting directions
to explore. Perhaps the most pressing is to understand how feedback can be
incorporated via a trace structure. Certain categories of probabilistic relations do
have a traced monoidal structure; it remains to be seen how to incorporate that
here in a manner consistent with the two-cell structure. We are also working on
using more general coalgebras as the morphisms instead of just Markov processes.

In earlier work [9] logical formalisms (modal logics) for reasoning about bisim-
ulation have been developed. Here we have the framework where one can think
about compositional logical reasoning. In a paper about a decade ago Mislove et
al. [7] have studied duality for Markov processes (our CLMPs) and also devel-
oped a notion of composing Markov processes. We have not yet worked out the
relations between that framework and ours but clearly it is an interesting topic
to be examined.

Acknowledgements

We are very grateful to Brendan Fong for helpful discussions. We thank the
reviewers for their detailed comments and feedback. This research has been sup-
ported by a research grant from NSERC.

References

1. Baez, J.C., Fong, B., Pollard, B.S.: A compositional framework for Markov pro-
cesses (Sept 2015), arXiv:1508.06448

2. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labeled Markov pro-
cesses. Information and Computation 179(2), 163–193 (Dec 2002)

3. Fong, B.: Decorated cospans. Theory and Applications of Categories 30, 1096–1120
(2015)

4. Larsen, K.G., Skou, A.: Bisimulation through probablistic testing. Information and
Computation 94, 1–28 (1991)

5. Milner, R.: A Calculus for Communicating Systems, Lecture Notes in Computer
Science, vol. 92. Springer-Verlag (1980)

6. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
7. Mislove, M., Ouaknine, J., Pavlovic, D., Worrell, J.: Duality for labelled Markov

processes. In: Walukiewicz, I. (ed.) Foundations of Software Science and Compu-
tation Structures, FOSSACS. Lecture Notes In Computer Science, vol. 2987, pp.
393–407 (2004)

8. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic
Mathematics, Cambridge University Press (1997)

9. Panangaden, P.: Labelled Markov Processes. Imperial College Press (2009)
10. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of

the 5th GI Conference on Theoretical Computer Science, pp. 167–183. No. 104 in
Lecture Notes In Computer Science, Springer-Verlag (1981)

