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Spacetime geometry from causal structure and a

measurement

Keye Martin and Prakash Panangaden

Abstract. The causal structure of spacetime defines a partial order on the
events of spacetime. In an earlier paper, using techniques from domain theory,
we showed that for globally hyperbolic spacetimes one could reconstruct the
topology from the causal structure. However, the causal structure determines
the metric only up to a local rescaling (a conformal transformation); in a four
dimensional spacetime, the metric tensor has ten components, and thus ef-
fectively only nine are determined by the causal structure. After establishing
the relationship between measurement in domain theory, the concept of global
time function and the Lorentz distance, we are able to domain theoretically re-
cover the final tenth component of the metric tensor, thereby obtaining causal
reconstruction of not only the topology of spacetime, but also its geometry.

1. Introduction

The study of spacetime structure from an abstract viewpoint – i.e., not from
the viewpoint of solving differential equations – was initiated by Penrose [18] in
a dramatic paper in which he showed a fundamental inconsistency of gravity: all
the spacetimes satisfying some general conditions develop singularities. Penrose’s
paper initiated a whole new way of studying general relativity: an abstract approach
using ideas of differential topology and geometry rather than looking for solutions
of Einstein’s equations.

It was known since Chandrasekhar [3] that since gravity is universal and inher-
ently attractive, a gravitating mass of sufficient size will eventually collapse. It was
widely believed that the collapse phenomenon discovered by Chandrasekhar was an
artifact of special symmetry assumptions and that in a realistic situation pertur-
bations would prevent the appearance of singularities. Penrose dashed this hope
by showing that singularities arise generically. What Penrose showed was that any
such collapse eventually leads to a singularity where the mathematical description
of spacetime as a continuum breaks down. This leads to the need to reformulate
gravity. Part of the motivation for the search for a quantum theory of gravity is
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the hope that this elusive theory will resolve the problem of gravitational collapse.
A good discussion of the history of these ideas is in a recent book by Hawking and
Penrose [9].

Since the first singularity theorems [18, 8] causality has played a key role in un-
derstanding spacetime structure. The analysis of causal structure relies heavily on
techniques of differential topology [19]. For the past decade Sorkin and others [21]
have pursued a program for quantization of gravity based on causal structure. In
this approach the causal relation is regarded as the fundamental ingredient and the
topology and geometry are secondary.

In a paper that appeared in 2006 [15], we prove that the causality relation is
much more than a relation – it turns a globally hyperbolic spacetime into what is
known as a bicontinuous poset. The order on a bicontinuous poset allows one to
define an intrinsic topology called the interval topology. On a globally hyperbolic
spacetime, the interval topology is the manifold topology. Theorems that recon-
struct the spacetime topology have been known [19] and Malament [12] has shown
that the class of time-like curves determines the causal structure. We establish
these results as well though in a purely order theoretic fashion: there is no need to
know what “smooth curve” means.

Our more abstract stance also teaches us something new : a globally hyperbolic
spacetime itself can be reconstructed in a purely order theoretic manner, begin-
ning from only a countable dense set of events and the causality relation. The
ultimate reason for this is that the category of globally hyperbolic posets, which
contains the globally hyperbolic spacetimes, is equivalent to a very special category
of posets called interval domains. This provides a profound connection between
domain theory, first introduced for the purposes of assigning semantics to program-
ming languages, and general relativity, a theory meant to explain gravity. Even
from a purely mathematical perspective this equivalence is surprising, since glob-
ally hyperbolic spacetimes are usually not order theoretically complete, but interval
domains always are.

While our previous work has focused on the role of domain theory in investi-
gating qualitative aspects in relativity [16] – like the topology – in this paper, we
investigate reconstructing quantitative aspects of spacetime structure: the metric.
The theory of measurement was introduced by Martin in [13] as a way of incorpo-
rating quantitative information into domain theory. In this paper we will show how
not only the topology, but the geometry of spacetime can be reconstructed order
theoretically from the causal structure together with an appropriate measurement.
The reason is that the Lorentz distance defines a Scott continuous function on the
domain of spacetime intervals. What is even more interesting, though, is that our
setting provides a way to topologically distinguish between Newtonian and rela-
tivistic notions of time. Every global time function defines a measurement on the
domain of spacetime intervals, in particular, it is Scott continuous. The Lorentz
distance is not only Scott continuous, but satisfies a stronger property, that it is in-
terval continuous. An interval continuous function must assign zero to any element
which approximates nothing. In all spacetimes there are non-empty intervals that
correspond to a null line segment; these do not approximate anything (but they
are not maximal either since they will contain other null sub-intervals) and indeed
their “length” in the Lorentz metric is zero. Thus, no interval continuous function
on the domain of spacetime intervals can ever be a measurement and the reason
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for this has entirely to do with relativity: a clock moving at the speed of light
records no time as having elapsed, so an interval continuous function is incapable
of distinguishing between a single event and a null interval. In Section 7 we discuss
this point at length.

2. Domains, continuous posets and topology

We review some basic concepts which can be found, for example in the compre-
hensive book “Continuous Lattices and Domains” [7]. Occasionally our terminology
differs; we will point out such occasions.

A poset is a partially ordered set, i.e., a set together with a reflexive, antisym-
metric and transitive relation.

Definition 2.1. Let (P,⊑) be a partially ordered set. A nonempty subset

S ⊆ P is directed if (∀x, y ∈ S)(∃z ∈ S) x, y ⊑ z. The supremum of S ⊆ P is the

least of all its upper bounds provided it exists. This is written
⊔

S.

These ideas have duals that will be important to us: a nonempty S ⊆ P is
filtered if (∀x, y ∈ S)(∃z ∈ S) z ⊑ x, y. The infimum

∧

S of S ⊆ P is the greatest
of all its lower bounds provided it exists.

Definition 2.2. For a subset X of a poset P , set

↑X := {y ∈ P : (∃x ∈ X)x ⊑ y} & ↓X := {y ∈ P : (∃x ∈ X) y ⊑ x}.

We write ↑x = ↑{x} and ↓x = ↓{x} for elements x ∈ X.

A partial order allows for the derivation of several intrinsically defined topolo-
gies. Here is our first example.

Definition 2.3. A subset U of a poset P is Scott open if

(i) U is an upper set: x ∈ U & x ⊑ y ⇒ y ∈ U , and

(ii) U is inaccessible by directed suprema: For every directed S ⊆ P with a

supremum,
⊔

S ∈ U ⇒ S ∩ U 6= ∅.

The collection of all Scott open sets on P is called the Scott topology.

Closely related to directed sets are ideals.

Definition 2.4. An ideal I in a poset is a directed set such that if x ∈ I and

y ≤ x, then y ∈ I. A set with the latter property is called a lower set.

Posets can have a variety of completeness properties. The following complete-
ness condition has turned out to be particularly useful in applications.

Definition 2.5. A dcpo is a poset in which every directed subset has a supre-

mum. The least element in a poset, when it exists, is the unique element ⊥ with

⊥ ⊑ x for all x.

If one takes any poset the collection of ideals ordered by inclusion forms a dcpo.
This means that the union of any directed family of ideals is an ideal. It is easy to
check this explicitly from the definition.

The set of maximal elements in a dcpo D is

max(D) := {x ∈ D : ↑x = {x}}.

Each element in a dcpo has a maximal element above it; this follows at once from
Zorn’s Lemma and indeed is equivalent to it and hence to the Axiom of Choice.
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Definition 2.6. For elements x, y of a poset, write x ≪ y iff for all directed

sets S with a supremum,

y ⊑
⊔

S ⇒ (∃s ∈ S) x ⊑ s.

We set ↓↓x = {a ∈ D : a ≪ x} and ↑↑x = {a ∈ D : x ≪ a}.

For the symbol “≪,” read “approximates.” A number of basic properties are
immediate from the definition. For example, the fact that the relation is transitive
and the following:

x ≤ y ≪ z ≤ w ⇒ x ≪ w.

Definition 2.7. A basis for a poset D is a subset B such that B∩↓↓x contains

a directed set with supremum x for all x ∈ D. A poset is continuous if it has a

basis. A poset is ω-continuous if it has a countable basis.

Continuous posets have an important property, they are interpolative.

Proposition 2.8. If x ≪ y in a continuous poset P , then there is z ∈ P with
x ≪ z ≪ y.

Proof : Consider the set K = {u | ∃v.u ≪ v ≪ y}. This set is clearly not
empty since x is the supremum of elements that approximate it so for some w we
have w ≪ x ≪ y. Let u1, u2 ∈ K then we have u1 ≪ v1 ≪ y and u2 ≪ v2 ≪ y

for some v1, v2. Since ↓↓y is directed there is some v ≪ y with v1, v2 ≤ v. Thus
u1, u2 ≪ v and since ↓↓v is directed we have an element u ≪ v with u1, u2 ≤ u.
Now since u ≪ v ≪ y, u ∈ K, hence K is a directed set. Now clearly

⊔

K = z so
by the definition of x ≪ z we have that there is some w ∈ K with x ≤ w which
means that there is some z such that x ≤ w ≪ z ≪ y. 2

This proof is taken from [10]. A very short proof using ideals can be found in [7].
This enables a clear description of the Scott topology.

Theorem 2.9. The collection {↑↑x : x ∈ D} is a basis for the Scott topology on

a continuous poset.

Proof : From the interpolation property it easily follows that sets of the form
↑↑x are Scott open. If U is any Scott open set and x ∈ U then the directed set ↓↓x

must intersect U , since
⊔

↓↓x = x ∈ U . Let y ∈ U ∩ ↓↓x, then ↑↑y ⊂ U , thus for any

point x in U we can find a set of the form ↑↑y containing x and contained in U so
these sets form a basis for the Scott topology. 2

Definition 2.10. A continuous dcpo is a continuous poset which is also a

dcpo. A domain is a continuous dcpo.

The next example is due to Scott[20] and worth keeping in mind when we
consider the analogous construction for globally hyperbolic spacetimes.

Example 2.11. The collection of compact intervals of the real line

IR = {[a, b] : a, b ∈ R & a ≤ b}

ordered under reverse inclusion

[a, b] ⊑ [c, d] ⇔ [c, d] ⊆ [a, b]

is an ω-continuous dcpo:
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• For directed S ⊆ IR,
⊔

S =
⋂

S,

• I ≪ J ⇔ J ⊆ int(I), and

• {[p, q] : p, q ∈ Q & p ≤ q} is a countable basis for IR.

In the above Q stands for the rationals. The domain IR is called the interval
domain.

We also have max(IR) ≃ R in the Scott topology. More precisely the subspace
topology that max(IR) inherits from the domain equipped with the Scott topology
is homeomorphic to the reals with its usual topology. Approximation can help
explain why:

Example 2.12. A basic Scott open set in IR is

↑↑[a, b] = {x ∈ IR : x ⊆ (a, b)}.

One of the interesting things about IR is that it is a domain that is derived
from an underlying poset with an abundance of order theoretic structure. Part
of this structure is that the real line is bicontinuous, a fundamental notion in the
present work:

Definition 2.13. A continuous poset P is bicontinuous if

• For all x, y ∈ P , x ≪ y iff for all filtered S ⊆ P with an infimum,
∧

S ⊑ x ⇒ (∃s ∈ S) s ⊑ y,

and

• For each x ∈ P , the set ↑↑x is filtered with infimum x.

In order to clarify the above definition we deconstruct it as follows. Given a
continuous poset with its approximation relation ≪ we define the dual relation ≪op

by
x ≪op y iff inf S ≤ x implies S∩ ↓ y 6= ∅

for any filtered set S with an infimum. Of course, there is no prima facie reason
why ≪ and ≪op should be related. We can say that a poset is “dually continuous”
if for every x the set {y|x ≪op y} is filtered and has x as its infimum. Our definition
then amounts to saying that the poset is continuous, dually continuous and the two
relations ≪ and ≪op coincide. In other work [7] the term “bicontinuous” is used for
the situation where the two approximation relations do not coincide; such authors
use the term “strongly bicontinuous” for what we have called bicontinuous. For us
the present terminology seems more natural and leads to the pleasing theory of the
interval topology described below.

Example 2.14. R, Q are bicontinuous.

Definition 2.15. On a bicontinuous poset P , sets of the form

(a, b) := {x ∈ P : a ≪ x ≪ b}

form a basis for a topology called the interval topology.1

The proof that such sets form the base for a topology uses interpolation and
bicontinuity and is given in our previous paper [15]. In contrast to a domain, a
bicontinuous poset P has ↑↑x 6= ∅ for each x, so it is rarely a dcpo.

1The term “interval topology” means something different in lattice theory.
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3. The mathematical structure of spacetime

The mathematical structure used to define spacetime in general relativity is
very rich and can be described in a sequence of layers. We give a quick overview
of this structure emphasizing particularly the causal structure. This is standard
material and is explained well in a number of text books. Ones that we recommend
particularly are: The Large-Scale Structure of Spacetime by Hawking and Ellis [8],
Techniques of differential topology in relativity by Penrose [19], General Relativity

by Wald [23] and Global Lorentzian Geometry by Beem, Ehrlich and Easley [2].
A beautiful account of how some of these structures are related to the physics of
particles and light rays is given in an article appropriately named, “The geometry
of free fall and light propagation” by Ehlers, Pirani and Schild [4] which we highly
recommend for a reader interested in the physical significance of the mathematics.

The basic ingredient of general relativity is an event which we take to be an
undefined primitive concept in the same way that a point is taken as a primitive
concept in the geometry of space. Note that an event is not to be understood, as
in ordinary language, as the occurrence of some action but rather as a potential

occurrence. This is just as a point in space is not necessarily the location of a
physical entity but the place where a material particle could be. The collection of
events is a set called spacetime. A set is, of course, no structure at all. It is the
canvas on which we paint the rest of the structure.

The next level of mathematical structure is to make the spacetime into a topo-
logical space. It is at this point that one incorporates the fact that it is a 4-
dimensional topological manifold. Here is the precise definition

Definition 3.1. A topological n-dimensional manifold M is a topological space

equipped with a family of open sets {Oi}i∈I together with a family of continuous

functions φi : Oi → Rn such that each φi is a homeomorphism of Oi onto its

image. We assume that as a topological space M is connected, Hausdorff and has

a countable basis.

It is often assumed that a manifold is paracompact: this means that every
open cover has a locally-finite refinement. It is a very useful technical condition
that lies at the heart of partition-of-unity arguments and is crucially used to prove
the existence of metrics. We will not be discussing anything at that level of detail
so we will never mention paracompactness again except to note that a connected
Hausdorff manifold is paracompact iff it has a countable basis. Given a manifold
as we have defined it above, a pair (Oi, φi)i∈I is called a chart ; we will use the
word “chart” ambiguously for the pair, for the set Oi and for the function φi. The
collection of charts is called an atlas.

The next structure that one defines on spacetime is the differential structure.
This allows one to “do calculus” or at least to define the notion of derivative. A
manifold could be something like the surface of a sphere: there would be no sense
in “adding” the points of a sphere. The formula for the derivative of a function f

has in it the expression f(x + ǫ): what does x + ǫ mean if one is not working in a
vector space? The notion of manifold is precisely designed to allow one to think of
a manifold as locally like a vector space; that is what the charts are for. However,
we have to be sure that the charts agree on the notion of derivative. This brings
us to the concept of a differential manifold.
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Consider what happens when two charts intersect: V
def
= Oi ∩ Oj 6= ∅. Define

Ui = φi(Oi), Uj = φj(Oj), U = φi(V ) and W = φj(V ). Now the function φj ◦φ−1
i is

a well-defined continuous function, in fact a homeomorphism, from U to W . Since
U and W are open subsets of Rn it is clear what one means by saying that they are
differentiable. Such functions are conveniently called transition functions as they
allow one to translate between charts.

Definition 3.2. A manifold is said to be smooth if all the transition functions

are infinitely differentiable.

The charts allow one to endow patches of the topological space M with the
structure of a vector space: exactly what one needs to define the notion of a deriv-
ative. The condition on the transition functions ensures that the notion of what is
a differentiable function will not be chart dependent.

We will not review the entire apparatus of differential geometry here. However,
the reader should be convinced that there is a clear strategy for developing the
notions of the differential calculus on manifolds now. One uses the charts to move
to Rn and uses the usual undergraduate calculus notions there. Thus, for example,
it should be clear how one can define a smooth real-valued function on a manifold
or a smooth function between two manifolds.

Once one has the notion of a smooth structure – another more snappy name
for differential structure – one can define curves and tangent vectors. A smooth

curve on M is a smooth function γ from some interval2 [a, b] to M . Note that the
curve is not just the image of γ but γ itself: this is what one normally thinks of
as a parametrized curve. Two different functions that happen to have the same
image are different curves. One can now define the tangent vector to a curve in
the usual way using the charts to move back and forth between M and Rn. At
each point there is a vector space now attached to the point: the collection of all
tangent vectors at that point, it is called the tangent space at a point p. The whole
apparatus of multi-linear algebra can now be brought to bear and one can define
dual vectors at a point and indeed arbitrary tensors at every point. If V is the
tangent space and V ∗ is the dual space one says that a tensor has type (p, q) if it
belongs to V ⊗ V ⊗ . . . (p terms) . . . ⊗ V ⊗ V ∗ ⊗ . . . (q terms) . . . ⊗ V ∗.

Now we come to the absolutely crucial part of the structure. Given a tangent
space one can define a cone3 which we call the forward or future light cone. Mathe-
matically, any cone will do but, of course, the physics determines the forward light
cone through the propagation of light rays emanating from a point. We similarly
define another cone by taking the negatives of the vectors in the forward light cone:
this is the backward or past light cone. We come to the first important restriction
on the spacetimes that we consider.

Definition 3.3. A manifold is time orientable if it is possible to choose globally

a consistent definition of future and past light cones.

It might seem prima facie that every manifold will be time orientable but [8]
gives examples showing that this is not the case. Essentially the same type of
construction that one uses to produce the Mobius strip can produce a non time

2It could also be an open or half-open interval.
3Technically a cone C is a subset of a real vector space V which is closed under addition and

multiplication by positive scalars and such that if both x and −x are in C then x is zero.
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orientable manifold. Henceforth, we assume that all manifolds we consider are time
orientable.

A choice of future and past light cones defines the causal structure in the
following way. Given a smooth curve we can determine whether its tangent vector
at a point p through which the curve passes lies inside the future light cone, or on
its boundary, or in the past light cone, or on its boundary or outside both cones.
The tangent vector is said to be future timelike, future null, past timelike, past
null or spacelike, respectively. Of course the tangent to a curve may be at different
places all of the above. However, we are interested in curves that have a timelike
or null tangent vector as these are the curves along which causal effects propagate.

Definition 3.4. A curve is said to be a future-directed causal curve if its

tangent vector everywhere lies inside or on the boundary of the future light cone. A

curve is said to be a future-directed timelike curve if its tangent vector is everywhere

strictly inside the future light cone. A curve is said to be a future-directed null curve

if its tangent vector is everywhere on the boundary of the future light cone.

We usually work with future directed curves; there are analogous definitions
for past directed curves.

The next structure that one usually defines is the affine structure. This defines
what it means to “move a vector parallel to itself” along a curve: this is called
parallel transport and the mathematical gadget that describes this is called the
affine connection. We will not discuss the affine connection here. We remark in
passing that it is used to define what it means to be a “straight line” or a geodesic
on a manifold.

Finally we get to measure the length of a curve. This is done by a symmetric
tensor. A Lorentz metric on a manifold is a symmetric, nondegenerate tensor field
of type (0, 2) whose signature is (− + ++); it is traditionally denoted by g. The
fact that it is of type (0, 2) means that given a vector v it assigns a number g(v, v)
which is quadratic in v: just what we expect for length squared. What is unusual is
that some vectors have positive length and some non-zero vectors have zero length.
Vectors that are timelike have negative length and null vectors have zero length.
While those brought up on metric spaces may be disturbed by the indefiniteness
of this kind of metric it is worth getting used to and accepting it as a reasonable
definition. The physical fact that forces this is the experimental observation that
the real world is covariant with respect to a particular group, the Lorentz group,
and that the invariant for this group is indeed of the given signature.

Our presentation of the layers of spacetime structure is not how most textbooks
present it. They tend to take the metric as fundamental and present all aspects of
the structure in one shot, but this is conceptually confusing. As we have presented
it each layer requires the previous layer for a proper definition. Here is how a
spacetime is usually defined.

Definition 3.5. A spacetime is a real four-dimensional4 smooth manifold M
with a Lorentz metric gab.

Of course, once one has a metric it encodes the light cones by telling you which
vectors are timelike, null and spacelike through their “length” squared. But in
order to even define smooth tensor fields, the differential structure must be in place
and before that the topology.

4The results in the present paper work for any dimension n ≥ 2 [11].
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Let (M, gab) be a time-orientable spacetime. Let Π+
≤ denote the future directed

causal curves, and Π+
< denote the future directed time-like curves. These curves

can be used to define order relations on spacetime. The following definitions are
standard in the relativity literature.

Definition 3.6. For p ∈ M,

I+(p) := {q ∈ M : (∃π ∈ Π+
<)π(0) = p, π(1) = q}

and

J+(p) := {q ∈ M : (∃π ∈ Π+
≤)π(0) = p, π(1) = q}

Similarly, we define I−(p) and J−(p).

We write the relation J+ as

p ⊑ q ≡ q ∈ J+(p).

The following properties from [8] are very useful:

Proposition 3.7. Let p, q, r ∈ M. Then

(i) The sets I+(p) and I−(p) are open.
(ii) p ⊑ q and r ∈ I+(q) ⇒ r ∈ I+(p)
(iii) q ∈ I+(p) and q ⊑ r ⇒ r ∈ I+(p)
(iv) Cl(I+(p)) = Cl(J+(p)) and Cl(I−(p)) = Cl(J−(p)), where Cl stands for

topological closure.

From the physical point of view there are a number of causality conditions that
one can imagine imposing on a spacetime. Time orientability is a precondition for
even discussing causality in any global sense. The basic causality condition is that
there are no closed causal curves. In other words, we always assume the chronology
conditions that ensure (M,⊑) is a partially ordered set. There are a number of
other, stronger conditions that one can impose; they are discussed at length in
[8]. We will not mention all of them here. Two that we will mention are strong
causality and global hyperbolicity. Intuitively, strong causality says that one cannot
even come close to violating causality in the sense that for every point there is an
open neighbourhood such that causal curves that leave it cannot reenter it. Thus
not only do causal curves not come back to their starting point they do not come
arbitrarily close to it.

We will not give the formal version of the above definition referring instead to
[8] or [19]. There is a convenient topological characterization of strong causality.
First we define the Alexandroff topology on a spacetime. It is the topology which
has {I+(p) ∩ I−(q) : p, q ∈ M} as a basis [19]5. Penrose [19] proved the following
important theorem.

Theorem 3.8. A spacetime M is strongly causal iff its Alexandroff topology is

Hausdorff iff its Alexandroff topology is the manifold topology.

This shows the topological significance of strong causality. The number of
topologies proliferate when the spacetime lacks strong causality.

5This terminology is common among relativists but order theorists use the phrase “Alexan-
drov topology” to mean something else: the topology generated by the upper sets.
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4. Global hyperbolicity

Beyond strong causality the most discussed conditions are stable causality,
causal simplicity and global hyperbolicity. Stable causality is intuitive but requires
some technical machinery to formalize properly. Roughly speaking, it says that
the spacetime is still causal even if the light cones are opened out a little. Causal
simplicity says that the sets J±(p) are always closed; effectively it means that space-
time does not have holes cut out of it. Global hyperbolicity is the strongest and
the name does not give many clues to the uninitiated.

One of the most important things that a mathematical physicist wants to do is
to solve the following problem. One is told the complete configuration of a system at
some time and one wants to determine the complete future evolution. In relativity
this means one is given a spacelike surface which is complete in some sense and
one wants to be able to predict the evolution for all future times. If there is such
a surface the spacetime is called globally hyperbolic. The use of the term “global”
should now be clear but why “hyperbolic”? The equations one is most interested in
are wave equations which are hyperbolic partial differential equations. What does
one mean by a “complete” spacelike surface? A reasonable way of thinking of this
is a surface such that every timelike curve extended indefinitely in both directions
must hit this this surface exactly once. If there is such a surface it is called a
Cauchy surface. The problem of determining the evolution from data on such a
surface (also called an “initial value surface”) is called the Cauchy problem (also
called the “initial value problem”).

Penrose has called globally hyperbolic spacetimes “the physically reasonable
spacetimes” [23].

Definition 4.1. A spacetime M is globally hyperbolic if it is strongly causal

and if ↑a ∩ ↓b is compact in the manifold topology, for all a, b ∈ M.

This is the most useful version of the definition but it gives none of the intuitions
about solving the Cauchy problem.

Given the sets I±(p) we can define an irreflexive transitive relation ≺ by p ≺ q

if q ∈ I+(p) (or p ∈ I−(q)); in other words, there is a future directed timelike curve
from p to q. In our previous paper we proved the following.

Theorem 4.2 ([16]). If M is globally hyperbolic, then (M,⊑) is a bicontinuous

poset with ≪ =≺ whose interval topology is the manifold topology.

This gives a striking connection between the approximation relation in domain
theory and the notion of timelike order.

This result motivates the following definition:

Definition 4.3. A poset (X,≤) is globally hyperbolic if it is bicontinuous and

each interval [a, b] = {x : a ≤ x ≤ b} is compact in the interval topology.

This abstracts the spacetime concept of global hyperbolicity to posets.
Globally hyperbolic posets are very much like the real line. In fact, a well-

known domain theoretic construction pertaining to the real line extends in perfect
form to the globally hyperbolic posets:

Theorem 4.4 ([16]). The closed intervals of a globally hyperbolic poset X

IX := {[a, b] : a ≤ b & a, b ∈ X}
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ordered by reverse inclusion

[a, b] ⊑ [c, d] ≡ [c, d] ⊆ [a, b]

form a continuous domain with

[a, b] ≪ [c, d] ≡ a ≪ c & d ≪ b.

The poset X has a countable basis iff IX is ω-continuous. Finally,

max(IX) ≃ X

where the set of maximal elements has the relative Scott topology from IX and X

has the interval topology.

Globally hyperbolic posets also have rich enough structure that we can de-
duce many properties of spacetime from them without appealing to differentiable
structure or geometry. Here is one such example:

Definition 4.5. Let (X,≤) be a globally hyperbolic poset. A subset π ⊆ X is

a causal curve if it is compact, connected and linearly ordered. We define

π(0) := ⊥ and π(1) := ⊤

where ⊥ and ⊤ are the least and greatest elements of π. For P, Q ⊆ X,

C(P, Q) := {π : π causal curve, π(0) ∈ P, π(1) ∈ Q}

and call this the space of causal curves between P and Q.

Here we are adapting the definitions from spacetime geometry to arbitrary
posets. A causal curve as just defined is not a function from [0, 1] to X as in the
case of curves on manifolds but we are mimicking that definition. The ⊤ and ⊥
refer to the top and bottom elements of the subset π viewed as a poset. When π is
embedded into X these are points of X (not necessarily the top or bottom of X , of
course); we are writing π(0) and π(1) to be suggestive of a curve in the geometric
setting.

This definition is motivated by the fact that a subset of a globally hyperbolic
spacetime M is the image of a causal curve iff it is the image of a continuous
monotone increasing π : [0, 1] → M iff it is a compact connected linearly ordered
subset of (M,⊑).

Theorem 4.6 ([15]). If (X,≤) is a separable globally hyperbolic poset, then the

space of causal curves C(P, Q) is compact in the Vietoris topology and hence in the

upper topology.

In addition, while events in spacetime are maximal elements of IM, causal
curves are maximal elements in a higher order domain C(IM), called the convex

powerdomain of IM [15]. In addition, the fact that spacetime has a canonical
domain theoretic model teaches us something new: from only a countable set of
events and the causality relation, one can reconstruct spacetime in a purely order
theoretic manner. Explaining how requires domain theory.
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5. Spacetime from a discrete causal set

Given a set with an order relation (X,≤) we will use the notation F ≤ x where
F is a finite subset of X and x ∈ X to mean that every y ∈ F satisfies y ≤ x. We
use this to define an abstract basis.

An abstract basis is a set (C,≪) with a transitive relation that is interpolative

from the − direction:

F ≪ x ⇒ (∃y ∈ C)F ≪ y ≪ x,

for all finite subsets F ⊆ C and all x ∈ F . Suppose, though, that it is also
interpolative from the + direction:

x ≪ F ⇒ (∃y ∈ C)x ≪ y ≪ F.

Then we can define a new abstract basis of intervals

int(C) = {(a, b) : a ≪ b} =≪⊆ C2

whose relation is

(a, b) ≪ (c, d) ≡ a ≪ c & d ≪ b.

We recall some basic facts about ideal completions. Given an abstract basis
(C,≪) as above, recall that an ideal is a subset of C that is a lower set and also
a directed set. The collection of ideals ordered by inclusion is a directed complete
poset called the ideal completion of (C,≪).

Let IC denote the ideal completion of the abstract basis int(C).

Theorem 5.1 ([16]). Let C be a countable dense subset of a globally hyperbolic

spacetime M and ≪= I+ be timelike causality. Then

max(IC) ≃ M

where the set of maximal elements has the relative Scott topology and M has the

manifold topology.

In “ordering the order” I+, taking its completion, and then the set of maximal
elements, we recover spacetime by reasoning only about the causal relationships
between a countable dense set of events. One objection to this might be that we
begin from a dense set C, and then order theoretically recover the space M – but
dense is a topological idea so we need to know the topology of M before we can
recover it! But the denseness of C can be expressed in purely causal terms:

C dense ≡ (∀x, y ∈ M)(∃z ∈ C)x ≪ z ≪ y.

Now the objection might be that we still have to reference M. We too would like
to not reference M at all. However, some global property needs to be assumed,
either directly or indirectly, in order to reconstruct M.

Theorem 5.1 is very different from results like “Let M be a certain spacetime
with relation ≤. Then the interval topology is the manifold topology.” Here we
identify, in abstract terms, a process by which a countable set with a causality rela-
tion determines a space. The process is entirely order theoretic in nature, spacetime
is not required to understand or execute it (i.e., if we put C = Q and ≪=<, then
max(IC) ≃ R). In this sense, our understanding of the relation between causal-
ity and the topology of spacetime is now explainable independently of geometry.
Ideally, one would now like to know what constraints on C in general imply that
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max(IC) is a manifold. However, that is only to clarify the relationship with stan-
dard relativity; the process above may offer a more flexible definition of spacetime
in general that is applicable to different physical situations – we have not ruled that
possibility out.

Finally, let us mention that the category of globally hyperbolic posets6 is in fact
naturally isomorphic to a special category of domains called interval domains [16].
Thus, questions about spacetime can be converted to domain theoretic form, where
we can use domain theory to answer them, and then translate the answers back
to the language of physics (and vice-versa). It also implies that causality between
events is equivalent to an order on regions of spacetime. Most importantly, it means
that a globally hyperbolic spacetime with causality is equivalent to a structure IX

whose origins are “discrete.” This can be taken as the formal explanation for why
spacetime can be reconstructed from a countable dense set of events in a purely
order theoretic manner.

6. Time and measurement

A domain is a partially ordered set with intrinsic notions of completeness and
approximation defined by the order. A measurement is a function µ that to each
informative object x assigns a “measure” µx of the information content in x. In
many cases, µx will be a number, but it need not be. Let us now define measurement
precisely before discussing it further. We use the notation σD and σE to mean the
Scott topology of D and E viewed as a collection of open sets.

Definition 6.1. A function f : D → E between posets is Scott continuous if

the inverse image of a Scott open set in E is Scott open in D.

Scott continuity can be characterized order theoretically: a function f : D → E

between posets is Scott continuous iff f is monotone,

(∀x, y ∈ D)x ⊑ y ⇒ f(x) ⊑ f(y),

and preserves directed suprema:

f(
⊔

S) =
⊔

f(S),

for all directed S ⊆ D with a supremum. In particular, for the domain [0,∞)∗ of
non-negative reals in their opposite order, a Scott continuous function µ : D →
[0,∞)∗ will satisfy

(1) For all x, y ∈ D, x ⊑ y ⇒ µx ≥ µy, and
(2) If (xn) is an increasing sequence in D, then

µ





⊔

n≥1

xn



 = lim
n→∞

µxn

provided (xn) has a supremum.

Definition 6.2. A Scott continuous map µ : D → E between posets is said to

measure the content of x ∈ D if

x ∈ U ⇒ (∃ε ∈ σE)x ∈ µε(x) ⊆ U,

6The morphisms are monotone functions that are continuous in the interval topology.
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whenever U ∈ σD is Scott open and

µε(x) := µ−1(ε)∩ ↓x

are the elements ε close to x in content. The map µ measures X if it measures the

content of each x ∈ X.

Definition 6.3. A measurement is a Scott continuous map µ : D → E between

posets that measures kerµ := {x ∈ D : µx ∈ max(E)}.

We often refer to µ as simply “measuring” x ∈ D or as measuring X ⊆ D when
it measures each element of X . The case E = [0,∞)∗, the set of non-negative reals
in their dual order, is of particular interest in this paper: in this case, for ε > 0 and
assuming µx = 0, we define

µε(x) := µ[0,ε)(x) = {y ∈ D : y ⊑ x & µy < ε}

and see that a Scott continuous µ : D → [0,∞)∗ measures the content of x ∈ D

when
x ∈ U ⇒ (∃ε > 0) x ∈ µε(x) ⊆ U

for all Scott open U ⊆ D. The map µ is then a measurement when it measures the
content of its kernel ker(µ) = {x ∈ D : µx = 0}, the elements with no uncertainty.
All such elements are maximal in the information order ⊑ on D. Let us now explain
the intuition behind this idea on a continuous poset D.

The order on D defines a clear sense in which one object has ‘more information’
than another: a qualitative view of information content. The definition of measure-
ment attempts to identify those monotone mappings µ which offer a quantitative

measure of information content in the sense specified by the order. The essential
point in the definition of measurement is that µ measure content in a manner that
is consistent with the particular view offered by the order. There are plenty of
monotone mappings that are not measurements – and while some of them may
measure information content in some other sense, each sense must first be specified
by a different information order. The definition of measurement is then a minimal
test that a function µ must pass if we are to regard it as providing a measure of
information content.

We now consider a few properties that measures of information content have
which arbitrary monotone mappings in general need not have: qualities that make
them ‘different’ from maps that are simply monotone. Other such properties may
be found in [13].

Theorem 6.4 ([13]). Let µ : D → [0,∞)∗ be a measurement on a continuous

poset.

(i) If x ∈ ker(µ), then x ∈ max(D) = {x ∈ D : ↑x = {x}}.
(ii) If µ measures the content of y ∈ D, then

(∀x ∈ D) x ⊑ y & µx = µy ⇒ x = y.

(iii) If µ measures X ⊆ D, then

{↑ µε(x) ∩ X : x ∈ X, ε > 0}

is a basis for the Scott topology on X.

Unfortunately, within the realm of physics, it is normally far from trivial to
prove that a function is actually a measurement. Let us remedy this now by con-
sidering an easy lemma but one that has striking applications to measurements.
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Lemma 6.5. For a sequence (xn) in a compact Hausdorff space X, the following

are equivalent:

(i) The sequence (xn) converges to x,

(ii) For any convergent subsequence (xnk
) of (xn), we have xnk

→ x.

Proof. (ii) ⇒ (i): if (xn) does not converge to x, then there is an open set
U ⊆ X with x ∈ U such that for all k there is nk ≥ k with xnk

6∈ U . By compact-
ness of X , (xnk

) has a convergent subsequence (yn). Because (yn) is a subsequence
of (xn), we have yn → x by (ii), so eventually yn ∈ U , in contrast to xnk

6∈ U . 2

It is difficult to believe that such an easy lemma could be useful. But in fact:

Theorem 6.6. Let µ : D → [0,∞)∗ be a strictly monotone, Scott continuous

function defined on a poset D. If τ is a Hausdorff topology on D such that

(i) every Scott open set is τ open,

(ii) every sequence (xn) in ↓x with µxn → µx is contained in some τ-compact

K ⊆↓x,

(iii) the function µ is continuous from (D, τ) to [0,∞) with the Euclidean

topology,

then µ measures all of D.

Proof. Let xn ⊑ x with µxn → µx. Take a compact set K with xn ∈ K ⊆↓x.
Let (xnk

) be any convergent subsequence of (xn). Let us write xnk
→ y. Then

since K is closed, y ∈ K and hence y ⊑ x. However, since the sequence µxn → µx,
we know that µxnk

→ µx. Since µ is continuous with respect to τ , we get

µy = µ

(

lim
k→∞

xnk

)

= lim
k→∞

µxnk
= µx

and thus by strict monotonicity, x = y. Then every convergent subsequence of (xn)
converges to x and all of this happens in the compact Hausdorff space K. Thus,
xn → x in (D, τ).

If µ does not measure the content of x ∈ D, then there is a Scott open set
U ⊆ D and a sequence xn ⊑ x with µxn → µx and xn 6∈ U . By our above remarks,
xn → x in (D, τ), and since U is τ open, we have xn ∈ U for all but a finite number
of n, which is a contradiction. 2

Notice that the proof above also shows that the previous result holds for maps
of the form µ : D → E, where E = R or E = R∗.

Definition 6.7. A global time function t : M → R on a globally hyperbolic

spacetime M is a continuous function such that x < y ⇒ t(x) < t(y) and t−1(r) =
Σ is a Cauchy surface for M, for each r ∈ R.

Because global time functions always exist on a globally hyperbolic spacetime,
each such spacetime admits a natural measurement on the domain of spacetime
intervals:

Theorem 6.8. For any global time function t : M → R on a globally hyperbolic

spacetime, the function ∆t : I(M) → [0,∞)∗ given by ∆t[a, b] = t(b)−t(a) measures

all of I(M). It is a measurement with ker(∆t) = max(I(M)).
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Proof. The function ∆t inherits its monotonicity from that of t; it is Scott con-
tinuous because t is continuous with respect to the manifold topology and directed
suprema in I(M) are calculated using limits in the manifold topology. To prove
that ∆t measures I(M), we will show that t measures the continuous poset (M,≤)
and that it also measures (M,≤∗), whose order ≤∗ is given by x ≤∗ y ≡ y ≤ x.

We apply the remark following Theorem 6.6 to t : M → R as follows. (i)
The Scott topology is contained in the manifold topology. (ii) Given any sequence
xn ≤ x with t(xn) → t(x), we have xn ∈ J+(Σ) ∩ J−(x) ⊆↓x for some Σ = t−1(r),
where r exists because t(xn) has a limit and the set J+(Σ)∩J−(x) is compact [23].
By the remark after Theorem 6.6, t measures (M,≤). Because (M,≤) is bicon-

tinuous, t : (M,≤∗) → R∗ measures the continuous poset (M,≤∗), again by the
remark after Theorem 6.6. 2

What is so interesting about this proof is that in order to apply Theorem 6.6,
we not only need continuity, strict monotonicity and the connection between causal
structure and topology, we also make use of the Cauchy surface Σ, the latter of which
implies that spacetime has an initial value formulation. Another point of interest is
that the same technique used here to prove ∆t is a measurement, Theorem 6.6, has
also been used to show the same about capacity on the domain of binary channels
and entropy on the domains of classical and quantum states [17].

7. The Lorentz distance

The Lorentz distance on a globally hyperbolic spacetime M is the function
d : M×M → [0,∞) given by

d(a, b) = sup
πab

len(πab)

where the sup is taken over all causal curves πab that join a to b; when a 6≤ b,
d(a, b) := 0. By global hyperbolicity [2], the supremum in the definition of d is
finite, yields the length of the maximum geodesic joining causally related events
and the function d is continuous as a map from the manifold topology to the usual
topology on [0,∞). Physically, d(a, b) measures the amount of time recorded by a
clock that travels from a to b when a ≤ b. Thus, the Lorentz distance is determined
by a map between domains of the form

d : I(M) → [0,∞)∗ :: [a, b] 7→ d(a, b)

and for the remainder of this paper we shall regard it as such. Crucially, d[a, b] > 0
iff a ≪ b.

Lemma 7.1. The function d : I(M) → [0,∞)∗ is Scott continuous.

Proof. Monotonicity of d: First, the “reverse triangle inequality”

a ≤ b ≤ c ⇒ d[a, c] ≥ d[a, b] + d[b, c]

holds since d is defined as a sup and len(πab + πbc) = len(πab) + len(πbc); here the
notation πab + πbc means the causal curve obtained by joining πab and πbc at b. Of
course, such a joined curve may not be smooth but Penrose has shown [19] that
one can always “smooth out this curve” with an arbitrarily small change in length.

We now apply it twice as follows: given [a, b] ⊑ [c, d], we have a ≤ c ≤ d ≤ b,
so

d[a, b] ≥ d[a, c] + d[c, b] ≥ d[a, c] + (d[c, d] + d[d, b]) ≥ d[c, d]
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which proves monotonicity.
Scott continuity of d: By the separability of M, I(M) is ω-continuous, so it is

enough to consider an increasing sequence (xn) of intervals xn = [an, bn]. Then we
have

d
(

⊔

xn

)

= d[lim an, lim bn] = lim d[an, bn] = lim d(xn)

where the second to last equality uses the continuity of d as a map M×M → [0,∞)
given in [2]. 2

We now give a “new” definition of the interval topology which applies to any
continuous poset. For bicontinuous posets it is equivalent to the old definition but
this new version applies more generally.

Definition 7.2. The interval topology on a continuous poset P exists when

sets of the form

(a, b) = {x ∈ P : a ≪ x ≪ b} & ↑↑x = {y ∈ P : x ≪ y}

form a basis for a topology on P .

A function between continuous posets is interval continuous when each poset
has an interval topology and the inverse image of an interval open set is interval
open. By the bicontinuity of M, the interval topology on I(M) exists, so we can
consider interval continuity for functions I(M) → [0,∞)∗.

Lemma 7.3.

(i) For all x, y ∈ I(M), if x ≪ y, then dx > dy, and

(ii) For all x ∈ I(M), if dx > r ≥ 0, then there is y ∈ I(M) with x ≪ y and

dy = r.

Proof. (i) Given x = [a, b] ≪ [c, d] = y, we know a ≪ b ≪ c ≪ d, so as in the
proof of Lemma 7.1, we again apply the reverse triangle inequality twice, this time
noting that all distances involved are positive since d[s, t] > 0 iff s ≪ t.

(ii) First, each interval x = [a, b] is a path connected subset of M, since any
pair of points s, t ∈ [a, b] can be joined by a continuous curve that first moves
forward in time from s to a and then backward in time from a to t. In particular,
x = [a, b] is connected.

Because dx > 0, a ≪ b, and interpolation gives p ∈ x with a ≪ p ≪ b. The
set ↑p ∩ ↓↓b is directed with sup b, while ↓p ∩ ↑↑a is filtered with inf a, so x = [a, b]
contains increasing and decreasing sequences of approximations with limits b and a

respectively. By the continuity of d : M×M → [0,∞), there is an interval w with
p ∈ w such that

x ≪ w & dx > dw > r

where we make use of (i) to ensure dx > dw.
If r = 0, then set y = [p, p] and the proof is finished. If r > 0, then the re-

striction of d : M × M → [0,∞) to the connected set w × w yields a continuous
function that assumes the value dw and the value 0 = d[p, p]. Thus it must also
assume r ∈ [0, dw], which gives (c, d) ∈ w ×w with d(c, d) = r. Since r > 0, c ≪ d,
so let y = [c, d] ∈ I(M). Then y is the desired interval: we have dy = r, while
x ≪ w ⊑ y gives x ≪ y. 2
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Notice that (i) above says that d preserves the way-below relation between
domains, while (ii) is a kind of converse to (i). Together with Scott continuity they
yield the following:

Theorem 7.4. The Lorentz distance d : I(M) → [0,∞)∗ is not only Scott

continuous, it is also interval continuous. Thus, it does not measure I(M) at any

point of ker(d).

Proof. Let U be a basic interval open set in [0,∞)∗. If U is Scott open, then
by Lemma 7.1, d−1(U) is Scott open and the proof is finished. If U = (s, t), then
consider an interval x ∈ d−1(U), for which we have s < dx < t. By Scott continuity
of d, there is a ≪ x with da < t. By Lemma 7.3(ii), there is b with x ≪ b and
db = s. We claim x ∈ (a, b) ⊆ d−1(s, t).

If y ∈ (a, b), then a ≪ y ≪ b, so by Lemma 7.3(i), da > dy > db = s, which
gives t > da > dy > s, and finally y ∈ d−1(s, t), finishing the proof. 2

That the Lorentz distance is not a measurement is a direct consequence of the
fact that a clock travelling at the speed of light records no time as having elapsed
i.e. the set of null intervals is

ker(d) \ max(I(M)) 6= ∅

but measurements always have the property that µx = 0 implies x ∈ max(D)
(Theorem 6.4).

In fact, no interval continuous function µ : I(M) → [0,∞)∗ can be a measure-
ment: by interval continuity, µx = 0 for any x with ↑↑x = ∅. Just like the Lorentz
distance, an interval continuous µ will also assign 0 to “null intervals.” In this way,
we see that interval continuity captures an essential aspect of the Lorentz distance.
In addition, since ∆t is a measurement, it cannot be interval continuous. This
provides a surprising topological distinction between the Newtonian and relativistic
concepts of time: d is interval continuous, ∆t is not. Put another way, ∆t can be
used to reconstruct the topology of spacetime (Theorem 6.4(iii)), while d is used to
reconstruct its geometry.

8. Spacetime geometry from a countable causal set

Let us return now to the reconstruction of spacetime (Section 5) from a count-
able dense set (C,≪). Specifically, we take the rounded ideal completion7 I(C) of
the abstract basis of intervals

int(C) = {(a, b) : a ≪ b} =≪⊆ C2

whose relation is
(a, b) ≪ (c, d) ≡ a ≪ c & d ≪ b.

We are then able to recover spacetime as

max(IC) ≃ M

where the set of maximal elements have the Scott topology. Let us now suppose
that in addition to int(C) that we also begin with a countable collection of numbers
lab chosen one for each (a, b) ∈ int(C) in such a way that the map

int(C) → [0,∞)∗ :: (a, b) 7→ lab

7An ideal I is a directed downward-closed set, it is rounded if for any x ∈ I there is a y ∈ I

with x ≪ y.
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is monotone. Then in the process of reconstructing spacetime, we can also construct
the Scott continuous function d : IC → [0,∞)∗ given by

d(x) = inf{lab : (a, b) ≪ x}.

In the event that the countable number of lab chosen are the Lorentz distances
lab = d[a, b], then the function d constructed above yields the Lorentz distance for
any spacetime interval, the reason being that both are Scott continuous and are
equal on a basis of the domain.

Thus, from a countable dense set of events and a countable set of distances,
we can reconstruct the spacetime manifold together with its geometry in a purely
order theoretic manner.

9. Conclusions

We have seen the following ideas in this paper:

(1) how to reconstruct the spacetime topology from the causal structure using
purely order-theoretic ideas,

(2) an abstract order-theoretic definition of global hyperbolicity,
(3) that one can reconstruct spacetime, meaning its topology and geometry,

from a countable dense subset,
(4) an equivalence of categories between a new category of interval domains

and the category of globally hyperbolic posets.
(5) a topological distinction between Newtonian and relativistic notions of

time.
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