
A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms

Philip Amortilaα Doina Precupα,β Prakash Panangadenα Marc G. Bellemareα,β,γ
αMcGill University; βCIFAR Fellow; γGoogle Research

Abstract

We present a distributional approach to
theoretical analyses of reinforcement learn-
ing algorithms for constant step-sizes. We
demonstrate its effectiveness by presenting
simple and unified proofs of convergence
for a variety of commonly-used methods.
We show that value-based methods such as
TD(λ) and Q-Learning have update rules
which are contractive in the space of distri-
butions of functions, thus establishing their
exponentially fast convergence to a station-
ary distribution. We demonstrate that the
stationary distribution obtained by any al-
gorithm whose target is an expected Bell-
man update has a mean which is equal to
the true value function. Furthermore, we
establish that the distributions concentrate
around their mean as the step-size shrinks.
We further analyse the optimistic policy it-
eration algorithm, for which the contraction
property does not hold, and formulate a
probabilistic policy improvement property
which entails the convergence of the algo-
rithm.

1 Introduction

Basic results in the theory of Markov decision pro-
cesses (MDPs) and dynamic programming (DP) rely
on the two fundamental properties of the Bellman op-
erator: contraction and monotonicity. For instance,
proofs of convergence for value iteration and policy it-
eration follow immediately from the contractive prop-
erties of the Bellman operators and the Banach fixed
point theorem (Szepesvári, 2010).

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

However, proving the convergence of sample-based
algorithms such as TD-learning (Sutton, 1988) or op-
timistic policy iteration (Tsitsiklis, 2002) requires sub-
stantially more effort. The typical stochastic approxi-
mation approach relies on hitting-time or martingale
arguments to bound the sequence of value function it-
erates within progressively smaller regions (see, e.g.,
Bertsekas and Tsitsiklis, 1996, Section 4.3).

In this work we present a distributional framework for
analyzing sample-based reinforcement learning algo-
rithms. Rather than consider the evolution of the ran-
dom point estimate produced by the learning pro-
cess, we study the dynamics of the distribution of these
point estimates. As a concrete example, we view the
TD(0) algorithm as defining a sequence of random it-
erates (Vn)n∈N whose distributions are recursively de-
fined by the distributional equation

Vn+1(s)
D
= (1− α)Vn(s) + α (R(s,A) + γVn(S′)) , (1)

where s is the initial state and (A,R, S′) is the random
action-reward-next-state transition sampled from the
underlying Markov Decision Process. The equation
recursively describes the distribution of a random
variable undergoing the TD learning process.

We study the constant step-size case. Our main con-
tribution is to show that, for a variety of algorithms,
the random iterates converge in distribution to a fixed
point of the corresponding distributional equation,
even though the random point estimate may not con-
verge. We further characterize this fixed point, show-
ing that it depends on both the step-size and the spe-
cific Markov Decision Process under consideration.
Our framework views the learning process as defining
a time-homogeneous Markov chain over the space of
value functions. We prove convergence by establish-
ing the existence of a stationary distribution for this
Markov chain and demonstrating that the sequence of
random iterates generated by a sample-based learning
rule must converge to this stationary distribution, us-
ing tools from optimal transport (Villani, 2008).

We first analyze sample-based algorithms whose cor-
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responding distributional operator is a contraction
mapping in the infinity norm, including TD(λ), Q-
learning, and double Q-learning. Following a proof
technique of (Dieuleveut, Durmus, and Bach, 2017),
we lift these stochastic algorithms to the distributional
setting. We show that this lifting recovers contrac-
tive guarantees, now in the Wasserstein metric us-
ing the infinity norm as a cost function. The con-
traction coefficient depends on the discount factor, as
usual, but also on the step-size: updates with smaller
step-sizes converge more slowly to their distributional
fixed point. TD(0), for example, is a contraction map-
ping with coefficient 1− α+ αγ.

We also analyze the sample-based equivalent of policy
iteration, called optimistic policy iteration (Tsitsiklis,
2002) or Monte Carlo control (Sutton and Barto, 1998).
The convergence of policy iteration is not driven by
a contraction mapping, but rather by the monotonic-
ity of the policy iteration operator (Puterman, 1994).
We derive a similar, weaker property for the sample-
based setting which we call probabilistic policy im-
provement. We use this property to show that opti-
mistic policy improvement also converges to a distri-
butional fixed point.

By recovering the contraction mapping that under-
lies many dynamic programming algorithms, our dis-
tributional analysis significantly simplifies existing
proofs of convergence for stochastic algorithms, at
least for constant step-sizes. Our approach easily al-
lows us to quantify the limiting behaviour of these al-
gorithms; the same tool even provides us with confi-
dence bounds over the true value function. We believe
this type of analysis should prove useful going for-
ward, including for the study of reinforcement learn-
ing with function approximation.

2 Background

We write P(X ) for the set of probability distribu-
tions on a space X . We consider an agent interacting
with an environment modelled as a finite Markov de-
cision process (S,A,R,P, γ). As usual, S is a finite
state space, A is a finite set of actions, R : S × A →
P([0,Rmax]) is a bounded reward distribution func-
tion, P : S × A → P(S) is a transition distribution
function, and γ ∈ [0, 1) is a discount factor. The strat-
egy of the agent is captured by a policy π : S →P(A).
The value function vπ : S → R of a policy π is the
expected discounted sum of rewards observed when
starting at state s and following policy π. The value
function is the fixed point of the Bellman operator T π
defined by

T πv(s) := Ea∼π(·|s)
r∼R(·|s,a)

[
r + γEs′∼P(·|s,a) [v(s′)]

]
. (2)

The value function of the optimal policy π? is also the
fixed point of the Bellman optimality operator T ?, de-
fined by

T ?v(s) := max
a

{
Er∼R(·|s,a)
s′∼P(·|s,a)

[r + γv(s′)]
}
. (3)

A closely-related object is the action-value function qπ ,
the expected discounted return of first taking action a
and thereafter following policy π. The action-value
function satisfies the Bellman equations qπ(s, a) =
T πqπ(s, a) and q?(s, a) = T ?q?(s, a), where T π and
T ? are defined analogously to Equations (2) and (3)
(Sutton and Barto, 1998). The Bellman operators for
value functions (resp. action-value functions) are con-
tractions on R|S| (resp. R|S|×|A|) with respect to the
infinity norm ‖v‖ := ‖v‖∞ = maxi |vi| (Puterman,
1994). A policy π is called greedy with respect to
an action-value function Q ∈ R|S|×|A| if π(s) ∈
argmaxaQ(s, a) for each s ∈ S.

2.1 Couplings and the Wasserstein Metric

To establish convergence in distribution, we will use
the Wasserstein metricW between distributions (Vil-
lani, 2008). As a cost function, we use the infinity
norm. For two distributions µ, ν ∈ P(Rd), a pair of
random vectors (X,Y ) is a coupling of (µ, ν) if X ∼ µ
and Y ∼ ν. We write Ξ(µ, ν) for the set of such cou-
plings. The Wasserstein metric on P(Rd) with the in-
finity norm as a cost function is defined as:

W(µ, ν) = inf
(X,Y )∈Ξ(µ,ν)

E [‖X − Y ‖∞] . (4)

The metric is defined over the set M(Rd) ={
µ ∈P(Rd) :

∫
‖x‖∞ µ(dx) < +∞

}
of measures

with finite first moment. Assuming a bounded
reward function, we will always be dealing with
finite-moment measures. The Wasserstein met-
ric characterizes the weak convergence of measures
(Villani, 2008, Theorem 6.9), or equivalently the
convergence in distribution of the associated random
variables.

3 Markov Chains on the Space of
Functions

With many value-based RL algorithms, the stochas-
ticity of the algorithm depends only on the sampled
transition and the random current estimate. For ex-
ample, recalling the update rule for TD(0) (Equation
(1)), the value of Vn+1(s) for a particular state is fully
determined by knowledge of Vn and the action, re-
ward, and successor state which was sampled from
s:

P {Vn+1 | Vn, Vn−1, ..., V1, V0} = P {Vn+1 | Vn} .
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We therefore view these methods as inducing Markov
chains on the space of value functions. We note that
their state space is continuous rather than discrete –
we take it to be R|S| when modelling value functions
or R|S|×|A| when modelling action-value functions.
When results hold for both cases, we will write the
discussion in terms of Rd, d ∈ N. Whenever needed,
we may also restrict ourselves to the subset of realiz-
able functions [0, Rmax

1−γ ]d ⊂ Rd.

For a given update rule U and step-size α, the transi-
tion function for an induced Markov chain is as fol-
lows. Given fk ∈ Rd, let fk+1 be the random function
obtained by applying U with step-size α. For a Borel
set B ∈ Borel(Rd), we define the Markov kernel KU,α
as:

KU,α(fk,B) = P {fk+1 ∈ B|fk} .
This Markov kernel describes the probability of transi-
tioning from fk to some function in the setB under the
update rule. In the sequel, we omit the subscripts on
the kernel when the update rule is clear from context.
For a given probability measureµ ∈P(Rd), the distri-
bution of functions after one transition of the Markov
chain is given by

µK(B) =

∫
Rd

K(θ,B)µ(dθ).

The distribution of functions after n transitions is
given by Kn, which is defined inductively as:

Kn(θ,B) =

∫
Rd

K(θ′,B)Kn−1(θ,dθ′).

A probability measure ψ is a stationary distribution for
a Markov chain with kernel K if

ψ = ψK.

An algorithm updates synchronously when all states
or state-actions pairs are updated at every iteration.
In the regime of constant step-sizes and synchronous
updates, the Markov kernels are time-homogeneous (or
time-independent). Thus, the lawµn(B) = P {fn ∈ B}
of the random variable fn is given by:

µn ← µ0(K)n.

3.1 Stochastic operators

In this section, we introduce the notion of a stochastic
operator and provide a general formalism for the anal-
ysis of stochastic update rules. We will distinguish
two classes of stochastic operators which will require
different analyses.

We model the sampling space as a probability space
(Ω,F , η). A stochastic operator is a map between func-
tions which depends on a randomly sampled event
ω ∈ Ω.

Definition 3.1 (Stochastic operator). A stochastic op-
erator is a function T̂ : Rd × Ω→ Rd.

When operating on functions, a stochastic operator T̂
outputs a random function. We will write a number
of stochastic value-based algorithms as

fn+1 = (1− α)fn + αT̂ (fn, ω), (5)

where fn, fn+1 ∈ Rd are functions, α is a step-size,
and T̂ is some algorithm-dependent stochastic opera-
tor. In this notation, the operator T̂ is the target of the
algorithm. We say that T̂ is an empirical Bellman opera-
tor if it behaves like a Bellman operator in expectation.
Definition 3.2 (Empirical Bellman Operator). The
stochastic operator T̂ is an empirical Bellman opera-
tor for a policy π if

Eω∼η[T̂ (f, ω)] = T πf ∀f ∈ Rd.

Similarly, T̂ is an empirical Bellman optimality opera-
tor if Eω∼η[T̂ (f, ω)] = T ?f .

In general, the sampling distribution of the stochastic
operator may depend on the function which it is act-
ing on. Two examples of methods for which the sam-
pling distribution is independent of the current func-
tion estimates are TD(0), which applies an empirical
Bellman operator, and Q-Learning, which applies an
empirical Bellman optimality operator. TD(0) is de-
fined by the stochastic operator

T̂ (V, (as, rs, s
′
s)s∈S)(s) = rs + γV (s′s), (6)

where (as, rs, s
′
s) is a transition sampled for every

state, and Q-Learning is defined by the operator

T̂ (Q, (rs,a, s
′
s,a)(s,a))(s, a) = rs,a + γmax

a′
Q(s′s,a, a

′),

where (rs,a, s
′
s,a) is a transition sampled for every

state-action pair. Convergence of these methods is
covered in Section 4. On the other hand, methods for
which the sampling of the update rule depends on the
function being updated are more akin to policy itera-
tion, which applies Bellman operators that depend on
the current greedy policy. We will see an example of
such a method in Section 6.

4 Convergence via Contraction to a
Stationary Distribution

In this section we demonstrate that common value-
based algorithms converge to a stationary distribu-
tion when updated synchronously and with constant
step-sizes. The convergence follows by showing that
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their Markov kernels are contractive with respect to
the Wasserstein metric. To illustrate our approach,
we provide a proof of convergence for TD(0). With
the same proof method, we also establish convergence
and give convergence rates for Monte Carlo evalu-
ation, Q-Learning, TD(λ), SARSA, Expected SARSA
(Van Seijen et al., 2009), and Double Q-Learning (Has-
selt, 2010). The proofs for these other algorithms are
given in Appendix A.

Recall the update rule of the synchronous TD(0) algo-
rithm given by Equation (1).
Proposition 4.1. For any step size 0 < α ≤ 1, the TD(0)
algorithm has a contractive Markov kernel Kα:

W(µKα, νKα) ≤ (1− α+ αγ)W(µ, ν), (7)

for all µ, ν ∈M(R|S|).

Proof. Let µ(1), µ(2) ∈ M(R|S|) be two distributions
of function estimates. Let V (1)

0 ∼ µ(1), V
(2)
0 ∼ µ(2) be

the coupling which minimizes the Wasserstein metric,
i.e.:

W(µ(1), µ(2)) = inf
(X,Y )

E[‖X − Y ‖] = E
[
‖V (1)

0 − V (2)
0 ‖

]
.

Such an optimal coupling always exists (Villani, 2008,
Theorem 4.1). We couple the updates (V

(1)
1 , V

(2)
1 ) to

sample identical transitions at each state, i.e.:

V
(1)
1 (s) = (1− α)V

(1)
0 (s) + α

(
rs + γV

(1)
0 (s′s)

)
V

(2)
1 (s) = (1− α)V

(2)
0 (s) + α

(
rs + γV

(2)
0 (s′s)

)
,

(8)

for the same a ∼ π(·|s), rs ∼ R(·|s, a), and
s′s ∼ P(·|s, a). Note that this is a valid coupling of
(µ(1)Kα, µ

(2)Kα) since V (1)
1 and V

(2)
1 sample transi-

tions from the same distributions. We upper-bound
W(µ(1)Kα, µ

(2)Kα) with the coupling above.

W(µ(1)Kα, µ
(2)Kα) ≤ E

[
‖V (1)

1 − V (2)
1 ‖

]
≤ (1− α)E

[
‖V (1)

0 − V (2)
0 ‖

]
+ αE

[
max
s

∣∣ (rs − rs) + γ
(
V

(1)
0 (s′s)− V

(2)
0 (s′s)

)∣∣] (9)

We note that the expectation is over the pair
(V

(1)
0 , V

(2)
0 ) as well as the random samples as, rs, s′s.

By our coupling construction,

E
[
max
s

∣∣ (rs − rs) + γ
(
V

(1)
0 (s′s)− V

(2)
0 (s′s)

)∣∣]
= γE

[
max
s
|V (1)

0 (s′s)− V
(2)
0 (s′s)|

]
≤ γE

[
max
s
|V (1)

0 (s)− V (2)
0 (s)|

]
= γW(µ(1), µ(2))

(10)

The inequality follows since V (1)
0 and V (2)

0 sample the
same set of successor states – the maximum is the
same if each s samples a different s′s and is lesser oth-
erwise. Using Equation (10) in Equation (9) gives:

W(µ(1)Kα, µ
(2)Kα) ≤ (1− α+ αγ)W(µ(1), µ(2)).

Since 1 − α + αγ < 1, the kernel Kα is a contraction
mapping.

The contraction property readily entails the conver-
gence to a stationary distribution. We initialize with
any V0 drawn from an arbitrary distribution of finite
first moment.
Theorem 4.1. For any constant step size 0 < α ≤ 1 and
initialization V0 ∼ µ0 ∈M(R|S|), the sequence of random
variables (Vn)n≥0 defined by the recursion (1) converges in
the Wasserstein metric to a unique stationary distribution
ψTD(0)
α ∈M(R|S|).

Proof. The space of probability measures M(R|S|)
metrized with W is a complete metric space (Villani,
2008, Theorem 6.16), and therefore it follows from Ba-
nach’s fixed point theorem that (µ0K

n
α)n≥0 converges

exponentially quickly to a unique fixed point ψTD(0)
α .

The distribution ψTD(0)
α is a stationary distribution by

the fixed point property:

ψTD(0)
α Kα = ψTD(0)

α .

As evidenced by the above, lifting the analysis to
distributions over value functions greatly simplifies
the proof. The key is in the choice of a proper cou-
pling. The same technique extends to a broad class
of algorithms, with relatively few modifications. This
avoids, for example, the additional hurdles caused
by the greedy probability kernel in Q-learning (Tsit-
siklis, 1994). We further note some surprising con-
nections with distributional reinforcement learning
(Bellemare, Dabney, and Munos, 2017). For α = 1,
the fixed point of TD(0) is in fact Bellemare, Dabney,
and Munos’s return distribution. The same coupling,
which forces two processes to sample the same tran-
sitions, has also been implicitly used to study the be-
haviour of distributional algorithms (Lyle, Castro, and
Bellemare, 2019).

To demonstrate the power of the approach, we sum-
marize in Table 1 a series of results regarding common
sampling-based RL algorithms. Under similar condi-
tions to Theorem 4.1, each algorithm listed in Table 1
converges to a stationary distribution (which is in gen-
eral different for different algorithms, as we show in
the next section). Each proof only requires small ad-
justments to the basic proof template, for example an
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MC Evaluation TD(λ) SARSA Expected SARSA QL Double QL

Contraction factor 1− α 1− α+ αγ 1−λ
1−λγ

1− α+ αγ 1− α+ αγ 1− α+ αγ 1
2
(2− α+ αγ)

Table 1: Different sample-based algorithms which imply a contraction mapping in the Wasserstein metric
over distributions on value functions. For each method, we also provide the corresponding contraction factor.
Acronyms: Monte Carlo (MC), Q-Learning (QL).

extended state space (Double Q-Learning). Full de-
tails, along with the proof template, are given in the
appendix.

5 The Stationary Distributions

In this section, we characterize the stationary distribu-
tions which are attained by any algorithm whose tar-
get is a Bellman operator or Bellman optimality oper-
ator in expectation. In our notation, these algorithms
are defined in terms of empirical Bellman (optimality)
operators. As before, we write the discussion in terms
of Rd since results will hold for both value functions
and action-value functions.

What do these distributions look like? We first con-
sider the case of policy evaluation algorithms, which
have as expected operator T π . In that case, their mean
corresponds to the fixed point of T π , i.e. the value
functions vπ or qπ . Second, they concentrate around
this mean in inverse proportion to the step-size α.
Hence, as expected, small step sizes lead to a more
accurate distribution at the cost of a larger contrac-
tion factor. The full distributions are not symmetric or
easily described, however; as a simple example, take
α = 1 in TD(0), corresponding to the return distri-
bution (Bellemare, Dabney, and Munos, 2017). In the
case of optimality operators, we show that the mean
of the stationary distributions is in fact greater than
the fixed points v? or q?.

5.1 Sample-based Evaluation Algorithms

Theorem 5.1. Suppose T̂ π is an empirical Bellman opera-
tor for some policy π and that the updates (5) with step-size
α converge to a stationary distribution ψα. Let fα ∼ ψα
and fπ be the fixed point of T π . Then E[fα] = fπ .

Proof. Let f0 be distributed according to ψα. By sta-
tionarity,

f1 = (1− α)f0 + αT̂ π(f0, ω) (11)

is also distributed according to ψα. We write fα :=
E [f0]. Taking expectations on both sides, and using

that Eω[T̂ π(f, ω))] = T π(f) for any f :

fα = (1− α)fα + αEω,ψα [T̂ π(f0, ω)]

fα = Eψα [T πf0]

fα = T πEψα [f0] = T πfα

And therefore fα = fπ since it is the unique fixed
point of T π .

We remark again that this characterization will hold
for any algorithm which converges and performs Bell-
man updates in expectation. Although they have the
same mean, the stationary distributions will depend
on the update rule. These differences will be reflected
in their higher moments. To this effect, we next derive
a closed-form expression for the covariance of the sta-
tionary distribution. We write AT for the transpose of
a matrixA. The outer product of two vectors x, y ∈ Rd

is the matrix xyT ∈ Rd×d defined by (xyT)i,j = xiyj .
Thus, E[( ~X − ~µ)( ~X − ~µ)T] is the covariance of a ran-
dom vector ~X with mean ~µ. The proof of the following
result is provided in Appendix B.

Theorem 5.2. Let T̂ π be an empirical Bellman operator for
some policy π. Suppose T̂ π is such that the updates (5) with
step-size α converge to a stationary distribution ψα. Define
ξω(f) = T̂ π(f, ω)− T πf , and

C(f) := Eω[ξω(f)ξω(f)T]

to be the covariance of the zero-mean noise term ξω(f) for a
given function f . Define C = (1− (1− α))2. The covari-
ance of fα ∼ ψα is given by

CE
[
(fα − fπ)(fα − fπ)T

]
=

α2(γPπ)E
[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α2

∫
C(f)ψα(df).

Theorem 5.2 provides a recursive definition for the
covariance of the stationary distribution ψα. The in-
tegral in the final line corresponds to the expected
covariance of the empirical Bellman operator when
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sampling from the distribution. Under the assump-
tion that states are updated independently, this “one-
step” covariance is diagonal. More generally, the co-
variance matrix is scaled by α, suggesting that the
distribution concentrates around its mean when α is
close to 0. The following makes this precise. We write
‖A‖op = sup {‖Av‖ : ‖v‖ ≤ 1, v ∈ Rd} for the operator
norm of a matrix A.

Corollary 5.2.1. Assume that the state space of the
Markov chain is bounded. Let C := ( 2Rmax

1−γ )2. Then,
we have that

∥∥E [(fα − fπ)(fα − fπ)T
]∥∥

op is mono-
tonically decreasing with respect to α. In particular,
limα→0

∥∥E[(fα − fπ)(fα − fπ)T]
∥∥

op = 0, and we have
that:

P
{

min
i
|fα(i)− fπ(i)| ≥ ε

}
≤ C

dε2

α2

1− (1− α+ αγ)2

α→0−→ 0.

We remark that the boundedness of the state space
(e.g. by [0, Rmax

1−γ ]d ⊂ Rd) is easily satisfied in the pres-
ence of bounded rewards in the MDP. Furthermore,
the above results about the mean and covariance can
easily be extended beyond Bellman operators to any
operator which has a unique fixed point and com-
mutes with expectation.

5.2 Sample-Based Control Algorithms

Above we saw that the mean of the stationary distribu-
tion of a sample-based method using a fixed policy is
the value function for that policy. This no longer holds
in the presence of optimality operators, for example in
what is called the control setting (Sutton, 1988). To con-
clude this section, we use our distributional approach
to highlight behavioural characteristics of control al-
gorithms.

Theorem 5.3. Suppose T̂ ? is an empirical Bellman opti-
mality operator such that the updates (5) with step-size α
converge to a stationary distribution ψ?α. Let fα ∼ ψ?α and
f? is the fixed point of T ?. Then

E[fα] ≥ f?.

Equality holds if and only if the expectation and the maxi-
mum commute, i.e. ET̂ f = T̂ Ef

Proof. As before, let f0 be distributed according to ψ?α.
Taking expectations on both sides of f1 = (1− α)f0 +

αT̂ ?(f0, ω) and writing fα := E [fα] gives:

fα = (1− α)fα + αEω,f0 [T̂ ?(f0, ω)]

fα = Ef0 [max
π
T πf0]

fα ≥ max
π

Ef0 [T πf0]

fα ≥ max
π
T πfα = T ?fα

By the linear programming formulation of MDPs
(Puterman, 1994, Section 6.9.1), we conclude that f̄α ≥
f? = minf{f ≥ T ?f}.

The theorem shows that in general, sample-based
control methods such as Q-learning produces a bi-
ased (in an expected sense) estimate of the optimal
Q-value. This brings fresh evidence about the algo-
rithm’s well-known overestimation problem, which
double Q-learning seeks to correct.

6 Convergence via Monotonicity:
Optimistic Policy Iteration

In a previous section, we showed that a number of
sampling-based algorithms induce a contraction map-
ping in the Wasserstein metric between distributions
over value functions. In this section we analyze a
non-contractive example, namely the optimistic pol-
icy iteration (OPI) algorithm. The OPI algorithm is
a sampling-based analogue of the classic policy itera-
tion (PI) algorithm. The latter is driven to convergence
by the monotonicity of the greedy policy updates. We
show in this section that our Markov chain approach
can regain a distributional analogue of the monotonic-
ity property, which we call probabilistic policy improve-
ment, and that this property can be used to analyze the
algorithm in a restricted setting.

The convergence of optimistic policy iteration is more
difficult to prove than that of most sample-based algo-
rithms, and has been previously been established for
Robbins-Monro decreasing stepsizes by using mono-
tonicity arguments and assumptions on the sampling
distribution (Tsitsiklis, 2002). To the best of our knowl-
edge, the convergence of OPI for more general con-
ditions (including constant step-sizes) remained an
open problem.

Optimistic policy iteration proceeds by constructing
a greedy policy from its current value function, sam-
pling one trajectory per state-action pair from this pol-
icy, then updating its value function towards the re-
turn of these trajectories. We will write

Gπ(s0, a0) =

∞∑
t=0

γtrt(st, at)
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for a sampled discounted return starting at state s0,
taking first action a0, and thereafter following policy
π. For any Q ∈ R|S|×|A|, we write πQ for the greedy
policy corresponding to Q (assuming a consistent tie-
breaking so that this is well-defined). Let Q0 be some
initial estimate and π0 = πQ0 . The update rule of OPI
is as follows (α ∈ (0, 1]):

Qn+1(s, a) = (1− α)Qn(s, a) + αGπn(s, a)

πn+1 = πQn+1
. (12)

Analyzing optimistic policy iteration in the distribu-
tional setting poses a few challenges. First, the dis-
tribution of sampled trajectories depends on the ex-
act value function. Informally, the greedy mapping
from value functions to policies induces a greedy parti-
tion (Bertsekas and Tsitsiklis, 1996, Figure 6.9), with
a different empirical Bellman operator correspond-
ing to each region of this partition. This rules out a
simple coupling argument, as functions with differ-
ent greedy policies may have arbitrarily different re-
turn distributions. Bertsekas and Tsitsiklis point out
that optimistic policy iteration can lead to chattering,
where the greedy policy fails to converge even the
value function converges. For our analysis, we con-
sider the simpler case α = 1; we discuss the extension
to α < 1 at the end of the section.
Theorem 6.1. For α = 1 and initialization Q0 ∼ µ0 ∈
M(R|S|×|A|), the sequence of random variables (Qn)n≥0

defined by the recursion (12) converges to a unique station-
ary distribution ϕ1 ∈P(R|S|×|A|).

The key lemma is to extend the monotonicity property
of the policy iteration operator to the distributional
case. In policy iteration, the greedy policy π′ = πQπ

with respect to Qπ leads to an improved value func-
tion:

Qπ
′
≥ Qπ.

The role of Qπ is therefore to provide us with the im-
proved policy π′. We will show that the same holds
true for the sampled returns: there is some probabil-
ity that the greedy policy with respect to Gπ is π′. This
allows us to argue that there is a chance that optimistic
policy iteration follows the correct “greedy path” to
π∗. We will call this property probabilistic policy im-
provement.

We analyze the case α = 1 by considering a Markov
chain over policies. Formally, Π = {π : S → A} will
be our state space, with the Markov kernel:

K(π, π′) := P {π′ = πGπ}
= P {π′ is greedy for Gπ} .

This Markov chain reflects the OPI process since, at ev-
ery step, the greedy policy πn corresponding to Qn is

sufficient to determine the distribution ofQn+1. Since
the set Π of deterministic policies is finite, K is a dis-
crete Markov chain.
Lemma 6.1 (Probabilistic policy improvement). Sup-
pose π′ = πQπ . Then K(π, π′) > 0.

The proof of Lemma 6.1 is given in Appendix C. This
shows that there is a nonzero probability that the
chain improves on the current policy. This implies
that there is some probability that OPI applied from
π∗ produces π∗ as a greedy policy.
Lemma 6.2 (π∗ is aperiodic). The optimal policy π? is
aperiodic. In particular: K(π?, π?) > 0.

Proof. Since the optimal policy π? is greedy with
respect to Q?, from Lemma 6.1 we conclude that
K(π?, π?) > 0.

All that remains to show is that the optimal policy π?
is reachable from any other policy with positive proba-
bility.
Lemma 6.3 (π∗ is reachable from any initial π0). For
every π0 ∈ Π, there exists an n(π0) ∈ N such that
Kn(π0)(π0, π

?) > 0.

Proof. Let π0 be an initial policy. Let Qπ0 , Qπ1 , ..., Qπ
?

be the sequence of action-value functions obtained
from classical PI. Since PI converges in a finite number
of steps (say nπ0 ) and is a deterministic process, this
sequence is well-defined. For every i ∈ {1, .., n(π0)},
we have thatK(πi, πi+1) > 0 by Lemma 6.1 (since πi+1

is greedy with respect to Qπi by construction). Thus
we have thatK(π0, π1)K(π1, π2) · · ·K(πn(π0)−1, π

?) >

0 and in particular Kn(π0)(π0, π
?) > 0.

Finally, the reachability and aperiodicity of π? allow
us to apply the ergodic theorem for finite Markov
chains.

Proof (of Theorem 6.1). The policy π? must be con-
tained in a communicating class C ? of policies (per-
haps consisting of only π?) which is aperiodic since
π? is. There may be other communicating classes in
the Markov chain, but by Lemma 6.3 they must all be
transient since they can reach π?. By the Markov chain
convergence theorem (Levin and Peres, 2017, Theo-
rem 4.3), any initial distribution converges to a station-
ary distributionϕ1 ∈P(Π) with support over C ?.

Our result shows that optimistic policy iteration, ap-
plied with a step-size of α = 1, converges to a sta-
tionary distribution ϕ1 over aperiodic policies (and
thus to a stationary distribution over value functions
through the possible returns of these policies). Since
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K(π∗, π∗) < 1 in general, we know that this distribu-
tion has support on suboptimal policies; in fact, we
know that

ϕ1(π∗) =
1

1−K(π∗, π∗)

∑
π 6=π∗

ϕ1(π)K(π, π∗).

By “continuity”, this suggests that the algorithm
should also converge for the general case α ∈ [0, 1).
Unfortunately, our proof technique does not immedi-
ately carry over. The issue is that, for α < 1, we no
longer have a Markov chain over policies: the greedy
policy depends on the history of past policies, through
the value function. One path forward may be to study
the Markov chain over value functions, but the known
brittleness of optimistic policy iteration suggests that
its distributional behaviour may be quite complex. In
particular, the transition kernel fails to satisfy many
basic properties (such as the weak Feller property)
which are typically used to establish convergence in
Markov chains over continuous spaces (Meyn and
Tweedie, 2012). We leave as open questions whether
the algorithm does converge, and to which distribu-
tion.

7 Related Work

Some of our methods are inspired from the work of
Dieuleveut, Durmus, and Bach (2017), which devel-
ops the theory of constant step-size stochastic gradi-
ent descent (in the context of supervised learning). In
particular, the proof method we present in Section 4
is inspired from the proof of their Proposition 2, al-
though simplified and adapted to the RL setting, and
the results in Section 5 follow the methods of their
Proposition 3.

In RL, convergence in distribution results for constant
step-sizes are typically derived using tools common
to stochastic approximation theory such as the mean
ODE method and Lyapunov functions (see, e.g., Kush-
ner and Yin (2003, Chapter 8) and Borkar (2009, Chap-
ter 9)). Examples of works which feature these meth-
ods include Srikant and Ying (2019), Chen et al. (2019),
Lakshminarayanan and Szepesvári (2017), and Bhan-
dari, Russo, and Singal (2018). The results and meth-
ods of these works are different, as they neither exploit
the Markov chain perspective nor establish the conver-
gence of the iterates to a stationary distribution.

Some works do make explicit use of the Markov chain
perspective, most related are Borkar and Meyn (2000)
and Yu (2016). The first of these establishes the conver-
gence of the Markov chains with respect to the Total
Variation metric using tools from (Meyn and Tweedie,
2012, Chapters 13-16). In applications to the analysis
of RL algorithms, this type of convergence does not

hold without restrictive assumptions such their As-
sumption (2.6) – see Appendix D for a simple coun-
terexample featuring a bandit with a single determin-
istic arm. On the other hand, results about weak con-
vergence of RL algorithms (Yu, 2016) have established
the convergence of the averaged iterates rather than
the full sequence of distributions. The methods are
also different, and rely on the weak Feller property
(Meyn and Tweedie, 2012) amongst other stochastic
approximation techniques (Kushner and Yin, 2003).
As far as we are aware, the use of the Wasserstein met-
ric and the result that RL algorithms are contractive
with respect to this metric are novel.

8 Conclusion and Future Work

We studied the convergence properties of sample-
based reinforcement learning algorithms by consid-
ering how they induce distributions over value func-
tions. Many of these algorithms are in fact contractive
not in the space of functions but in the lifted space
of distributions of functions. The proof methods re-
lies on coupling the events sampled by two executions
of the algorithm, and can be re-used for many algo-
rithms. Using the same Markov chain approach, we
also analyzed a restricted version of optimistic pol-
icy iteration, which is not amenable to a contraction
mapping-type analysis. One of the key results is to
make explicit that constant step-size reinforcement
learning algorithms do converge, albeit in the weaker
distributional sense. As an upside of using a constant
step size, we obtain exponentially fast convergence (as
indicated by the presence of a contraction factor). By
controlling the step-sizes, the stationary distributions
thus obtained can be tailored to yield values close to
the true value function with high confidence. In the
control setting, this should enable us to better explain
the performance of practical reinforcement learning
schemes.

Our work opens a number of interesting avenues for
future research. First, it would be valuable to fully
characterize the stationary distribution of sample-
based methods, for example by deriving a closed-
form expression for their characteristic functions. A
deeper understanding of the distributions obtained
by control algorithms is also of interest. Second,
we did not analyze the case of decaying step-sizes
or online updates, which would correspond to time-
inhomogenenous Markov processes. More broadly,
the coupling method has historically been invaluable
for many applications in probability theory. It would
be interesting to see if our approach can be applied
to policy-based methods, for example policy gradient
or actor critic, which are closer in spirit to optimistic
policy iteration. Finally, the simplicity of our analysis
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suggests that it may be carried to the function approx-
imation setting, perhaps eventually shedding light on
the behaviour of reinforcement learning with nonlin-
ear approximation methods such as deep networks.
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Appendices
Appendix A Laundry List of Convergent Algorithms

We outline the general proof recipe, which will be re-using for the following examples.

Proof strategy

(P1) Let µ(1), µ(2) be initial distributions and (f
(1)
0 , f

(2)
0 ) be the optimal coupling which minimizesW(µ(1), µ(2));

(P2) Define an appropriate coupling f
(1)
1 ∼ µ(1)K, f

(2)
1 ∼ µ(2)K – e.g. by defining them to follow the same

trajectories if the updates sample from the same distributions;

(P3) Use the upper bound W(µ(1)K,µ(2)K) ≤ E
[
‖f (1)

1 − f (2)
2 ‖

]
and bound E

[
‖f (1)

1 − f (2)
1 ‖

]
≤

ρE
[
‖f (1)

0 − f (2)
0 ‖

]
for some ρ which depends on γ, α, and other parameters of the algorithm. Pick the step-

size α such that ρ < 1 to get that µ 7→ µK is a contraction.

A.1 Convergence of synchronous Monte Carlo Evaluation with constant step-sizes

We prove that Monte Carlo Evaluation with synchronous updates & constant step-size converges to a stationary
distribution. The algorithm aims to evaluate the value function of a given policy π using Monte Carlo returns.
The update rule is given by:

∀ s ∈ S : Vn+1(s) = (1− α)Vn(s) + αGπn(s) (MCE)
where Gπn(s) =

∑
n≥0 γ

nrn(sn, an) is the return of a random trajectory (sn, an, rn)n≥0 starting from s, following
an ∼ π(·|sn), rn ∼ R(·|sn, an), and sn+1 ∼ P(·|sn, an).
Theorem A.1. For any constant step size 0 < α ≤ 1 and initialization V0 ∼ µ0 ∈ M(R|S|), the sequence of random
variables (Vn)n≥0 defined by the recursion (MCE) converges in distribution to a unique stationary distribution ϕα ∈
M(R|S|).

Proof. Following the proof strategy outlined above, we skip to step (P2) of the proof. We define the coupling of
the updates (V

(1)
1 , V

(2)
1 ) to sample the same trajectories:

V
(1)
1 (s) = (1− α)V

(1)
0 (s) + αGπk (s)

V
(2)
1 (s) = (1− α)V

(2)
0 (s) + αGπk (s).

}
for the same Gπk (s) (13)

Note that this is a valid coupling of (µ(1)Kα, µ
(2)Kα), since V (1)

1 (s) and V (2)
1 (s) have access to the same sampling

distributions. We upper boundW(µ(1)Kα, µ
(2)Kα) by the coupling defined in Equation (13). This gives:

W(µ(1)Kα, µ
(2)Kα) ≤ E

[∥∥∥V (1)
1 − V (2)

1

∥∥∥]
= E

[∥∥∥(1− α)V
(1)
0 + αGπ1 −

(
(1− α)V

(2)
0 + αGπ1

)∥∥∥]
= E

[∥∥∥(1− α)(V
(1)
0 − V (2)

0 )
∥∥∥]

= (1− α)E
[∥∥∥V (1)

0 − V (2)
0

∥∥∥] = (1− α)W(µ(1), µ(2))

Since 1− α < 1, Kα is a contraction mapping and we are done.

A.2 Convergence of synchronous Q-Learning with constant step-sizes

We prove that Q-Learning with synchronous updates & constant step-sizes converges to a stationary distribu-
tion. The algorithm aims to learn the optimal action-value function Q?. The updates are given by:

∀ (s, a) ∈ S ×A : Qn+1(s, a) = (1− α)Qn(s, a) + α
(
r + γmax

a′
Qn(s′, a′)

)
, (QL)
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where r ∼ R(·|s, a), s′ ∼ P(·|s, a), and α > 0.
Theorem A.2. For any constant step size 0 < α ≤ 1 and initialization Q0 ∼ µ0 ∈ M(R|S|×|A|), the sequence of
random variables (Qn)n≥0 defined by the recursion (QL) converges in distribution to a unique stationary distribution
ξα ∈M(R|S|).

Proof. We use the proof outline given above, and jump straight to step (P2). We witness the same-sampling
coupling again:

Q
(1)
1 (s, a) = (1− α)Q

(1)
0 (s, a) + α

(
r + γmax

a′
Q

(1)
0 (s′, a′)

)
Q

(2)
1 (s.a) = (1− α)Q

(2)
0 (s, a) + α

(
r + γmax

a′
Q

(2)
0 (s′, a′)

)
 for the same r ∼ R(s, a),

s′ ∼ P(·|s, a)

The bound follows similarly, but with one additional step. Again we write T̂ (Q)(s, a) = r+ γmaxa′ Q(s′(s,a), a
′)

for the empirical Bellman (optimality) operator.

E
[∥∥∥T̂ (Q(1))− T̂ (Q(2))

∥∥∥] = E
[
max
s,a

∣∣∣r − r + γ
(

max
a′

Q(1)(s′(s,a), a
′)−max

a′
Q(2)(s′(s,a), a

′)
)∣∣∣]

= γE
[
max
s,a

∣∣∣max
a′

Q(1)(s′(s,a), a
′)−max

a′
Q(2)(s′(s,a), a

′)
∣∣∣]

≤ γE
[
max
s,a

max
a′

∣∣∣Q(1)(s′(s,a), a
′)−Q(2)(s′(s,a), a

′)
∣∣∣]

≤ γE
[
max
s,a

∣∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣∣] = γE

[∥∥∥Q(1) −Q(2)
∥∥∥]

The first inequality follows from |maxa′ Q1(s, a′)−maxa′ Q2(s, a′)| ≤ maxa′ |Q1(s, a′)−Q2(s, a′)|, and the second
inequality follows sinceQ(1) andQ(2) sampled the same s′. Concluding the proof as before we see that the kernel
is contractive with Lipschitz constant 1 + α− αγ < 1, and we are done.

A.3 TD(λ)

We prove that TD(λ) with synchronous updates & constant step-size converges to a stationary distribution. The
algorithm aims to evaluate the value function of a given policy π using a convex combination of n-step returns.
The update rule is given by:

∀s : Vn+1(s) = (1− α)Vn(s, a) + α(1− λ)

∞∑
k=1

λk−1

(
k∑
i=0

γir(si, ai) + γkVn(sk)

)
(TD(λ))

where each n-step trajectory is sampled starting from s and following policy π.
Theorem A.3. For any constant step size 0 < α ≤ 1 and initialization V0 ∼ µ0 ∈ M(R|S|), the sequence of random
variables (Vn)n≥0 defined by the recursion (TD(λ)) converges in distribution to a unique stationary distribution ζα ∈
M(R|S|).

Proof. Again, we jump straight to step (P2) of the template given above. We couple every n-step trajectory to
sample the same n rewards, actions, and successors states.

V
(1)
k+1(s) = (1− α)V

(1)
k (s) + α(1− λ)

∞∑
n=1

λn−1

(
n−1∑
i=0

γiri(si, ai) + γnV
(1)
k (sn)

)

V
(2)
k+1(s) = (1− α)V

(2)
k (s) + α(1− λ)

∞∑
n=1

λn−1

(
n−1∑
i=0

γiri(si, ai) + γnV
(2)
k (sn)

)


same
(si, ai, ri)

n
i=0

∀n

By the coupling, the reward terms will cancel in every n-step trajectory. We write R(i)
n =

∑n−1
i=0 γ

iri(si, ai) +

γnV
(i)
k (sn) for the n-step return and T̂ (V )(s) =

∑∞
k=1 λ

k−1
(∑k

i=0 γ
ir(si, ai) + γkVn(sk)

)
for the empirical Bell-
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man operator of TD(λ).

E
[∥∥∥T̂ (V (1))− T̂ (V (2))

∥∥∥] = E

[
max
s

∣∣∣∣∣
∞∑
n=1

λn−1R(1)
n −

∞∑
n=1

λn−1R(2)
n

∣∣∣∣∣
]

= E

[
max
s

∣∣∣∣∣
∞∑
n=1

λn−1
(
R(1)
n −R(2)

n

)∣∣∣∣∣
]

= E

[
max
s

∣∣∣∣∣
∞∑
n=1

λn−1γn
(
V (1)(sn)− V (2)(sn)

)∣∣∣∣∣
]

(reward terms cancel)

≤ E

[ ∞∑
n=1

λn−1γn max
s

∣∣∣(V (1)(sn)− V (2)(sn)
)∣∣∣] (triangle inequality)

≤
∞∑
n=1

λn−1γnE
[
max
s

∣∣∣V (1)(s)− V (2)(s)
∣∣∣] (by the coupling)

=

∞∑
n=1

λn−1γnE
[∥∥∥V (1) − V (2)

∥∥∥] = γ
1

1− λγ
E
[∥∥∥V (1) − V (2)

∥∥∥]
Concluding the proof as before, we haveW(µ(1)K,µ(2)K) ≤ (1−α+αγ 1−λ

1−λγ )W(µ(1), µ(2)). Since 1−α+αγ 1−λ
1−λγ

¡ 1 we are done.

A.4 SARSA with ε-greedy policies

In this example we will example the use of ε-greedy policies for control. In particular, we examine SARSA
updates with ε-greedy policies. Let π(·|s) be some base policy. The updates are as follow:

Qk+1(s, a) =

{
(1− α)Qk(s, a) + α (r(s, a) + γQk(s′, a′)) w.p. ε
(1− α)Qk(s, a) + α (r(s, a) + γmaxa′ Qk(s′, a′)) w.p. 1− ε

(SARSA)

where r ∼ R(·|s, a) and s′ ∼ P(·|s, a) in both cases and a′ ∼ π(·|s′) in the first case.
Theorem A.4. For any constant step size 0 < α ≤ 1 and initialization Q0 ∼ µ0 ∈ M(R|S|×|A|), the sequence of
random variables (Qn)n≥0 defined by the recursion (SARSA) converges in distribution to a unique stationary distribution
θα ∈M(R|S|×|A|).

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling coupling, whereQ(1)
1 takes

the greedy action if and only ifQ(2)
1 does. In the non-greedy case, they sample the same a′ ∼ π(·|s′). In all cases,

both functions sample the same r(s, a) and s′. We write T̂ (Q)(s, a) =

{
r + γQ(s′, a′) w.p. ε
r + γmaxa′ Q(s′, a′) w.p. 1− ε

The bound follows similarly to the examples ofQ-learning and TD(0). We omit the subscripts on theQ-functions.

E
[∥∥∥T̂ (Q(1))− T̂ (Q(2))

∥∥∥] = P {greedy action chosen}E
[
max
s,a

γ|(max
a′

Q(1)(s′, a′)−max
a′

Q(2)(s′, a′)|
]

+ P {non-greedy action chosen}E
[
max
s,a
|γ(Q(1)(s′, a′)−Q(2)(s′, a′))|

]
≤ εγE

[∥∥∥Q(1) −Q(2)
∥∥∥]+ (1− ε)γE

[∥∥∥Q(1) −Q(2)
∥∥∥]

= γE
[
‖Q(1) −Q(2)‖

]
The bound E

[
maxs,a γ|(maxa′ Q

(1)(s′, a′)−maxa′ Q
(2)(s′, a′)|

]
≤ γE

[∥∥Q(1) −Q(2)
∥∥] follows from

|maxa′ Q1(s, a′) − maxa′ Q2(s, a′)| ≤ maxa′ |Q1(s, a′) − Q2(s, a′)|, and since Q(1) and Q(2) sampled the
same s′ in the greedy case. The bound E

[
maxs,a|γ(Q(1)(s′, a′)−Q(2)(s′, a′))|

]
≤ E

[∥∥Q(1) −Q(2)
∥∥] follows

since Q(1) and Q(2) sampled the same state-action pair in the non-greedy case. Concluding the proof as before,
we have that E

[
‖Q(1)

1 −Q
(2)
1 ‖
]
≤ (1− α+ αγ)E

[
‖Q(1)

0 −Q
(2)
0 ‖
]
, and thus the kernel is a contraction.
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A.5 Expected SARSA with ε-greedy policies

In this example we examine the Expected SARSA updates with ε-greedy policies. Let π(·|s) be some base policy.
Define πε(·|s) as the ε-greedy policy which takes the greedy action with probability 1-ε and π otherwise. The
updates are as follow:

Qk+1(s, a) = (1− α)Qk(s, a) + α

(
r(s, a) + γ

∑
a′

πε(a
′|s)Qk(s′, a′)

)
(Expected-SARSA)

where r ∼ R(·|s, a) and s′ ∼ P(·|s, a) in both cases and a′ ∼ π(·|s′) in the first case.
Theorem A.5. For any constant step size 0 < α ≤ 1 and initializationQ0 ∼ µ0 ∈M(R|S|×|A|), the sequence of random
variables (Qn)n≥0 defined by the recursion (Expected-SARSA) converges in distribution to a unique stationary distribution
βα ∈M(R|S|×|A|).

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling coupling.

We write T̂ (Q)(s, a) = r+γ
∑
a′ π(a′|s)Q(s′, a′). The bound follows similarly to the examples ofQ-learning and

TD(0). We omit the subscripts on the Q-functions.

E
[∥∥∥T̂ (Q(1))− T̂ (Q(2))

∥∥∥] = E

[
max
s,a

γ|
∑
a′

πε(a
′)Q(1)(s′, a′)−

∑
a′

πε(a
′)Q(2)(s′, a′)|

]

≤ E

[
max
s,a

γ
∑
a′

πε(a
′)|Q(1)(s′, a′)−Q(2)(s′, a′)|

]

≤ E

[
max
s,a

γ
∑
a′

πε(a
′)
∥∥∥Q(1)(s′, a′)−Q(2)(s′, a′)

∥∥∥]
≤ γE

[
‖Q(1) −Q(2)‖

]
Concluding the proof as before, we have that E

[
‖Q(1)

1 −Q
(2)
1 ‖
]
≤ (1 − α + αγ)E

[
‖Q(1)

0 −Q
(2)
0 ‖
]
, and thus the

kernel is a contraction.

A.6 Double Q-Learning

In this example we will have to modify our state-space and introduce a new metric on pairs ofQ-functions. The
DoubleQ-Learning algorithm (Hasselt, 2010)1 maintains two random estimates (QA, QB) and updatesQA with
probability p and QB with probability 1− p. Should QA be chosen to be updated, the update is:

QAn+1(s, a) = (1− α)QAn (s, a) + α
(
r(s, a) + γQBn (s, argmaxa′ Q

A
n (s′, a′))

)
.

Analogously, the update for QB is:

QBn+1(s, a) = (1− α)QBn (s, a) + α
(
r(s, a) + γQAn (s, argmaxa′ Q

B
n (s′, a′))

)
.

In both cases, we have s′ ∼ P(·|s, a). For this algorithm, the updates are Markovian on pairs of action-value
functions. Thus we set the state space to be R|S|×|A| × R|S|×|A|. We choose the product metric defined by
d1((QA, QB), (RA, RB)) =

∥∥QA −RA∥∥+
∥∥QB −RB∥∥.

Theorem A.6. For any constant step size 0 < α ≤ 1 and initialization (QA0 , Q
B
0 ) ∼ µ0 ∈ M(R|S|×|A| × R|S|×|A|),

the sequence of random variables (QAn , Q
B
n )n≥0 defined by the Double Q-Learning recursion converges in distribution to a

unique stationary distribution χα ∈M(R|S|×|A| × R|S|×|A|).

Proof. As before, let µ(1), µ(2)M(R|S|×|A| × R|S|×|A|) be arbitrary initializations and (QA0 , Q
B
0 ) and (RA0 , R

B
0 ) be

the optimal coupling of W(µ(1), µ(2)). We couple (QA1 , Q
B
1 ) and (RA1 , R

B
1 ) to sample the same function to be

1This is the original algorithm, not the deep reinforcement learning version given in (Van Hasselt, Guez, and Silver, 2016).
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updated and the same s′. Assume for a moment that QA and RA are chosen to be updated. Proceeding as in
the proof of Q-Learning (cf. Theorem A.2), we find that

E
[∥∥QA1 −RA1 ∥∥] ≤ (1− α)E

[∥∥QA0 −RA0 ∥∥]+ αγE
[∥∥QB0 −RB0 ∥∥] .

Analogously, if QB and RB are chosen to updated, we have:
E
[∥∥QB1 −RB1 ∥∥] ≤ (1− α)E

[∥∥QB0 −RB0 ∥∥]+ αγE
[∥∥QA0 −RA0 ∥∥] .

Putting everything together, the full expectation is:
E
[
d((QA1 , Q

B
1 ), (RA1 , R

B
1 ))
]

= E
[∥∥QA1 −RA1 ∥∥+

∥∥QB1 −RB1 ∥∥]
= P {A is updated}E

[∥∥QA1 −RA1 ∥∥+
∥∥QB1 −RB1 ∥∥]

+ P {B is updated}E
[∥∥QA1 −RA1 ∥∥+

∥∥QB1 −RB1 ∥∥]
= pE

[∥∥QA1 −RA1 ∥∥+
∥∥QB0 −RB0 ∥∥]

+ (1− p)E
[∥∥QA0 −RA0 ∥∥+

∥∥QB1 −RB1 ∥∥]
≤ p

(
(1− α)E

[∥∥QA0 −RA0 ∥∥]+ (1 + αγ)E
[∥∥QB0 −RB0 ∥∥])

+ (1− p)
(
(1 + αγ)E

[∥∥QA0 −RA0 ∥∥]+ (1− α)E
[∥∥QB0 −RB0 ∥∥])

≤ 1

2
(2 + αγ − α)

(
E
[∥∥QA0 −RA0 ∥∥]+ E

[∥∥QB0 −RB0 ∥∥])
=

1

2
(2 + αγ − α)E

[
d((QA0 , Q

B
0 ), (RA0 , R

B
0 ))
]

Since 0 ≤ 1/2(2 + αγ − α) < 1, so we are done. We note that the first equality only follows since, under the
coupling, either A or B is updated for both functions.

Appendix B Proofs of Section 5

Theorem B.1. Suppose T̂ π is such that the updates (5) with step-size α converge to a stationary distribution ψα. If T̂ is
an empirical Bellman operator for some policy π, then E[fα] = fπ where fα ∼ ψα and fπ is the fixed point of T π .

Proof. Let f0 be distributed according to ψα. Rewriting equation (5):
f1 = (1− α)f0 + αT πf0 + αξ(f0), (14)

where ξ(f0) = T̂ π(f0, ω) − T πf0 is a zero-mean noise term. Taking expectations on both sides, and using that
f1 is also distributed according to ψα by stationarity and that E[ξ(f)] = 0 for any f :

fα = (1− α)fα + αE[T πf0]

αfα = αE[Rπ + γPπf0]

fα = Rπ + γPπE[f0]

fα = T πfα
And therefore fα = fπ since it is the unique fixed point of T π .

Theorem B.2. Suppose T̂ π is such that the updates (5) with step-size α converge to a stationary distribution ψα, and that
T̂ π is an empirical Bellman operator for some policy π. Define

C(f) := Eω[(T̂ π(f, ω)− T πf)(T̂ π(f, ω)− T πf)T]

to be the covariance of the zero-mean noise term T̂ π(f, ω)− T πf for a given function f . Then, the covariance of fα ∼ ψα
is given by

(1− (1− α)2)E
[
(fα − fπ)(fα − fπ)T

]
= α2(γPπ)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α2

∫
C(f)ψα(df)



Philip Amortila, Doina Precup, Prakash Panangaden, Marc G. Bellemare

Furthermore, we have that
∥∥E [(fα − fπ)(fα − fπ)T

]∥∥
op is monotonically decreasing with respect toα, where ‖·‖op denotes

the operator norm of a matrix. In particular, limα→0

∥∥E[(fα − fπ)(fα − fπ)T]
∥∥

op = 0, and we have that:

P
{

min
i
|fα(i)− fπ(i)| ≥ ε

}
α→0−→ 0 ∀ ε > 0

We preface the proof with some useful identities. We will write the covariance in terms of the tensor product
for ease of manipulations

Lemma B.1. Write ξ(f) := (T̂ π(f, ω)− T πf). In the same setup as Theorem 5.2:

E
[
(fα − fπ)(T πfα − fπ + ξ(f0))T

]
= E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

and

E
[
((T πfα − fπ) + ξ(fα)) ((T πfα − fπ) + ξ(fα))

T
]

= (γPπ)E
[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+

∫
C(v)ψα(dv)

Proof. Let f0 ∼ ψα, by (5) we have f1 = (1−α)f0 +α(T πf0 + ξ(f0)) and f1 ∼ ψα. Furthermore, the distribution
of f0 is independent of the distribution of ω. By independence,

E
[
(f0 − fπ)ξ(f0)T

]
= Ef0Eω

[
(f0 − fπ)ξ(f0)T

]
(by independence of f0 and ξ(·))

= Ef0
[
(f0 − fπ)(Eωξ(f0))T

]
= 0 (Eω[ξ(f)] = 0 for every f )

For the first identity, note that

E
[
(f0 − fπ)(T πf0 − fπ))T

]
= E

[
(f0 − fπ)(Rπ + γPπ(f0)−Rπ − γPπ(fπ))T

]
= E

[
(f0 − fπ)(γPπ(f0 − fπ))T

]
= E

[
(f0 − fπ)(f0 − fπ)T(γPπ)T

]
= E

[
(f0 − fπ)(f0 − fπ)T

]
(γPπ)T

The first identity then follows by using E
[
(f0 − fπ)ξ(f0)T

]
= 0 and linearity of expectations.

For the second identity, expanding the outer product gives:

E
[
((T πf0 − fπ) + ξ(f0)) ((T πf0 − fπ) + ξ(f0))

T
]

= E
[
(T πf0 − fπ)(T πf0 − fπ)T

]
+ E

[
(ξ(f0))(ξ(f0)))T

]
+
(((((((((((
E
[
(T πf0 − fπ)(ξ(f0))T

]
+
(((((((((((
E
[
ξ(f0)(T πf0 − fπ)T

]
= E

[
(γPπ(f0 − fπ))(γPπ(f0 − fπ))T

]
+

∫
C(v)ψα(dv)

= (γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
(γPπ)T

+

∫
C(v)ψα(dv)

where we used E
[
(T πf0 − fπ)(ξ(f0))T

]
= 0.

Proof (of Theorem 5.2). Again let f0 be distributed according to ψα. Subtracting fπ from equation (14),

f1 − fπ = (1− α)(f0 − fπ) + α (T πf0 − fπ + ξ(f0)) .
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and taking outer products:

(f1 − fπ) (f1 − fπ)T =(1− α)2 (f0 − fπ) (f0 − fπ)T

+ α2 (T πf0 − fπ + ξ(f0)) (T πf0 − fπ + ξ(f0))
T

+ α(1− α)(f0 − fπ)(T πf0 − fπ + ξ(f0))T

+ α(1− α)(T πf0 − fπ + ξ(f0))(f0 − fπ)T.

Taking expectations on both sides, and using Lemma B.1:

E
[
(f1 − fπ)(f1 − fπ)T

]
=(1− α)2E

[
(f0 − fπ)(f0 − fπ)T

]
+ α2(γPπ)E[(f0 − fπ)](γPπ)T

+ α2

∫
C(v)ψa(dv)

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(f0 − fπ)(f0 − fπ)T

]
(γPπ)T

Since E
[
(f1 − fπ)(f1 − fπ)T

]
= E

[
(f0 − fπ)(f0 − fπ)T

]
by stationarity, re-arranging to the LHS and factoring

gives:

(1− (1− α)2)E
[
(fα − fπ)(fα − fπ)T

]
= α2(γPπ)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α2

∫
C(f)ψα(df)

For the remainder of the proof we re-write the above expression in terms of tensor products. The tensor product
of two vectors x, y is the matrix defined by x ⊗ y = xyT. By extension, the tensor product of two matrices A,B
is the operator defined by (A⊗B)X = AXBT. Then, the above expression can be re-written as:

(1− (1− α)2)E
[
(fα − fπ)(fα − fπ)T

]
= α2(γPπ)⊗2E

[
(fα − fπ)(fα − fπ)T

]
+ α(1− α)(γPπ ⊗ I)E

[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)(I⊗γPπ)E

[
(fα − fπ)(fα − fπ)T

]
+ α2

∫
C(f)ψα(df).

Factoring the tensor products further gives:[
I − ((1− α)I + αγPπ)

⊗2
]
E
[
(fα − fπ)⊗2

]
= α2

∫
C(f)ψα(df)

We show that the matrix on the LHS is invertible. By (Puterman, 2014, Corollary C.4) it will follow from
showing that ρ

(
((1− α)I + αγPπ)

⊗2
)
< 1, where ρ(A) is the spectral radius of matrix A. Writing ‖A‖op =

maxi
∑
j |A(i, j)| for the operator norm of a matrix A, and using that ρ(A) ≤ ‖A‖op, ‖A⊗B‖op = ‖A‖op ‖B‖op,

and ‖Pπ‖op = ‖I‖op = 1:∥∥∥((1− α)I + αγPπ)
⊗2
∥∥∥

op
= ‖(1− α)I + αγPπ‖2op ≤ ((1− α) + αγ)

2
< 1, (15)

where the last inequality followed since γ < 1. Finally, for the limit α→ 0, we use the following identity: if A is
such that ‖I −A‖ ≤ 1 then

∥∥A−1
∥∥ ≤ 1

1−‖I−A‖ . We let A = I − ((1 − α)I + αγPπ)⊗2, by the calculation in (15)
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we have ‖I −A‖ < 1. So we calculate the operator norm of the covariance matrix:∥∥E [(f0 − fπ)(f0 − fπ)T
]∥∥ = α2

∥∥∥∥[I − ((1− α)I + αγPπ)
⊗2
]−1

∫
C(v)ψα(dv)

∥∥∥∥
≤ α2

∥∥∥∥[I − ((1− α)I + αγPπ)
⊗2
]−1
∥∥∥∥∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
≤ α2 1

1−
∥∥∥I − I + ((1− α)I + αγPπ)

⊗2
∥∥∥
∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
= α2 1

1−
∥∥∥((1− α)I + αγPπ)

⊗2
∥∥∥
∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
= α2 1

1− ‖((1− α)I + αγPπ)‖2

∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
≤ α2 1

1− (1− α+ αγ)2

∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
Finally, since the state space is bounded in [0,Rmax/(1 − γ)]n, we have (T̂ f)i ≤ Rmax/(1 − γ) and (T f)i ≤
Rmax/(1−γ) for each i. Then, we have |ξω(f)iξω(f)j | = |(T̂ f)i(T f)j−(T f)i(T̂ f)j−(T f)j(T̂ f)j+(T f)j(T f)i| ≤
4 Rmax2

(1−γ)2 Thus we have ‖C(f)‖ ≤ 4 Rmax2
(1−γ)2

:= M and thus

∥∥E [(f0 − fπ)(f0 − fπ)T
]∥∥ ≤M α2

1− (1− α+ αγ)2

α→0−→ 0

For the concentration inequality, we will use a multivariate Chebyshev inequality (Marshall and Olkin, 1960,
Theorem 3.1), whos statement is as follows:

Theorem B.3. LetX = (X1, ..., Xn) be a random vector withEX = 0 andE[XTX] = Σ. Let T = T+∪{x : −x ∈ T+},
where T+ ⊆ Rn is a closed, convex set. If A = {a ∈ Rn : 〈a, x〉 ≥ 1 ∀x ∈ T+}, then

P {X ∈ T} ≤ inf
a∈A

aTΣa

Let ε > 0. We first bound aTΣa with the operator norm of Σ. Note that

aTΣa =
∑
i

ai(Σa)i

≤
∑
i

ai ‖Σa‖ ≤ n ‖Σ‖op ‖a‖
2

We define T+ to be the intersection of half-planes the {x|xi ≥ ε}, so that T+ = {x|xi ≥ ε ∀i}. Since the half-planes
are closed and convex, T+ is also closed and convex since it is an intersection of closed and convex sets.Then,
T = T+ ∪ {x : −x ∈ T+} = {x|xi ≥ ε ∀i or xi ≤ −ε ∀i}. Note that x ∈ T ⇐⇒ mini|xi| ≥ ε. We define
X = fα − fπ which has zero-mean. Finally, Theorem B.3 states that

P {X ∈ T} = P {fα − fπ ∈ T} ≤ inf
a∈A

aTΣa ≤ n ‖Σ‖op inf
a∈A
‖a‖2 .

Note that infa ‖a‖2 is bounded since a = ( 1
nε ,

1
nε , ....,

1
nε ) is in A and ‖a‖2 = 1

(nε)2 . So n infa∈A ‖a‖2 ≤ C for
some constant C independent of α. From the previous result, we can take the limit of α → 0 of ‖Σ‖op =∥∥E [(fα − fπ)(fα − fπ)T

]∥∥
op and obtain:

P {fα − fπ ∈ T} = P
{

min
i
|fα(i)− fπ(i)| ≥ ε

}
≤ C ·

∥∥E [(fα − fπ)(fα − fπ)T
]∥∥

op → 0
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Appendix C Proofs of Section 6

Lemma C.1. Suppose π′(s) = argmaxaQ
π(s, a) for each s. Then K(π, π′) = P{π′ is greedy with respect to Gπ} > 0.

We will prove an intermediate probability lemma. Let X1, ..., Xn be mutually independent random variables
bounded in [a, b], and Fi(x) = P {Xi ≤ x} denote the cumulative density functions of Xi for i = 2, .., n. Note
that

P {X1 ≥ X2, X1 ≥ X3, ..., X1 ≥ Xn} =

∫ b

a

∫ x1

a

· · ·
∫ x1

a

dP(x1, ..., xn)

=

∫ b

a

∫ x1

a

· · ·
∫ x1

a

dP1(x1)dP2(x2)dPn(xn) by mutual independence

=

∫ b

a

F2(x1) · · ·Fn(x1)dP1(x1)

= E [F2(X1)F3(X1) · · ·Fn(X1)] . (16)

Then, we have:
Lemma C.2. Suppose that E[Fi(X1)] > 0 ∀i = 2, ..., n. Then also

E [F2(X1) · · ·Fn(X1)] > 0

Proof. It is easy to see that H(x1) = Πn
i=2Fi(x1) is also a CDF. In particular, H starts at 0, ends at 1, and it

monotone and right-continuous. In fact, by Equation (16) it corresponds to the CDF of max(X2, ..., Xn). Assume
for a contradiction that E [F2(X1) · · ·Fn(X1)] = 0. By positivity, monotonicity, and right-continuity, we have that
H(x1) = 0 ∀x1 ∈ [a, b). Then, for every x we have

H(x) = 0 =⇒ Fi(x) = 0 for some i.

Since we have H(b) = 1 and H(x) = 0 otherwise, note that there must exist one i′ such that Fi′(b) = 1 and
Fi′(x) = 0 otherwise. If not, then for all i there exists a εi > 0 such that Fi(b − εi) > 0. By monotonicity,
Fi(b−mini εi) > 0 ∀i, and thus H(b−mini εi) > 0. Thus we have E[Fi′(x)] = 0, a contradiction.

Proof (Lemma C.1). Note that

K(π, π′) = P {π′ is greedy with respect to Gπ} = P {for each s,Gπ(s, π′(s)) ≥ Gπ(s, a) ∀a} .

Fix a state s, write Xi(s) := Gπ(s, ai), and without loss of generality assume that π′(s) = a1. We first show
that E[Fi(X1)] > 0, i.e. P {Gπ(s, a1) ≥ Gπ(s, a)} > 0 for all a. Suppose that it is not so, and pick a such that
P {Gπ(s, a1) ≥ Gπ(s, a)} = 0. Then

Qπ(s, a1) = E [Gπ(s, a1)]

= P{Gπ(s, a1) ≥ Gπ(s, a)}E [Gπ(s, a1) | {Gπ(s, a1) ≥ Gπ(s, a)}]
+ P{Gπ(s, a1) < Gπ(s, a)}E [Gπ(s, a1) | {Gπ(s, a1) < Gπ(s, a)}]
= 0 + E [Gπ(s, a1)|{Gπ(s, a1) < Gπ(s, a)}]
< E [Gπ(s, a)] = Qπ(s, a),

which contradicts the fact that π′ is greedy wrt Qπ . Hence E[Fi(X1)] > 0, and we apply Lemma C.2 to this set
to conclude that for each s,

P {Gπ(s, a1) ≥ Gπ(s, a),∀a} > 0.

Because the returns are mutually independent, we further know that

P {Gπ(s, a1) ≥ Gπ(s, a),∀s, a} =
∏
s∈S

P {Gπ(s, a1) ≥ Gπ(s, a),∀a} > 0,

completing the proof.
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Appendix D On Wasserstein convergence vs. total variation convergence

Recall the definition of the Total Variation metric:
Definition D.1. The total variation metric between probability measures is defined by:

dTV(µ, ν) = sup
B∈Borel(Rd)

|µ(B)− ν(B)|,

for µ, ν ∈P(Rd).

Consider a bandit with a single arm that has a deterministic reward of 0. Consider any of the classic algorithms
covered in this paper, which will sample a target of 0 at every iteration. It is easy to see that the unique stationary
distribution of the algorithm in this instance is a Dirac distribution at 0 (denoted δ0).

Suppose a step-size of α < 1. If we initialize with some f0 6= 0 then the algorithm will never converge to the true
stationary distribution in Total Variation distance. This is because a Dirac distribution at any x 6= 0 is always a
constant distance of 1 away from a Dirac at 0. In other words,

dTV(δ0, δfn) = 1 ∀n

despite the fact that fn → 0. On the other hand, we have

W(δ0, δfn)→ 0,

since the Wasserstein metric takes into consideration the underlying metric structure of the space.2

2In particular, the Wasserstein metric isometrically embeds the original metric space into the space of probability measures
(Mardare, Panangaden, and Plotkin, 2018).


