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Abstract

Learning from Preferential Feedback (LfPF)
plays an essential role in training Large Lan-
guage Models, as well as certain types of in-
teractive learning agents. However, a sub-
stantial gap exists between the theory and
application of LfPF algorithms. Current re-
sults guaranteeing the existence of optimal
policies in LfPF problems assume that both
the preferences and transition dynamics are
determined by a Markov Decision Process.
We introduce the Direct Preference Process,
a new framework for analyzing LfPF prob-
lems in partially-observable, non-Markovian
environments. Within this framework, we
establish conditions that guarantee the ex-
istence of optimal policies by considering the
ordinal structure of the preferences. We show
that a decision-making process can have opti-
mal policies, that are characterized by recur-
sive optimality equations, even when no re-
ward function can express the learning goal.
Our findings narrow the gap between the em-
pirical success and theoretical understanding
of LfPF algorithms and provide future prac-
titioners with the tools necessary for a more
principled design of LfPF agents.

1 INTRODUCTION

Learning from Preferential Feedback (LfPF) is an im-
portant part of many real-world applications of artifi-
cial intelligence (AI). At a high level, it describes an
interactive learning problem in which an agent’s ob-
jectives are determined by a collection of relative pref-
erences over outcomes. LfPF has been effectively em-
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Figure 1: The Direct Preference Process (DPP) is a
new framework for sequential decision-making from
preferences. In Section 5 we present conditions guar-
anteeing the existence of optimal policies within a DPP
which are strictly weaker than the conditions necessary
for preferences to be expressed by expected reward.
Therefore, it is possible for decision-making problems
to have well-defined optimal policies even when no re-
ward function can express the learning goal.

ployed in a diverse range of applications, from robotics
tasks (Christiano et al., 2017; Lee et al., 2021) to the
fine-tuning of Large Language Models (Bai et al., 2022;
Lee et al., 2023; OpenAI, 2023; Rafailov et al., 2023;
Stiennon et al., 2020).

However, the current theory of LfPF lags far behind
the success it has demonstrated in applications. There
are no performance guarantees for LfPF problems be-
yond those defined through fully observable, Marko-
vian environments. Moreover, current results (Chat-
terji et al., 2021; Kong and Yang, 2022; Saha et al.,
2023; Xu et al., 2020; Zhu et al., 2023) assume that the
preferences in a LfPF problem are generated by an un-
derlying reward function. This assumption is known
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to be both unrealistic (Bobu et al., 2020; Pandey et al.,
2022; Tversky and Kahneman, 1974) and hard to ver-
ify (Casper et al., 2023). As a consequence, there are
no theoretical guarantees for LfPF methods that are
used in real-world scenarios.

In this paper, we define the Direct Preference Pro-
cess, a model of preference-based learning in partially-
observable, non-Markovian environments. A key fea-
ture of the Direct Preference Process is that abstracts
away the details of how feedback is given to a learn-
ing agent, instead working “directly” with the ordinal
structure inferred from the feedback. This abstraction
is particularly well suited for LfPF problems, where a
variety of feedback mechanisms are used during train-
ing, including offline reward modelling (Ziegler et al.,
2020; Bai et al., 2022), once-per-episode trajectory
feedback (Chatterji et al., 2021) and online feedback
between trajectory segments (Christiano et al., 2017).

Our Contributions

• We define the Direct Preference Process, a
model of preference-based learning in partially-
observable, non-Markovian environments (Sec-
tion 4). We provide necessary and sufficient con-
ditions that determine when a Direct Preference
Process can be cast as an instance of reinforce-
ment learning (RL).

• We show that optimal policies exist in a Direct
Preference Process even when the preferences can-
not be expressed by reward, and generalize the
Bellman Optimality Equations to a larger class
of order relations (Section 5). In doing so, we
highlight the properties of reward-based objec-
tives that are not necessary in order for optimal
policies to exist.

• We derive conditions that determine when a
computationally-constrained agent is able to be-
have optimally (Section 6).

We focus on conditions that guarantee the existence
of optimal policies in order to determine when a LfPF
problem has well-defined solutions. Our work opens
up interesting areas of future research, both for the
theory and practice of preference-based learning.

2 RELATED WORK
In this section we review relevant sub-fields of LfPF.

Preference-based RL. Preference-based Reinforce-
ment Learning (PbRL) (Abdelkareem et al., 2022;
Wirth et al., 2017) describes a collection of RL tech-
niques used to solve sequential decision-making prob-
lems whose objectives are determined by a set of rel-
ative preferences. This sub-field of LfPF includes
RL from Human Feedback (RLHF) (Christiano et al.,

2017; Ziegler et al., 2020) and RL from AI Feedback
(RLAIF) (Bai et al., 2022; Lee et al., 2023), both of
which are popular methods of fine-tuning Large Lan-
guage Models. To the best of our knowledge, the
current results that guarantee the existence of opti-
mal policies in PbRL (Chatterji et al., 2021; Kong
and Yang, 2022; Saha et al., 2023; Xu et al., 2020;
Zhu et al., 2023) rely on the assumption that there is
an underlying controlled Markov process and reward
function which describe the transition dynamics and
preferences of the PbRL problem. We will relax both
of these assumptions in this paper, and instead an-
alyze preference-based learning problems in terms of
the ordinal structure of the preferences.

Ordinal Dynamic Programs. Our work is rem-
iniscent of ordinal dynamic programs (Mitten, 1974;
Sobel, 1975; Carraway and Morin, 1988; Weng, 2011).
Our model is most similar to Mitten’s Preference Or-
der Dynamic Program (Mitten, 1974), which searched
for conditions on the ordinal structure of the objec-
tives that could guarantee the existence of an optimal
policy. While Mitten assumed access to a set of pref-
erences between “intermediate policies” for each state,
we assume that the objectives are given by a single set
of preferences between distributions over trajectories,
which seems like a more reasonable assumption given
that feedback is typically collected over trajectories or
trajectory segments.

Our analysis significantly extends that of Mitten and
other prior ordinal dynamic programs. First, we aban-
don the Markov assumption and consider problems
that occur in partially observable, non-Markovian en-
vironments. Second, we highlight two structural prop-
erties (convexity and interpolation) as well as two con-
crete examples (Examples 12 and 17) of goals that lead
to the existence of optimal policies in the absence of
expected reward. These properties and examples are
essential to our theory, since they determine when it
is impossible for ordinal decision problems to be re-
considered as instances of reinforcement learning. To
the best of our knowledge, the connections between
preference relations and expected reward in RL have
only recently started to be considered (Bowling et al.,
2023; Shakerinava and Ravanbakhsh, 2022; Pitis et al.,
2022). Lastly, we provide additional conditions which
determine when it is possible for a computationally
constrained agent to behave optimally–an essential re-
sult for practical applications which has not been stud-
ied in prior work.

3 BACKGROUND

Given a finite set X, let Dist(X) be the set of proba-
bility distributions over X. For distributions A and B
over X and non-negative number α less than or equal
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to one, the distribution αA+(1−α)B assigns the prob-
ability of an element x ∈ X as αA(x) + (1− α)B(x).

We interpret a binary relation ⪯ on Dist(X) as a set of
relative preferences, so that for any two distributions
A and B over X, the statement “A ⪯ B” means that
B is at least as desirable as A. Outcome B is “strictly
preferred” to A, written A ≺ B, if A ⪯ B and ¬(B ⪯
A). Outcomes A and B are “⪯-equivalent”, written
A ∼ B, if both A ⪯ B and B ⪯ A.

Definition 1. A binary relation ⪯ on Dist(X) is a
preorder if it satisfies both of the following properties:

• (reflexivity) for any distribution A over X, A ⪯ A.

• (transitivity) for any three distributions A,B and
C over X, if A ⪯ B and B ⪯ C then A ⪯ C.

A preorder is total if for any two distributions A, B
over X, either A ⪯ B or B ⪯ A.

3.1 Agents and Environments
To describe interactions between a learning agent
and its environment, we consider a finite version the
agent-environment interface (Abel et al., 2023). This
framework is draws from related models of partially-
observable, non-Markovian learning problems (Dong
et al., 2022; Lu et al., 2023; Majeed, 2022; Hutter,
2016).

Definition 2. An agent-environment interface
(O,A, T ) consists of a finite set of observations O, a
finite set of actions A and a time horizon T ∈ N.

The finite horizon assumption is motivated by the fact
that in practice, human labelers rank trajectories, so
only a finite number of time steps is available to train.
However, we impose no restrictions on the transition
dynamics, so there may be an arbitrary (but finite)
number of training “episodes”. To avoid trivialities we
assume that both the action and observation sets are
non-empty. Extensions to infinite action and observa-
tion sets is left as an important area for future work.

For an agent-environment interface (O,A, T ), a set of
t-histories is defined for each non-negative integer t
less than or equal to T as follows: H0 = O and Ht+1 =
Ht × (A×O). We define H as the set of all histories,

H =

T⋃
t=0

Ht. (1)

We will refer to histories of length T as trajectories
and we will denote their set as Ω instead of HT . For
each non-negative integer t less than or equal to T ,
the projection ξ0:t : Ω → Ht maps each trajectory
to its first sub-history of length t. The environment
determines which histories are attainable in a given
learning problem.

Definition 3. An environment with respect to the
interface (O,A, T ) is a tuple e = (ρ0, ρ) consisting of
an initial distribution over observations ρ0 ∈ Dist(O)

and a transition probability function ρ : (
⋃T−1

t=0 Ht)×
A → Dist(O).

Notice that the transition dynamics in a learning en-
vironment may depend on the entire history, making
it a realistic model for practical applications.

Example 4 (Generative Language Models 1). An
agent-environment interface (O,A, T ) can describe the
interactions between a language model and a user,
where the set of observations consists of the possible
messages the user sends to the language model and
the set of actions consists of the possible messages the
model is able to send to the user. The environment
e models the user’s question patterns and prompts,
which may depend on the full conversation history.

The behaviour of an agent is defined by its policy.

Definition 5. A policy π with respect to interface
(O,A, T ) is a function π : H → Dist(A).

It is important to allow policies to depend on the full
history in Section 5 because we seek optimality con-
ditions that do not depend on the agent’s “state”, or
memory constraints. We address agents with mem-
ory constraints in Section 6, where the decision prob-
lem becomes partially-observable and non-Markovian.
This is typical when function approximation is used.

Important Distributions. Agents will be evaluated
according to the distributions their policies induce over
Ω. For each policy π and history ht, we define Dπ(ht)
as the distribution over Ω induced by starting from
history ht and following π in environment e thereafter.
More precisely, for each trajectory hT , Dπ(hT ) is equal
to the Dirac distribution concentrated at hT and for
each history ht of length less than T ,

Dπ(ht) =
∑
a∈A

π(a|ht)
∑
o∈O

ρ(o|ht, a)D
π(ht ·(a, o)), (2)

where ht · (a, o) is the history of length t+ 1 obtained
by appending the action-observation pair (a, o) to ht.
Similarly, we define Dπ(ht · a) as the distribution over
Ω induced by starting from history ht, selecting action
a and following π thereafter. Note that we are over-
loading notation here; Dπ may take either a history
or a history appended with an action as its argument.
The distributions Dπ(ht), Dπ(ht ·a) and Dπ(ht ·(a, o))
are related as follows:

Dπ(ht · a) =
∑
o∈O

ρ(o|ht, a)D
π(ht · (a, o)) (3a)

Dπ(ht) =
∑
a∈A

π(a|ht)D
π(ht · a). (3b)
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Attainable Histories. As in Abel et al. (2023), we
will only consider the performance of policies in his-
tories that occur can with non-zero probability in a
given environment e under some policy. For each non-
negative integer t less than or equal to T , the set of
attainable t-histories in e, denoted by He

t , is defined
recursively as follows: He

0 is equal to the support of ρ0
and

He
t+1 = {ht·(a, o) ∈ Ht+1 : ht ∈ He

t and ρ(o|ht, a) > 0}.
(4)

We define He =
⋃T

t=0 He
t as the set of attainable his-

tories in e and Ωe = He
T as the set of attainable tra-

jectories in e.

4 THE DIRECT PREFERENCE
PROCESS

An agent-environment interface, an environment and
a binary relation on the set of distributions over tra-
jectories define a Direct Preference Process.

Definition 6. A Direct Preference Process
(O,A, T, e,⪯) consists of an agent-environment inter-
face (O,A, T ), an environment e and a binary relation
⪯ on the set of distributions over Ω.

The distinctive feature, and fundamental premise of
the Direct Preference Process is that the preference
relation ⪯ defines the goals of a learning problem. No-
tably, we do not assume that these objectives have any
quantifiable metric structure. However, when a nu-
merical objective function does convey the goals of a
decision problem, there is an implicit Direct Preference
Process.

Example 7 (Generative Language Models 2). Given
the interface (O,A, T ) and environment e from Ex-
ample 4, the goal of the language model may be to
maximize a performance function φ : Dist(Ω) → R.
This induces a preference relation ⪯φ on Dist(Ω), de-
fined for each pair of distributions A and B over Ω
as:

A ⪯φ B ⇐⇒ φ(A) ≤ φ(B).

The Direct Preference Process (O,A, T, e,⪯φ) under-
lies this decision problem.

A policy π is optimal in a Direct Preference Process
if it achieves the most desirable outcome in every at-
tainable start history.

Definition 8. Given a Direct Preference Process
(O,A, T, e,⪯), a policy π is ⪯-optimal (or simply op-
timal) if for every attainable history ht and policy π′,
Dπ′

(ht) ⪯ Dπ(ht).

In Example 7, the language model’s policy is optimal
for a given user if it achieves the best performance in
every attainable conversation history.

4.1 Reward-Based Objectives
As noted in Section 2, the current analyses of LfPF
problems assume that preferences are derived from an
underlying reward function. While ordinal dynamic
programs do not make this assumption outright, it is
unclear whether or not an underlying reward is implied
by the ordinal structure imposed. In contrast to both
of these models, the Direct Preference Process comes
with necessary and sufficient conditions that determine
whether goals can be expressed by the expected cumu-
lative sum of numerical rewards.

Definition 9. Let (O,A, T, e,⪯) be a Direct Pref-
erence Process. We say that ⪯ is expressed by the
expected reward criterion if there is a function
r : H → R such that for any two distributions A and
B over Ω,

A ⪯ B ⇐⇒ EA

[
T∑

t=0

r(Ht)

]
≤ EB

[
T∑

t=0

r(Ht)

]
. (5)

We say that r expresses ⪯ if (5) holds for any two
distributions A and B over Ω.

As an important sanity check, we now establish, in
Theorem 10, that when goals are expressed by the ex-
pected reward criterion, the above definition of an op-
timal policy can be re-stated in terms the value func-
tion criterion found in the RL literature (Sutton and
Barto, 2018; Puterman, 1994). For a reward function
r : H → R, we define the r-value of a policy π in
history ht as

Vπ(ht; r) = Eπ

[
T∑

s=t

r(Hs)|Ht = ht

]
, (6)

where the conditional expectation is taken with respect
to Dπ(ht).

Theorem 10. Let (O,A, T, e,⪯) be a Direct Pref-
erence Process and suppose that a reward function
r : H → R expresses ⪯. A policy π is ⪯-optimal if
and only if for each attainable history ht,

Vπ(ht; r) = sup
π′

Vπ′(ht; r).

As a consequence of Theorem 10, the standard RL
problem can be seen as a Direct Preference Process,
where the performance of a policy is only considered
on histories that are attainable in an environment. A
natural next question is what kinds of Direct Prefer-
ence Processes can be cast as RL problems? Stated in
Theorem 13, the von Neumann-Morgenstern (vNM)
Expected Utility Theorem (von Neumann and Mor-
genstern, 1947) provides a decisive answer to this ques-
tion. Their result depends on the following properties.
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Definition 11. Let X be a finite set. A total preorder
⪯ on the set of distributions over X is said to satisfy:

i. consistency (or is consistent) if for every α ∈
(0, 1) and any distributions A,B and C over X,
A ⪯ B implies

αA+ (1− α)C ⪯ αB + (1− α)C.

ii. convexity (or is convex) if for every α ∈ (0, 1)
and any distributions A,B and C over X, A ⪯ B
if and only if

αA+ (1− α)C ⪯ αB + (1− α)C.

iii. interpolation if for any distributions A,B and C
over X, if A ⪯ B and B ⪯ C then there exists
α ∈ [0, 1] such that

αA+ (1− α)C ∼ B.

The following example clarifies the difference between
consistency and convexity, drawing from a scenario
with unacceptable risk (Jensen, 2012).

Example 12. Let E be a proper non-empty subset
of Ω, interpreted as an event of “unacceptable risk”.
Given a real-valued function u on Ω and a real number
β such that such that u is strictly greater than β on
Ω, define the performance φ : Dist(Ω) → R as:

φ(A) =

{∑
ω∈Ω u(ω)A(ω) A(E) = 0

βeA(E) A(E) > 0,

where A(E) is the probability of event E under A.
Assuming that u is non-constant on the complement
of E, the relation ⪯φ on Dist(Ω) defined by

A ⪯φ B ⇐⇒ φ(A) ≤ φ(B),

is a total consistent preorder that is not convex. More-
over, ⪯φ does not satisfy interpolation.

Totality, transitivity, convexity and interpolation are
the axioms of von Neumann and Morgenstern’s semi-
nal result. We state their result in Theorem 13 using
our notation. In the general case Ω may be replaced
with any finite set.

Theorem 13 (von Neumann-Morgenstern). A binary
relation ⪯ on the set of distributions over Ω is a total
convex preorder satisfying interpolation if and only if
there is a reward function r : H → R that expresses
⪯. Furthermore, the function ur : Ω → R given by
ur(ω) =

∑T
t=0 r(ξ0:t(ω)) is unique up to positive affine

transformations.

Theorem 13 is a crucial feature of the Direct Prefer-
ence Process. On one hand, it highlights the back-
drop assumptions that are made in the PbRL litera-
ture (Chatterji et al., 2021; Kong and Yang, 2022; Saha
et al., 2023; Xu et al., 2020; Zhu et al., 2023) which as-
sume that preferences are derived from an underlying
reward function. On the other hand, it will allow us to
illustrate structural properties and concrete examples
of decision problems that have optimal policies in the
absence of expected reward.

5 CONDITIONS FOR OPTIMAL
POLICIES

Without any assumptions on the goals of a Direct Pref-
erence Process, optimal policies may not exist, making
it impossible to proceed with a meaningful theory of
preference-based learning. Therefore, in this section
we address the following question:

Q1: Given a Direct Preference Process (O,A, T, e,⪯),
what conditions on ⪯ are sufficient to guarantee the
existence of a ⪯-optimal policy?

Our main result of this section, Theorem 15, concludes
that (Q1) is satisfied whenever the restriction of ⪯ onto
the set of distributions over attainable trajectories is a
total, consistent preorder. One might have hoped that
“rational” preferences, given by total preorders, would
have been sufficient to guarantee that optimal policies
exist. The next proposition shows that this is not the
case.

Proposition 14. There is an agent-environment in-
terface (O,A, T ), environment e and a total preorder
⪯ on the set of distributions over Ω such that the Di-
rect Preference Process (O,A, T, e,⪯) has no optimal
policy.

Proof. Let O = {o0, o1}, A = {a0, a1}, and
T = 2. To keep notation light, define h0

1 = (o0, a0, o0).
Suppose that an environment e starts in o0 and
that for each history ht, action a and observation o,
ρ(o|ht, a) = 1/2. For each trajectory ω, let u(ω; a1) be
the number of times that action a1 occurs in ω. We
define the performance φ : Dist(Ω) → R as:

φ(A) =

{∑
ω∈Ω A(ω)u(ω; a1) supp(A) ⊆ Cyl(h0

1)

−
∑

ω∈Ω A(ω)u(ω; a1) else,
(7)

where Cyl(h0
1) is the subset of Ω consisting of every

trajectory that begins with h0
1. The performance φ

measures the expected number of times that action
a1 occurs in a given distribution. It may be “bad” or
“good” for a1 to occur under a distribution A, depend-
ing on whether or not A is supported by Cyl(h0

1). The
performance induces a total preorder ⪯φ on Dist(Ω)
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defined for any two distributions A and B over Ω as:

A ⪯φ B ⇐⇒ φ(A) ≤ φ(B).

For contradiction, assume there is an optimal policy
π⋆ for the Direct Preference Process (O,A, T, e,⪯φ).
The distribution Dπ⋆

((o0)) minimizes the expected
number of times that a1 occurs since for any pol-
icy π, Dπ((o0)) is not supported by Cyl(h0

1). In
particular, π⋆ must select action a0 in history h0

1.
Let π′ be a policy that selects action a1 in history
h0
1. Then φ(Dπ⋆

(h0
1)) = 0 and φ(Dπ′

(h0
1)) = 1. So

Dπ⋆

(h0
1) ≺φ Dπ′

(h0
1), contradicting the assumption

that π⋆ is optimal.

Notice that the relation ⪯φ defined in the proof
of Proposition 14 does not satisfy consistency. To
see this, consider ω1 = (o0, a0, o0, a1, o0), ω2 =
(o0, a0, o0, a0, o0), ω3 = (o1, a0, o0, a0, o0). For each
i ∈ {1, 2, 3}, let δ(ωi) be the Dirac distribution con-
centrated at ωi. Then δ(ω1) ≻φ δ(ω2) but for any
positive number α less than one,

αδ(ω1) + (1− α)δ(ω3) ≺φ αδ(ω2) + (1− α)δ(ω3).

If, however, the goals of a Direct Preference Process
also satisfy consistency, then we have the following re-
sult extending far beyond (Q1) that characterizes op-
timal policies with a series of recursive relations.

Theorem 15. Let (O,A, T, e,⪯) be a Direct Pref-
erence Process. Whenever the restriction of ⪯ onto
Dist(Ωe) is a total, consistent preorder:

i. There is a deterministic ⪯-optimal policy.

ii. If a policy π satisfies the following relation for
each attainable history ht of length less than T
and action a,

Dπ(ht) ⪰ Dπ(ht · a), (8)

then π is a ⪯-optimal policy.

Paired with vNM’s Expected Utility Theorem, The-
orem 15 has two profound implications. First, it is
possible for agents to solve preference-based learn-
ing problems even when the objectives cannot be ex-
pressed by the expected reward criterion.

Corollary 16. Let (O,A, T, e,⪯) be a Direct Prefer-
ence Process. If the restriction of ⪯ onto Dist(Ωe) is
a total consistent preorder that is either not convex
or does not satisfy interpolation, then an optimal pol-
icy exists but ⪯ cannot be expressed by the expected
reward criterion.

This is the case in Example 12 as well as our next
example.

Example 17 (Tie-breaking Criterion). Let u1 and u2

be two real-valued functions on Ω. For each i ∈ {1, 2}
and distribution A over Ω, let ui(A) denote the ex-
pected value of ui under A. Define the relation ⪯ on
Dist(Ω) according to the following two rules:

R1: For any two distributions A and B over Ω, if
u1(A) < u1(B) then A ≺ B.

R2: For any two distributions A and B over Ω, if
u1(A) = u1(B) then (A ⪯ B ⇐⇒ u2(A) ≤
u2(B)).

Under these rules, u2 acts as a “tie-breaking criterion”
when two distributions achieve the same performance
on u1. Assuming that u1 is non-constant and there are
distributions A and B such that u1(A) = u1(B) and
u2(A) ̸= u2(B), the relation ⪯ defined by (R1) and
(R2) is a total, convex preorder that does not satisfy
interpolation.

A second implication of Theorem 15 is that the Bell-
man Optimality Equations (Bellman, 1957) that char-
acterize optimal policies in RL are a consequence of
a more general result that holds for total consistent
preorders. We obtain Bellman’s equations as a conse-
quence of the second part of Theorem 15.

Corollary 18. Let (O,A, T, e,⪯) be a Direct Prefer-
ence Process. Whenever ⪯ is expressed by a reward
function r : H → R, a policy π is optimal if and only
if it satisfies the following equation for each attainable
history ht of length less than T :

Vπ(ht; r) = max
a∈A

(
r(ht) +

∑
o∈O

ρ(o|ht, a)Vπ(ht · (a, o); r)

)
.

In light of Proposition 14 and Theorem 15, a minimal
and robust assumption to further develop a theory of
LfPF is the following.

Assumption 1. The restriction of ⪯ onto the set of
distributions over attainable trajectories is a total con-
sistent preorder.

5.1 Optimal Action Sets

A third consequence of Theorem 15 is that all opti-
mal policies in a Direct Preference Process satisfying
Assumption 1 are characterized by a set of “optimal
actions” for each attainable history. This gives rise to
a useful characterization of optimal policies which we
will use in the next section.

Definition 19. Let (O,A, T, e,⪯) be a Direct Pref-
erence Process. For each policy π and history ht of
length less than T , define A⋆

π(ht) as the set of actions
a for which Dπ(ht ·a) is a least upper bound for the set
{Dπ(ht ·a′) : a′ ∈ A}. More precisely, A⋆

π(ht) consists
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of every action a for which the following holds:

∀a′ ∈ A, Dπ(ht · a) ⪰ Dπ(ht · a′). (9)

Lemma 20. Let (O,A, T, e,⪯) be a Direct Preference
Process that satisfies Assumption 1. For any two op-
timal policies π and π′ and attainable history ht of
length less than T , A⋆

π(ht) = is equal to A⋆
π′(ht).

In view of this lemma, we drop the dependence of
A⋆

π(ht) on π when π is an optimal policy. We call
A⋆(ht) the optimal action set for ht.

Corollary 21. Let (O,A, T, e,⪯) be a Direct Prefer-
ence Process that satisfies Assumption 1. A policy π
is optimal if and only if for each attainable history ht

of length less than T , π(·|ht) is supported by A⋆(ht).

6 OPTIMAL FEATURE-BASED
POLICIES

In real-world applications, agents face computational
constraints and make decisions based on a limited set
of relevant information, known as “features”, derived
from their history. Hence, the concept of an opti-
mal “feature-based” policy is crucial for a theory of
preference-based learning. This is especially important
for decision problems whose objectives lack a quantita-
tive metric structure, since we cannot evaluate feature-
based policies in terms of “near-optimal” behaviour.

The main question of this section (Q2) concerns a
computationally-constrained agent which can only ac-
cess a finite set of features, denoted as X . A feature
map ϕ : H → X determines the feature retained from
each history.

Example 22. Given a positive integer k < T , the
feature of each history can be the sub-string of the
most recent k observations and k − 1 actions. In this
case, X =

⋃k−1
l=0 Hl and the feature map ϕ is defined

for each history ht = (o0, a0, . . . , at−1, ot) as:

ϕ(ht) :=

{
ht t < k

(ot−k+1, at−k+1, . . . , at−1, ot) t ≥ k.

We define a feature-based policy as one whose action
selection in each history ht depends only on ϕ(ht).

Definition 23. Given a feature map ϕ, π is a feature-
based policy if for each pair of t-histories ht, h

′
t of

length less than T ,

(ϕ(ht) = ϕ(h′
t)) =⇒ (π(·|ht) = π(·|h′

t)). (10)

We define Πϕ as the set of feature-based policies.

In Example 22, Πϕ is the set of policies whose action
selection in each history depends only on the history

through its final k observations and k−1 actions. The
core objective of this section is to address (Q2):

Q2: Given a Direct Preference Process that satisfies
Assumption 1, what conditions does a feature map ϕ
need to satisfy in order to guarantee that Πϕ contains
an optimal policy?

The optimal action sets described in Section 5.1 pro-
vide a necessary and sufficient condition to address
(Q2).

Proposition 24. If a Direct Preference Process
(O,A, T, e,⪯) satisfies Assumption 1 then for any fea-
ture map ϕ, Πϕ contains an optimal policy if and only
if for each attainable history ht of length less than T ,⋂

h′
t∈ϕ−1(ϕ(ht))∩He

t

A⋆(h′
t) ̸= ∅. (11)

Roughly speaking, Proposition 24 shows that when the
goals of a Direct Preference Process satisfy Assump-
tion 1, an optimal feature-based policy exists if, and
only if, for each attainable t-history ht, there is an ac-
tion that is simultaneously optimal for every attainable
t-history in the preimage of ϕ(ht).

6.1 Embedded Preferences

Although Proposition 24 gives both a necessary and
sufficient condition that answers (Q2), the condition
is rather generic and it is hard to check whether or
not a system satisfies it. In this section we present
Theorem 31, which provides verifiable conditions to
answer (Q2). While not necessary, these conditions
offer practical ways to ensure that optimal feature-
based policies exist. They rely on the following notion
of weighted averages.

Definition 25 ((ϕ, γ)-Frequency). Let ϕ : H → X
be a feature map and (γt)

T−1
t=1 be a sequence of non-

negative numbers that are not all zero. Given two
non-negative integers t1 and t2 such that t1 ≤ t2 ≤ T
and for which

∑t2−1
t=t1

γt is non-zero, define the function
f
(ϕ,γ)
t1:t2 : X ×A× Dist(Ω) → [0, 1] as

f
(ϕ,γ)
t1:t2 (x, a|D) :=

1∑t2−1
t=t1

γt

t2−1∑
t=t1

γtPD((Xt, At) = (x, a)),

(12)
where PD((Xt, At) = (x, a)) is the probability that
the feature-action pair (x, a) is visited at time t un-
der distribution D. We say that f

(ϕ,γ)
t1:t2 (x, a|D) is the

(ϕ, γ)-frequency of (x, a) in distribution D in be-
tween t1 and t2. When

∑t2−1
t=t1

γt = 0 we define
f
(ϕ,γ)
t1:t2 (x, a|D) = 0. We abbreviate f

(ϕ,γ)
0:T (x, a|D) to

f (ϕ,γ)(x, a|D).
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Interpretation of γ. The (ϕ, γ)-frequency is a
weighted measure of how often each feature-action
pair is visited in a given distribution over Ω. The
weights (γt)

T−1
t=1 measure the importance of the time

at which feature-action pairs are visited. For instance,
if γt is equal to one for each time t, the distribution
f (ϕ,γ)(·|D) measures the relative frequency of feature-
action pairs visited under D. If γt = αt for some posi-
tive number α less than one, f (ϕ,γ)(·|D) measures the
α-discounted frequency of feature-action pairs visited
under D.

Lemma 26. When
∑t2−1

t=t1
γt is non-zero the function

(x, a) 7→ f
(ϕ,γ)
t1:t2 (x, a|D) defines a probability distribu-

tion over the set of feature-action pairs, which we de-
note by f

(ϕ,γ)
t1:t2 (·|D).

Using the (ϕ, γ)-frequency map, we are now able to
describe goals that “only depend” on the weighted fre-
quency of feature action pairs.

Definition 27. Let (O,A, T, e,⪯) be a Direct Prefer-
ence Process and let ⪯◦ be a binary relation on the set
of distributions over X ×A. We say that ⪯ preserves
and reflects ⪯◦ via (ϕ, γ)-frequency if for any two
distributions A and B over Ω,

A ⪯ B ⇐⇒ f (ϕ,γ)(·|A) ⪯◦ f (ϕ,γ)(·|B). (13)

We say that ⪯ embeds into ⪯◦ via (ϕ, γ)-frequency
whenever ⪯ preserves and reflects ⪯◦ via (ϕ, γ)-
frequency, despite the fact that the map D 7→
f (ϕ,γ)(·|D) is neither injective nor surjective, and thus
not an order embedding.

The next two examples show how the (ϕ, γ)-frequency
embedding is useful when preferences are given be-
tween observation-action pairs (Stiennon et al., 2020)
or trajectory segments (Christiano et al., 2017; Kim
et al., 2022). In these situations, we can use the
(ϕ, γ)-frequency map to define a preference relation on
Dist(Ω) from the preference data.

Example 28 (Preferences over Observation-Action
Pairs). Consider v1, v2 : O × A → [0, 1] and define
the relation ⪯◦ on Dist(O ×A) according to the Tie-
breaking Criterion from Example 16. If ϕ maps each
history to its most recent observation, then X = O and
⪯◦ is an ordering on Dist(X × A). For a sequence of
positive weights (γt)T−1

t=0 , we can define a relation ⪯ on
Dist(Ω) via Equation 13. In this case, the preferences
given by ⪯ depend only on the weighted frequency of
observation-action pairs. In particular, distributions A
and B over Ω are ⪯-equivalent if they visit all obser-
vation action pairs with the same weighted frequency.

Example 29 (Preferences over Trajectory Segments).
Let k be a positive integer less than T . Suppose that

preference data is available for histories of length up
to k, giving rise to a binary relation ⪯◦ on the set of
distributions over

⋃k
l=0(Hl×A). With the feature map

defined in Example 22 and a sequence of non-negative
numbers γ = (γt)

T−1
t=0 , the goals of a Direct Preference

Process can be defined using ⪯◦ and Equation 13.

Although Definition 27 ensures that the learning
objectives are fully described by distributions over
feature-action pairs, we require additional assumptions
on the transition dynamics of the environment to en-
sure that optimal feature-based policies exist.

Definition 30. A Direct Preference Process
(O,A, T, e,⪯) and feature map ϕ satisfy the Markov
Feature Assumption when the following two
statements hold for each pair of attainable t-histories
ht, h

′
t of length less than T :

• If ϕ(ht) = ϕ(h′
t) then for each action a,

ρ(·|ht, a) = ρ(·|h′
t, a).

• If ϕ(ht) = ϕ(h′
t) then for each action a and obser-

vation o, ϕ(ht · (a, o)) = ϕ(h′
t · (a, o)).

The latter conveys the notion that if a feature accounts
for all the retained information in each history, then
the feature in each history depends on its sub-histories
only through previous features. This is satisfied by the
agents considered in many popular agent designs (Lu
et al., 2023; Mnih et al., 2015; Osband et al., 2016).
Combined with Definition 27, the Markov Feature As-
sumption guarantees that optimal feature-based poli-
cies exist.

Theorem 31. Let (O,A, T, e,⪯) be a Direct Prefer-
ence Process and ⪯◦ a total consistent preorder on
Dist(X × A) such that ⪯ embeds into ⪯◦ via (ϕ, γ)-
frequency.

i. Every policy π that satisfies the following re-
cursive relation for each attainable history ht of
length less than T and action a is a ⪯-optimal
policy:

f
(ϕ,γ)
t:T (·|Dπ(ht)) ⪰◦ f

(ϕ,γ)
t:T (·|Dπ(ht · a)). (14)

ii. If the Markov Feature Assumption is satisfied
then Πϕ contains a ⪯-optimal policy.

The first part of Theorem 31 shows that if the goals of
a Direct Preference Process are preserved and reflected
by a total consistent preorder on the set of distribu-
tions over feature-action pairs, then a policy is optimal
whenever it achieves the most desirable distribution
over future feature-action pairs in every starting his-
tory. However, without any assumptions on the envi-
ronment’s transition dynamics, a feature-based policy
may not satisfy the conditions in part (i). The Markov



Jonathan Colaço Carr, Prakash Panangaden, Doina Precup

Feature Assumption is a strong assumption and relax-
ing these conditions is an important area for future
work. When the Markov Feature Assumption does not
hold, Proposition 24 provides an alternative means to
guarantee the existence of feature-based policies.

6.2 Connection to Markov Rewards
We introduced the embedding of preferences via (ϕ, γ)-
frequency as an abstract property that might under-
pin the goals of a Direct Preference Process. Exam-
ple 22 demonstrates the practical utility of this prop-
erty when preference data is collected on trajectory
segments rather than full-length trajectories. Never-
theless, some readers may be hesitant about its justifi-
cation. To address these doubts, our final result shows
that the (ϕ, γ)-frequency embedding is implied by any
objective defined by Markov rewards.

Theorem 32. Let (O,A, T, e,⪯) be Direct Preference
Process, ϕ : H → X be a feature map and (γt)

T−1
t=1 be

a sequence of non-negative numbers that are not all
zero. The following two statements are equivalent:

1. ⪯ embeds into a total convex preorder ⪯◦ satis-
fying interpolation via (ϕ, γ)-frequency.

2. There is a reward function r : X × A → R such
that for any two distributions D and D′ over Ω,
D ⪯ D′ if and only if

ED

[
T−1∑
t=1

γtr(Xt, At)

]
≤ ED′

[
T−1∑
t=1

γtr(Xt, At)

]
.

It is interesting to compare this result to vNM’s Ex-
pected Utility Theorem. If the goals are expressed
by a feature-action reward function, as opposed to
a history-based reward, then ⪯ embeds into an un-
derlying feature-action preference via (ϕ, γ)-frequency.
However, the feature-action reward function which ex-
pressed ⪯ may not be unique, as multiple feature-
action preferences could preserve and reflect ⪯. This
result complements previous work on Markov reward
expressiveness in finite MDPs (Abel et al., 2021; Skalse
and Abate, 2023).

7 CONCLUSION

We introduced the Direct Preference Process, a model
of preference-based learning in partially-observable,
non-Markovian environments. Unlike previous work,
we did not assume that preferences were generated by
an underlying reward function. Instead we used con-
ditions on the ordinal structure of the preferences to
guarantee the existence of optimal policies. We showed
that it is possible for an agent to behave optimally with
respect to a given set of preferences even when there
is no corresponding reward function that captures the

same learning goal. Lastly, we provided two results to
determine when it is possible for a computationally-
constrained agent to behave optimally, as well as a
characterization of goals expressed by Markov rewards.

The Direct Preference Process opens up many inter-
esting avenues for future work. An extension of this
framework for infinite observation and action sets is
important for preference-based robotics tasks. For
practitioners, it is interesting to study whether agents
can perform well without learning a reward model. Re-
cent findings (Rafailov et al., 2023; An et al., 2023;
Kang et al., 2023) have shown that this may be the
case. Moreover, the notion of a (ϕ, γ)-frequency em-
bedding could be used to derive relevant features for
a preference-based decision problem. Finally, it would
be very useful to study the hardness of learning fea-
ture maps. We suspect that this may highlight dif-
ferences between reward-based vs purely preference-
based agents.
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