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Abstract

We discuss the problem of finding a good state repre-
sentation in stochastic systems with observations. We
develop a duality theory that generalizes existing work
in predictive state representations as well as automata
theory. We discuss how this theoretical framework can
be used to build learning algorithms, approximate plan-
ning algorithms as well as to deal with continuous ob-
servations.

Introduction
Learning and planning under uncertainty is a crucial focus
of modern AI research. In this paper, we address the is-
sue of sequential decision making. Much of the work in
this field is based on the framework of Partially Observable
Markov Decision Processes (POMDPs) (Kaelbling et al.,
1998). In this framework, problems are modeled using dis-
crete states and actions. Actions cause stochastic transitions
between states. At each time step, a stochastic observa-
tion is also generated, based on the current state and the
previous action. Much work has been devoted to planning
in POMDPs when a model of the system (in terms of the
stochastic transitions between states and the probabilitydis-
tributions over observations) is known. Unfortunately, learn-
ing POMDPs from data is a very difficult problem. One
standard algorithmic solution is expectation maximization
(EM) (Chrisman, 1992), but for POMDPs this approach is
plagued by local minima (more so than for other probabilis-
tic models) and works poorly in practice unless a good initial
model of the system is used (Shatkay & Kaelbling, 1997).
History-based methods (McCallum, 1995) often work bet-
ter in practice but are less general. A lot of recent research
has been devoted to finding alternative representations for
such systems, e.g., diversity-based representation (Rivest
& Schapire, 1994), predictive state representations (PSRs)
(Littman et al., 2002) and TD-networks (Sutton & Tanner,
2005). These approaches aim to combine the generality of
POMDPs with the ease of learning of history-based meth-
ods. The key idea underlying all of these approaches is that
the state of the system is not considered as predefined; in-
stead, it is viewed as a sufficient statistic for making (prob-
abilistic) predictions about future trajectories. However, the
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models themselves are different and their relationships are
only partially understood at the moment.

In this paper, we develop a duality theory for POMDPs,
which unifies much of the existing work on predictive rep-
resentations. We show how, for any POMDP, one can de-
velop two alternative representations: a dual machine and
a double-dual machine. The key idea in the development
is that of making measurements on the system, which we
call experiments. Experiments are sequences of actions in-
terspersed with observations. They generalize previous no-
tions of tests from the literature on predictive state repre-
sentations. Both of the alternative representations that we
present allow an accurate prediction of the probability of any
experiment. The double-dual representation is of particular
interest, because it has adeterministictransition structure,
and no hidden state. Instead, its states can be thought of as
“bundles” of predictions for experiments. As such, this rep-
resentation holds the promise of much better planning and
learning algorithms than those currently available. Our work
also generalizes similar representations from automata the-
ory (Brzozowski, 1962; Rivest & Schapire, 1994). We show
how existing predictive representations can be viewed from
the perspective of this framework. We also discuss the impli-
cations of these alternative representations for learningalgo-
rithms, approximate planning algorithms as well as working
with continuous observations.

Background and definitions
A POMDP is a tupleM = 〈S,A,O,δa : S×S−→ [0,1],γa :
S×O −→ [0,1]〉 whereS is a finite set of states;A is a finite
set of actions;O is a finite set of observations;δa(s,s′) =
Pr(st+1 = s′|st = s,at = a),∀a∈ A is a stochastic transition
function; andγa(s,o) = Pr(ot+1 = o|at = a,st+1 = s),∀a∈A
is an emission function, describing the probabilities of dif-
ferent observations. We are omitting here an explicit repre-
sentation of rewards, which are used to determine the opti-
mal strategy for choosing actions. Instead, one can think of
rewards as part of the observation vector.

Our goal is to develop an alternative representation, in
which the notion of state is redefined. We want to obtain
a representation that is indistinguishable from the original
system, in terms of the probability that it assigns to any tra-
jectory. In order to formalize this goal, we define the notions
of tests and experiments.



Definition 1 A test t is a non-empty sequence of actions fol-
lowed by an observation, i.e. t= a1 · · ·ano, with n≥ 1.

Definition 2 An experiment is a non-empty sequence of
tests e= t1 · · ·tm with m≥ 1.

Note that these definitions force one to take an action in or-
der to observe anything; this is a consequence of the way ob-
servations are defined. If observations only depend on states,
this restriction can be lifted. This notion of tests has been
callede-testsin previous work by Ruddary & Singh (2004).
The notion ofs-tests, present in some of the literature on
predictive state representations (Littman et al., 2002; Singh
et al., 2004), corresponds to a special case of experiments in
which all component tests contain just one action. However,
we do not limit ourselves here to s-tests, as the algebraic
structure they define is difficult to work with. Also, as we
will see later, it is computationally advantageous to consider
tests based on extended sequences of actions.

In order to proceed with the construction of the dual to a
POMDP, we need to define a generalization of the transition
function that works on sequences of actions.

Definition 3 Given a POMDP, we define a transition func-
tion δα, whereα is a sequence of actions, inductively:δa is
as in the POMDP model, and:

δaα(s,s′) = ∑
s′′∈S

δa(s,s
′′)δα(s′′,s′),∀s,s′ ∈ S. (1)

Let t = αo be a test. We denote by〈s|t|s′〉 the probability
of the system arriving in states′ and emittingo if the action
sequenceα is executed starting froms. Givenα = a1 · · ·an ∈
ando∈ O we have

〈s|αo|s′〉 = δα(s,s′)γan(s
′
,o). (2)

Note the need to look at the last action in the sequence; this
is due to the standard way in which POMDPs are defined,
and explains why we must insist that experiments have at
least one action. A similar notion for longer experiments
can be constructed by induction as follows:

〈s|te|s′〉 = ∑
s′′∈S

〈s|t|s′′〉〈s′′|e|s′〉. (3)

One can define the notion of measurement for an experiment
e from states by just summing over the final states. We use
the same angle bracket notation for this.

Definition 4 The prediction of experiment e for state s,
〈s|e〉, is defined as:

〈s|e〉 = ∑
s′∈S

〈s|e|s′〉. (4)

Note that this is the same as the definition of predictions in
the literature on predictive state representations: the predic-
tion gives the probability of recording the specified sequence
of observations, at the specified times, given that the speci-
fied sequence of actions is executed.

Our goal is to examine representations for POMDPs that
capture behavior, rather than being specified a priori. One
way to “probe” the behavior of the system described byM

is to run experiments, starting at different hidden states, and

record the results. Running an experimente= α1o1 . . .αmom
means that the sequence of actionsα1 . . .αn corresponding
to e is executed. The experiment “succeeds” if the cor-
responding sequence of observationso1 . . .om is observed;
otherwise, the experiment “fails”. The success of an exper-
iment can thus be considered a binomial random variable;
the prediction for the experiment from a given states de-
fines the probability distribution of this variable ats. Hence,
the prediction for the experiment can be estimated from data
by counts. Of course, if two states cannot be distinguished
by any experiments, they are redundant and one of them can
be eliminated from the description of the system. Similarly,
if two experiments always give the same results, they are
redundant. We formalize these intuitions in the following
definitions:

Definition 5 Two experiments e1 and e2 are equivalent for
M , denoted e1 ∼M e2, if and only if〈s|e1〉 = 〈s|e2〉 for all
s∈ S. We denote by[e]M the∼M -equivalence class of e and
by 〈s|[e]M 〉 the prediction for any experiment in this class,
when it is executed from state s.

In other words, experiments are equivalent if their predic-
tions are identical from any states inM . We define an anal-
ogous equivalence relation over states.

Definition 6 Two states s1,s2 ∈ S are equivalent forM , de-
noted s1 ∼M s2, if and only if they cannot be distinguished
by any experiment, i.e.,〈s1|e〉 = 〈s2|e〉 for all experiments
e. We denote by[s]M the∼M -equivalence class of s and by
〈[s]M |e〉 the prediction for the success of experiment e when
started from any state in the class[s]M .

These are easily shown to be equivalence relations, and they
are at the hinge of the duality theory.

Duality for POMDPs
In mathematics, duality is usually associated with a general
transformation applied to a mathematical object or structure.
Applying the transformation once usually yields a different-
looking structure. Applying the transformation twice yields
the original object (or something indistinguishable from it).
Perhaps the most popular notion of duality is the one used
in mathematical programming, between the primal and dual
representation of an optimization problem. However, many
other dualities exist, some giving rise to very useful alterna-
tive representations. For example, Pontryagin duality gives
rise to the notion of Fourier transform.

In this section, we will use the equivalence relations
defined above in order to define the generic transforma-
tion needed for duality. We will first define the dual
representation, using the notion of equivalence of experi-
ments. This should be reminiscent of the work of Rivest &
Schapire (1994) on diversity-based representations for au-
tomata. We will then define the double dual by using the
notion of equivalence of states. Intuitively, it should be clear
that the representation to be created will be identical to the
original system, since only equivalences are used at every
step. The generic transformation that will provide the dual
representation relies on switching the roles of states and ex-
periments.



In order to understand what the “dual” view of a POMDP
might mean, consider for a moment the case of adetermin-
istic POMDP, in which all transitions and all emissions have
probability 0 or 1. One way to describe the system is to
specify, for each states, the collection of experiments that
succeed when started ins. This is a “forward” view, useful
to make predictions about the future, as well as for forward
planning. A different approach is to specify for each exper-
iment aprecondition, i.e., the set of states from which the
experiment will succeed. This is a “backward” view, used in
classical AI by backward planning algorithms. We will call
this thedual representation. Of course, the notion of pre-
condition cannot be used directly in probabilistic systems.
However, a dual representation based on this intuition can
still be defined, as follows:
Definition 7 We define the dualM ′ of a POMDP M as
a tuple: M ′ = (S′,A,O ′

,δ′a : S′ −→ S′,γ′ : S′×O ′ −→ [0,1],
where:
• the new set of states is the equivalence classes of tests

from M : S′ = {[e]M }

• the new observations are the states ofM : O ′ = S
• the transition functions are defined as:δ′a([e]M ) =

[ae]M ,∀a∈ A
• the emission function isγ′([e]M ,s) = 〈s|[e]M 〉

Note that this is adeterministictransition system (see the
definition of δ′a), which is somewhat surprising given that
we started with a stochastic system. This is due to the fact
that the information is organized around experiments from
the previous machine, and experiments are constructed from
other experiments using concatenation. This is essentially
the structure reflected in the transition functionsδ′a Note also
that the emission functionγ′ is not a probability distribu-
tion anymore; rather, it specifies to what extent each state
is a “precondition” for the experiments in each equivalence
class, using the notion of conditional probability. Also,γ′
does not depend on actions (like the emission function in
the original system). This is due to the fact that actions are
part of the experiments.

The dual machine isnot a generative model, and its pur-
pose is not to be executed. This is apparent from the fact
that the emission function is not normalized. To understand
this, note that if we consider a deterministic POMDP (like
we did initially), the dual provides, for each experiment, ex-
actly the set of states from which the experiment succeeds.
This is a set, and cannot be converted into probabilities of
the form p(s|[e]M ) unless we have an initial state distribu-
tion. However, we want to stay away from initial distribu-
tions, because we are seeking a representation of the system
that is independent of where it starts. Finally, note that our
dual is a strict generalization of the update graph used by
Rivest & Schapire (1994) for deterministic finite automata
with observations.

The dual representation could potentially be quite useful
for backward planning approaches. In MDPs, a typical ex-
ample of such an approach is prioritized sweeping (Moore &
Atkeson, 1993), which drastically reduces the time for com-
puting a value function, by propagating information to pre-
decessor states. A similar role is played by eligibility traces

in reinforcement learning (Sutton & Barto, 1998). However,
in the POMDP planning literature virtually all methods rely
on forward planning. We will investigate the use of the dual
representation for backward planning in the future.

We now show that the transition structure in the dual is
well-defined. Essentially, the transitions in the dual are of
the following form: an experimente goes under an actiona
to an experimentae. For this to be well-defined, we need
to show that it does not matter which representative of the
equivalence class ofe is chosen. To do this, we first show a
small helper lemma:
Lemma 8 For any states s1,s2 ∈ S, action a∈ A and ex-
periment e,〈s1|ae|s2〉 = ∑s∈Sδa(s1,s)〈s|e|s2〉 and〈s1|ae〉=
∑s∈Sδa(s1,s)〈s|e〉
Proof: We show this by induction on the length ofe. For
the base case, suppose thate consists of just one testt =
a1 . . .ano. Then we have:

〈s1|at|s2〉 = 〈s1|aa1 . . .ano|s2〉

= δaa1...an(s1,s2)γan(s2,o) (from (2))

=

(

∑
s∈S

δa(s1,s)δa1...an(s,s2)

)

γan(s2,o) (from (1))

= ∑
s∈S

δa(s1,s)〈s|t|s2〉 (by rearranging and (2))

Now suppose the experiment is of the formte. Then we
have:

〈s1|ate|s2〉 = ∑
s′∈S

〈s1|at|s′〉〈s′|e|s2〉 (from (3))

= ∑
s′∈S

(

∑
s∈S

δa(s1,s)〈s|t|s
′〉

)

〈s′|e|s2〉 (base case)

= ∑
s∈S

δa(s1,s) ∑
s′∈S

〈s|t|s′〉〈s′|e|s2〉 (by rearranging)

= ∑
s∈S

δa(s1,s)〈s|te|s2〉 (from (3))

Now for the second formula, we have:

〈s1|ae〉 = ∑
s2∈S

〈s1|ae|s2〉

= ∑
s∈S

δa(s1,s) ∑
s2∈S

〈s|e|s2〉 (by rearranging)

= ∑
s∈S

δa(s1,s)〈s|e〉 (from (4)) ⋄

The next lemma shows that the transitions in the dual ma-
chine are well defined.
Lemma 9 If e1 ∼M e2 then ae1 ∼M ae2,∀a∈ A.
Proof: Sincee1 ∼M e2, we have〈s|e1〉= 〈s|e2〉 for all s∈S.
Then for any states, we have:

〈s|ae1〉 = ∑
s′∈S

δa(s,s
′)〈s′|e1〉 (from Lemma 8)

= ∑
s′∈S

δa(s,s
′)〈s′|e2〉 ( becausee1 ∼M e2)

= 〈s|ae2〉 (from Lemma 8) ⋄



Now we proceed to define the double-dual representation.
By analogy with the way we constructed the dual, we will
consider tests on the dual machineM ′ and their equivalence
classes. In order to see which tests are of interest in the dual,
consider the semantics of the emission functionγ′. It gives
the measurement for an experiment given that thestarting
state wass. This means that considering sequential experi-
ments onM ′ does not really make sense. Instead, we will
only consider tests on the dual, of the formαs, whereα is a
sequence of actions.

Definition 10 The prediction for a test on the dual given an
experiment is defined recursively as:

〈[e]M |s〉 = γ′([e]M ,s) = 〈s|[e]M 〉

〈[e]M |aαs〉 = 〈[ae]M |αs〉 ⋄

To understand what these predictions are, we will show a
simple lemma:

Lemma 11 The prediction for a test on the dual is
〈[e]M |αs〉 = 〈s|[αRe]M 〉, whereαR denotes the reverse of
α.

Proof: The base case is trivial based on the definition. For
the induction step, using Definition 10 and the induction hy-
pothesis, we have:

〈[e]M |aαs〉= 〈[ae]M |αs〉= 〈s|[αRae]M 〉= 〈s|[(aα)Re]M 〉 ⋄

We now define an equivalence relation for these tests:

Definition 12 Two tests t1 = α1s1 and t2 = α2s2 are M ′-
equivalent if and only if〈[e]M |t1〉 = 〈[e]M |t2〉, for all exper-
iments e. We denote by[t]M ′ the equivalence class of t.

With this notion, we are now ready to define the double-dual.
Again, we will flip the role of the states and the tests on the
dual.

Definition 13 We define the double-dual as:M ′′ =
(S′′,A,O ′′

,δ′′,γ′′), where:

S′′ = {[t]M ′} δ′′([t]M ′ ,a) = [at]M ′

O
′′ = S′ = {[e]M } γ′′([t]M ′ , [e]M ) = 〈[e]M |t〉

Like in the case of the dual, in order to show that the double-
dual is well defined, we need the following lemma:

Lemma 14 If t1 ∼M ′ t2 then at1 ∼M ′ at2 for any action a∈
A.

Proof: For any experimente, we have:

〈[e]M |at1〉 = 〈[ae]M |t1〉 = 〈[ae]M |t2〉 = 〈[e]M |at2〉

where we used definition 10 in the first and third equalities
and the fact thatt1 ∼M ′ t2 in the second equality. ⋄

Now that we know that these constructions are well de-
fined the fundamental fact of the duality is captured by the
following theorem.

Theorem 15 The prediction for an experiment e from a
state s,〈s|e〉, is given by〈[s]M ′ |[e]M 〉 = γ′′([s]M ′ |[e]M 〉,
where[s]M ′ indicates the equivalence class of the test on the
dual which has s as an observation and an empty sequence
of actions.

The proof is immediate from the construction.
Note that the double-dual has states corresponding not

only to [s]M ′ , but also to extended tests[αs]M ′ . The theorem
above says that the equivalence classes of states are suffi-
cient in order to describe the behavior of the system; this is
true here because the emissions are defined in each double-
dual state forall experiments. Hence, each state[s]M ′ in
the double-dual can be viewed as a “bundle” of predictions
for all possible experiments, when starting ins. But these
cannot really be directly measured, unless we have a way
to reset the POMDP to a specific initial state (a very un-
likely assumption). Instead, equivalence classes for tests of
the form [sα]M ′ are of more interest, especially for action
sequencesα that are defined ashoming sequences. A hom-
ing sequence is a sequence of actions that puts a dynami-
cal system in a known state. Such sequences were defined
by Rivest & Schapire (1993) in the context of learning de-
terministic automata. Evan-Dar, Kakade & Mansour (2005)
recently showed that in a POMDP, there exist homing strate-
gies, which put the system in a known belief state. The
equivalence classes for tests containing such strategies are
the best candidates for estimation from data in the dual
machine. A similar notion is that ofcontrollability from
discrete-time dynamical systems (Santina et al., 1996). A
system is called controllable if it can be set to a known state
with a finite sequence of actions. We note that duality no-
tions exist in the control literature, and the relationshipwith
the duality that we put forth here will need to be explored
further.

We want to emphasize that the double-dual is aconcep-
tual construction, not an algorithmic solution. A different
way of viewing it is as an encoding of thestate-test predic-
tion matrix(Littman et al., 2002). This matrix contains pre-
dictions (or measurements) for s-tests, which are a special
class of experiments. The double-dual essentially holds the
distinct rows of this matrix, each associated with the equiv-
alence class of a state. The duplicate columns have been
eliminated. Of course, there are more compact ways of en-
coding this matrix. The PSR approach is based on the fact
that the rank of the matrix is upper bounded by the number
of states of the original system. Hence, as shown in (Littman
et al., 2002), the matrix can actually be described by a num-
ber of linearly independent columns (called core tests) and
by a finite number of parameter vectors (one for each action-
observation pair, and one for each extension of a core test by
an action-observation pair). The same observations related
to the rank hold here as well. We also observe that the pre-
dictions for s-tests are always sufficient to reconstruct pre-
dictions for experiments. However, considering experiments
is advantageous both theoretically (no duality construction
is possible without them) and empirically, as we discuss fur-
ther below.

An example
We present a simple example to illustrate our duality con-
struction on a POMDP system. The domain is depicted in
Figure 1 and the corresponding POMDP is in Figure 2.

Table 1 shows the state-experiment predictions for several
tests. Clearly, some of the experiments belong to the same



Table 1: State-experiment prediction matrix

NR NB SR SB ER EB WR WB NNR ... NRNR ...
s1 0 1 0 1 0.5 0.5 0 1 0 0
s2 0.5 0.5 0.5 0.5 0.5 0.5 0 1 0.5 0.25
s3 0 1 0 1 0.5 0.5 0 1 0 0
s4 0.5 0.5 0.5 0.5 0.5 0.5 0 1 0.5 0.25

s1 s2

s3 s4

Figure 1: A four-state navigation domain. The top, bot-
tom and left walls are painted Blue(=B), the right wall is
painted Red(=R). The robot can take actions: North(=N),
South(=S), East(=E), West(=W), which have the expected
(deterministic) effects. In any state, the robot observes the
color of one of the two adjacent walls (randomly chosen with
equal probability).

S 1 S 2
S 3 S 4

E
EW

W
N , E

S , ES , W
N , W S N S N P ( B ) = 0 . 5P ( R ) = 0 . 5P ( B ) = 0 . 5P ( R ) = 0 . 5P ( B ) = 1

P ( B ) = 1

Figure 2: POMDP (original) representation of the domain.
Solid arcs denote transitions and dashed arrows denote emis-
sions.

equivalence class, for example, NR∼M SR. In fact, we can
identify five equivalence classes of tests with one observa-
tion: e1 = [NR]M , e2 = [NB]M , e3 = [ER]M , e4 = [WB]M ,
t5 = [WR]M . The fragment of the dual automaton contain-
ing these classes is presented in Figure 3. Similarly, we
can identify equivalence classes with two observations (e.g.,
NRNR, which is equivalent toSRSR, NRSR, etc), three ob-
servations etc. Each of these categories will form a sepa-
rate fragment, or connected component, of the dual automa-
ton, and transitions will be only within that component. In
general, if the observations are stochastic, an infinite num-
ber of such components will exist, and obviously we do not
want an explicit representation for all of them. Analyzing
the structure in terms of the components points us to the fol-
lowing observation. Within each component, the predictions

for experiments can be defined in terms of predictions of
otherexperiments. For instance, the prediction of whether
NERwill succeed is the same are the prediction thatERwill
succeed after anN action. These aretemporal-differencere-
lationships, of the sort explicitly captured in TD-networks
(?). However, no such relationships exist for tests in differ-
ent components.e _ 1 e _ 2 e _ 5e _ 3 e _ 4

W EE WN , S
N , S , E , W N , S , E , W

N , S , E , W0 , 0 . 5 1 , 0 . 5 0 , 01 , 10 . 5 , 0 . 5
Figure 3: The automaton corresponding to the dual. Note
that the emission functions are not normalized.

Observe that s-tests end up, in our example here, in dif-
ferent components. This reflects the fact that s-test are not
compositional: the prediction of observinga1o1a2o2 cannot
be obtained, in general, from the prediction ofa2o2. This is
due to the fact that making observationo1 carries informa-
tion, which influences the probability of subsequent exper-
iments. However, experiments that allow for sequences of
actions are compositional; this is clearly shown by the fact
that components consist of multiple related tests and exper-
iments.

Similarly we can construct the double-dual, and the most
relevant part of it is depicted in Figure 4. This contains the
equivalence classes for statess1 ands2 from the original ma-
chine. In this example, because the POMDP has determinis-
tic transitions, there are actually two very simple homing se-
quences: actionE will ensure that the system is ins2, while
actionW will ensure that the system is ins1. However, such
exact reseting will not be possible in POMDPs with stochas-
tic transitions.

Relationship to automata theory
An important special case of this theory is that of determin-
istic systems, i.e. automata with deterministic observations.
In automata terminology, actions are alphabet symbols, la-
bels or inputs. Most of the work is carried out in systems that



S 1 S 2N , S N , SEWP ( e 1 ) = 0P ( e 2 ) = 1P ( e 3 ) = 0 . 5P ( e 4 ) = 1P ( e 5 ) = 0. . .
P ( e 1 ) = 0 . 5P ( e 2 ) = 0 . 5P ( e 3 ) = 0 . 5P ( e 4 ) = 1P ( e 5 ) = 0. . .

Figure 4: The automaton corresponding to the double dual.

can just accept or reject, i.e., which have only two observa-
tions. The case of deterministic automata with multiple ob-
servations has been studied by Rivest and Schapire (1994),
who define anupdate graphassociated with an automaton.
The structure of this update graph is exactly the same as the
transition structure of the dual machine we defined. How-
ever, their work does not describe this as an automaton with
observations.

For deterministic automata, we can show that the double-
dual machine is actually theminimal automatonthat is
equivalent(isomorphic) to the original machine (the proof
is omitted here for lack of space but is presented in a forth-
coming paper). As a matter of fact, a similar construction
for minimizing traditional finite state automata was used by
Brzozowski in 1962. His intriguing algorithm is as follows:
take the transitions of the automaton, reverse them and flip
the accepting and non-accepting states. Of course, the re-
sulting machine is not deterministic, so it is determinizedin
the usual way. Then reverse the result, flip the accepting
and non-accepting states and determinize again. It turns out
that the result of each of these operations are the dual, and
double-dual respectively (for the special case when we only
have two observations).

A similar duality construction can also be done for the
case of nondeterministic automata. Remarkable, the double-
dual of a nondeterministic automaton is the minimal deter-
ministic automaton that produces the same sequences of ob-
servations. The details go beyond this paper and are pre-
sented in a forthcoming extended version.

Discussion and extensions
The representations we introduce relate in interesting ways
to both PSRs and TD-networks. As seen above, PSRs are
a finite encoding of the double-dual machine, which exploit
linear independence assumptions. However, to date, all of
the work has been done onexact(lossless) representations
of the original system; the number of parameters needed (in
addition to the core tests) depends on the number of actions

and observations in the system. This becomes a problem if
the number of observations is large.

Now let us consider the case in which observations are
continuous. This case is very important for practical ap-
plications, yet has received very little attention, with a few
exceptions (Hoey & Poupart, 2005). The definition of a
POMDP can be generalized to this case, e.g., using emission
functions that are probability density functions. The state-
experiment matrix will now become an operator. However,
operators behave much like matrices, and have a notion of
rank. It is not hard to see that the rank of the operator will
be limited by the number of states in the original POMDP.
To do this, consider increasingly fine discretizations of the
observation space. For each such discretization, we have
a corresponding finite POMDP. Each such POMDP has a
state-experiment matrix whose rank is limited by the num-
ber of states of the original system. In the limit, as the sizeof
a discretization cell goes to 0, the rank will still be the same,
an limited by the number of states. However, for each of
these systems, the number of parameters needed for a PSR
depends linearly on the number of observations. Hence, ex-
act PSR representations will not be feasible in general. This
motivates the need forapproximate methods. Of course, in
POMDPs planning is always performed to a finite horizon,
so this immediately restricts the length of the experimentsof
interest. However, more aggressive methods will be neces-
sary in general.

One suggestion that comes from the double-dual rep-
resentation is to replace equivalence by anε-equivalence,
whereε is a parameter that controls the precision of the rep-
resentation. This would allow for a much coarser double-
dual, on which PSR representations can be developed. All
learning and planning algorithms presented so far would
transfer immediately.

Another class of approximations restricts attention to pre-
dictions of certain observations. This is the case in TD-
nets, where predictions of interest are specified in the ques-
tion network, as well as in the work of Poupart & Boutilier
(2003) on lossy compression methods for POMDPs, where
the goal is to predict rewards. Point-based planning methods
for POMDPs can also be viewed as working with an approx-
imation of the double-dual, in which only certain parts of
the automaton are represented (which ones depends on the
heuristics of the different algorihtms).

We plan to explore these issues further in future work. We
will also investigate the connections of predictive represen-
tations in AI to notions of duality established for automata
(Arbib & Manes, 1974) and control theory (Santina et al.,
1996).
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