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Abstract

We discuss the problem of finding a good state repre-
sentation in stochastic systems with observations. We
develop a duality theory that generalizes existing work
in predictive state representations as well as automata
theory. We discuss how this theoretical framework can
be used to build learning algorithms, approximate plan-
ning algorithms as well as to deal with continuous ob-
servations.

Introduction

Learning and planning under uncertainty is a crucial focus
of modern Al research. In this paper, we address the is-
sue of sequential decision making. Much of the work in

this field is based on the framework of Partially Observable
Markov Decision Processes (POMDPs) (Kaelbling et al.,

1998). In this framework, problems are modeled using dis-
crete states and actions. Actions cause stochastic foarssit
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models themselves are different and their relationships ar
only partially understood at the moment.

In this paper, we develop a duality theory for POMDPs,
which unifies much of the existing work on predictive rep-
resentations. We show how, for any POMDP, one can de-
velop two alternative representations: a dual machine and
a double-dual machine. The key idea in the development
is that of making measurements on the system, which we
call experiments. Experiments are sequences of actions in-
terspersed with observations. They generalize previous no
tions of tests from the literature on predictive state repre
sentations. Both of the alternative representations tleat w
present allow an accurate prediction of the probabilityrof a
experiment. The double-dual representation is of pasicul
interest, because it hasdeterministictransition structure,
and no hidden state. Instead, its states can be thought of as
“bundles” of predictions for experiments. As such, this-rep
resentation holds the promise of much better planning and

between states. At each time step, a stochastic observa-learning algorithms than those currently available. Ourkwo
tion is also generated, based on the current state and thealso generalizes similar representations from automata th

previous action. Much work has been devoted to planning
in POMDPs when a model of the system (in terms of the
stochastic transitions between states and the probadhidity
tributions over observations) is known. Unfortunatelgyte

ing POMDPs from data is a very difficult problem. One
standard algorithmic solution is expectation maximizatio
(EM) (Chrisman, 1992), but for POMDPs this approach is
plagued by local minima (more so than for other probabilis-
tic models) and works poorly in practice unless a good ihitia
model of the system is used (Shatkay & Kaelbling, 1997).
History-based methods (McCallum, 1995) often work bet-

ory (Brzozowski, 1962; Rivest & Schapire, 1994). We show
how existing predictive representations can be viewed from
the perspective of this framework. We also discuss the impli
cations of these alternative representations for learalipor
rithms, approximate planning algorithms as well as working
with continuous observations.

Background and definitions

A POMDRP is a tupleM = (S A 0,04: Sx S—[0,1],Va:
Sx 0 — [0,1]) whereSis a finite set of stated\ is a finite
set of actions;O is a finite set of observations(s,s) =

ter in practice but are less general. A lot of recent research p, s+1=9|s = Sa& = a),¥a € Ais a stochastic transition
has been devoted to finding alternative representations for ,ction: andya(s (’)) _ Pr(70t+l —ola=a,5:1=5),vacA

such systems, e.g., diversity-based representation gRive
& Schapire, 1994), predictive state representations (PSRs
(Littman et al., 2002) and TD-networks (Sutton & Tanner,

is an emission function, describing the probabilities df di
ferent observations. We are omitting here an explicit repre
sentation of rewards, which are used to determine the opti-

2005). These approaches aim to combine the generality of | strategy for choosing actions. Instead, one can think of
POMDPs with the ease of learning of history-based meth- rewards as part of the observation vector.

ods. The key idea underlying all of these approaches is that
the state of the system is not considered as predefined; in-

stead, it is viewed as a sufficient statistic for making (prob
abilistic) predictions about future trajectories. Howevie
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Our goal is to develop an alternative representation, in
which the notion of state is redefined. We want to obtain
a representation that is indistinguishable from the o&bin
system, in terms of the probability that it assigns to any tra

jectory. In order to formalize this goal, we define the nasion

of tests and experiments.



Definition 1 Atesttis a non-empty sequence of actions fol-
lowed by an observation, i.e=t a; - - - a,0, with n> 1.

Definition 2 An experiment is a non-empty sequence of
testse=ty-- -ty withm> 1.

Note that these definitions force one to take an action in or-

der to observe anything; this is a consequence of the way ob-

servations are defined. If observations only depend orsstate
this restriction can be lifted. This notion of tests has been
callede-testsn previous work by Ruddary & Singh (2004).
The notion ofs-tests present in some of the literature on
predictive state representations (Littman et al., 2008¢Si

et al., 2004), corresponds to a special case of experiments i
which all component tests contain just one action. However,

record the results. Running an experimeata10; . ..0mO0m
means that the sequence of actions. . a, corresponding

to e is executed. The experiment “succeeds” if the cor-
responding sequence of observations. . oy, is observed;
otherwise, the experiment “fails”. The success of an exper-
iment can thus be considered a binomial random variable;
the prediction for the experiment from a given statde-
fines the probability distribution of this variablesatHence,

the prediction for the experiment can be estimated from data
by counts. Of course, if two states cannot be distinguished
by any experiments, they are redundant and one of them can
be eliminated from the description of the system. Similarly
if two experiments always give the same results, they are
redundant. We formalize these intuitions in the following

we do not limit ourselves here to s-tests, as the algebraic definitions:

structure they define is difficult to work with. Also, as we
will see later, it is computationally advantageous to coesi
tests based on extended sequences of actions.

In order to proceed with the construction of the dual to a
POMDP, we need to define a generalization of the transition
function that works on sequences of actions.

Definition 3 Given a POMDP, we define a transition func-

tion &y, wherea is a sequence of actions, inductiveds is
as in the POMDP model, and:

Saa(s,S) = z 8a(s,5")04(s",9),Vs,s €S
s’eS

Lett = 0o be a test. We denote Kyg|t|s') the probability
of the system arriving in stat and emittingo if the action
sequence is executed starting from Givena =a;---ap €
ando € O we have

(sl00]s) = 8u(S,S)Yan (S, 0)-

1)

)

Note the need to look at the last action in the sequence; this

is due to the standard way in which POMDPs are defined,

and explains why we must insist that experiments have at

least one action. A similar notion for longer experiments
can be constructed by induction as follows:

(stels) = SZ (stls”)(s"lels)). ©)
€S

One can define the notion of measurement for an experiment

e from states by just summing over the final states. We use
the same angle bracket notation for this.

Definition 4 The prediction of experiment e for state s,
(sle), is defined as:

(se) = ¥ (slels).
ses
Note that this is the same as the definition of predictions in
the literature on predictive state representations: tbdips
tion gives the probability of recording the specified segegen
of observations, at the specified times, given that the speci
fied sequence of actions is executed.

(4)

Definition 5 Two experiments;eand e are equivalent for
M, denoted e~ e, if and only if (s|e;) = (s|ep) for all
s€ S. We denote bg| 4, the~,,-equivalence class of e and
by (s|[€]4) the prediction for any experiment in this class,
when it is executed from state s.

In other words, experiments are equivalent if their predic-
tions are identical from any states4d. We define an anal-
ogous equivalence relation over states.

Definition 6 Two statesss, € S are equivalent fofil, de-
noted s ~,, S, if and only if they cannot be distinguished
by any experiment, i.e(si|e) = (sy|e) for all experiments

e. We denote bjg|,, the ~,,-equivalence class of s and by
([9ar]€) the prediction for the success of experiment e when
started from any state in the clai,,.

These are easily shown to be equivalence relations, and they
are at the hinge of the duality theory.

Duality for POMDPs

In mathematics, duality is usually associated with a gdnera
transformation applied to a mathematical object or stmectu
Applying the transformation once usually yields a diffaren
looking structure. Applying the transformation twice yisl
the original object (or something indistinguishable fram i
Perhaps the most popular notion of duality is the one used
in mathematical programming, between the primal and dual
representation of an optimization problem. However, many
other dualities exist, some giving rise to very useful alger
tive representations. For example, Pontryagin dualitegiv
rise to the notion of Fourier transform.

In this section, we will use the equivalence relations
defined above in order to define the generic transforma-
tion needed for duality. We will first define the dual
representation, using the notion of equivalence of experi-
ments. This should be reminiscent of the work of Rivest &
Schapire (1994) on diversity-based representations fer au
tomata. We will then define the double dual by using the
notion of equivalence of states. Intuitively, it should beac
that the representation to be created will be identical ¢o th

Our goal is to examine representations for POMDPs that original system, since only equivalences are used at every
capture behavior, rather than being specified a priori. One step. The generic transformation that will provide the dual

way to “probe” the behavior of the system describedigy
is torun experimentsstarting at different hidden states, and

representation relies on switching the roles of states and e
periments.



In order to understand what the “dual” view of a POMDP in reinforcement learning (Sutton & Barto, 1998). However,
might mean, consider for a moment the case détermin- in the POMDP planning literature virtually all methods rely
istic POMDP, in which all transitions and all emissions have on forward planning. We will investigate the use of the dual
probability 0 or 1. One way to describe the system is to representation for backward planning in the future.
specify, for each statg the collection of experiments that We now show that the transition structure in the dual is
succeed when started & This is a “forward” view, useful well-defined. Essentially, the transitions in the dual dre o
to make predictions about the future, as well as for forward the following form: an experimerggoes under an acticam
planning. A different approach is to specify for each exper- to an experimenée For this to be well-defined, we need
iment aprecondition i.e., the set of states from which the to show that it does not matter which representative of the
experiment will succeed. This is a “backward” view, used in equivalence class &is chosen. To do this, we first show a
classical Al by backward planning algorithms. We will call ~ small helper lemma:

this thedual representation Of course, the notion of pre- | emma 8 For any states s, € S, action ac A and ex-

condition cannot be used directly in probabilistic systems periment e/s; |a€ls;) = 3 ses0a(S1,5) (Slels2) and (s |ae) =
However, a dual representation based on this intuition can S scsda(s1,5)(se)

sﬂll_bg_defmed, as f(?"OWS: , Proof: We show this by induction on the length ef For
Definition 7 We define the duai/’ of a POMDP 4/ as the base case, suppose teatonsists of just one test=

atuple: M’ = (S,A,0,8,:S — S,y :Sx0 —[0,1], aj...a,0. Then we have:

where: (silatlsz) = (stlay . anolss)
e the new set of states is the equivalence classes of tests
fromM: S = {[e]M} = 6aal,_,an (sﬂ-st)Van ($2,0) (from (2))
e the new observations are the statesiéf 0’ =S
e the transition functions are defined asd,([e]qs;) = - <s§563(5175)6a1man(5752)> Ven(52,0) (from (1)
[adly,Vac A .
o the emission function ig([€]a;,S) = (s/[€]a/) = zséa(sl75)<5|t|52> (by rearranging and (2))
sc

Note that this is aleterministictransition system (see the
definition of &}), which is somewhat surprising given that
we started with a stochastic system. This is due to the fact
that the information is organized around experiments from
the previous machine, and experiments are constructed from (St |atels;) = Z (sifat]s) (S |els) (from (3))

Now suppose the experiment is of the fotem Then we
have:

other experiments using concatenation. This is essegntiall ses

the structure reflected in the transition functidg$ote also

that the emission functiog is not a probability distribu- =3 < 5a(SCL7S)<S|t|5/>> (slelsz) (base case)
tion anymore; rather, it specifies to what extent each state SeS \sc

is a “precondition” for the experiments in each equivalence 25551(51,5); (slt|s)(S|e|sy) (by rearranging)
class, using the notion of conditional probability. Algb, & cs

does not depend on actions (like the emission function in _

the original system). This is due to the fact that actions are - nga(si’s) (sttelsz) (from (3))

part of the experiments.

The dual machine igota generative model, and its pur- Now for the second formula, we have:

pose is not to be executed. This is apparent from the fact (silae) = Z (s1]a€lsp)

that the emission function is not normalized. To understand €S

this, note that if we consider a deterministic POMDP (like = Zséa(sl’s) z (sle|sz) (by rearranging)
we did initially), the dual provides, for each experiment, e € $ES

actly the set of states from which the experiment succeeds. _

This is a set, and cannot be converted into probabilities of o 325551(51,8) (sie) (from (4)) °

the form p(s|[€]4,) unless we have an initial state distribu- " .
tion. However, we want to stay away from initial distribu- | 1e Nextlemma shows that the transitions in the dual ma-
chine are well defined.

tions, because we are seeking a representation of the system
that is independent of where it starts. Finally, note thatou Lemma9 Ife; ~;/ e;then ag ~, ag,Vac A.
dual is a strict generalization of the update graph used by Proof: Sincee; ~ 4, €, we have(sle;) = (s|ep) forallse S.
Rivest & Schapire (1994) for deterministic finite automata Then for any stats, we have:
with observations.
sla = da(s,9)( from Lemma 8

The dual representation could potentially be quite useful (siae) g%s a(ss)(sle) ( )
for backward planning approaches. In MDPs, a typical ex- B
ample of such an approach is prioritized sweeping (Moore & - SZ Ba(s,S)(s|ez) ((becauser ~y )
Atkeson, 1993), which drastically reduces the time for com- €s
puting a value function, by propagating information to pre-
decessor states. A similar role is played by eligibilitycea

(slaey) (from Lemma 8) o



Now we proceed to define the double-dual representation.
By analogy with the way we constructed the dual, we will
consider tests on the dual machim€ and their equivalence
classes. In order to see which tests are of interest in the dua
consider the semantics of the emission functfonit gives
the measurement for an experiment given thatdtagting
state was. This means that considering sequential experi-
ments on™’ does not really make sense. Instead, we will
only consider tests on the dual, of the foors wherea is a
sequence of actions.

Definition 10 The prediction for a test on the dual given an
experiment is defined recursively as:

([elarls) = Y([elar,s) = (sllelar)
([elarlacs) ([adarlas)

To understand what these predictions are, we will show a
simple lemma:

Lemma 11 The prediction for a test on the dual is
([elaclas) = (sl[aRe],,), whereaR denotes the reverse of
a.

Proof: The base case is trivial based on the definition. For
the induction step, using Definition 10 and the induction hy-
pothesis, we have:

([elaclaas) = ([aela|as) = (s][a”aelq) = (s|[(aa) e]5)
We now define an equivalence relation for these tests:
Definition 12 Two testst = 01 and b = 0, are M-

equivalent if and only if[€] 4/|t1) = ([€]4|t2), for all exper-
iments e. We denote iy, the equivalence class of t.

With this notion, we are now ready to define the double-dual.
Again, we will flip the role of the states and the tests on the
dual.

Definition 13 We define the double-dual as:M" =
(S",A, 0”8 y"), where:
S = {{tlarr} 8" ([t]as,@) = [at]gp
O'=S={lelar}  Y'([tlar[Elar) = ([Elaclt)
Like in the case of the dual, in order to show that the double-
dual is well defined, we need the following lemma:

Lemma 14 If t1 ~4. to then aj ~4, aty for any action ac
A.

Proof: For any experimerg, we have:

([elaclaty) = ([aglaclt1) = ([@darltz) = ([€]arat)

where we used definition 10 in the first and third equalities
and the fact that; ~ 4, t2 in the second equality. <

Now that we know that these constructions are well de-
fined the fundamental fact of the duality is captured by the
following theorem.

Theorem 15 The prediction for an experiment e from a

state s, (sle), is given by([s|ss|[€lar) = Y'([S]ar|[€lar),
where[g],, indicates the equivalence class of the test on the

&

The proof is immediate from the construction.

Note that the double-dual has states corresponding not
only to[s],,, but also to extended tegtss],,. The theorem
above says that the equivalence classes of states are suffi-
cient in order to describe the behavior of the system; this is
true here because the emissions are defined in each double-
dual state forall experiments. Hence, each stdgg, in
the double-dual can be viewed as a “bundle” of predictions
for all possible experiments, when startingsin But these
cannot really be directly measured, unless we have a way
to reset the POMDP to a specific initial state (a very un-
likely assumption). Instead, equivalence classes fos tafst
the form[sal,, are of more interest, especially for action
sequenced that are defined dsoming sequence# hom-
ing sequence is a sequence of actions that puts a dynami-
cal system in a known state. Such sequences were defined
by Rivest & Schapire (1993) in the context of learning de-
terministic automata. Evan-Dar, Kakade & Mansour (2005)
recently showed that in a POMDP, there exist homing strate-
gies, which put the system in a known belief state. The
equivalence classes for tests containing such strategges a
the best candidates for estimation from data in the dual
machine. A similar notion is that afontrollability from
discrete-time dynamical systems (Santina et al., 1996). A
system is called controllable if it can be set to a known state
with a finite sequence of actions. We note that duality no-
tions exist in the control literature, and the relationshith
the duality that we put forth here will need to be explored
further.

We want to emphasize that the double-dual oacep-
tual construction, not an algorithmic solution. A different
way of viewing it is as an encoding of ttstate-test predic-
tion matrix (Littman et al., 2002). This matrix contains pre-
dictions (or measurements) for s-tests, which are a special
class of experiments. The double-dual essentially holels th
distinct rows of this matrix, each associated with the equiv
alence class of a state. The duplicate columns have been
eliminated. Of course, there are more compact ways of en-
coding this matrix. The PSR approach is based on the fact
that the rank of the matrix is upper bounded by the number
of states of the original system. Hence, as shown in (Littman
etal., 2002), the matrix can actually be described by a num-
ber of linearly independent columns (called core tests) and
by a finite number of parameter vectors (one for each action-
observation pair, and one for each extension of a core test by
an action-observation pair). The same observations cklate
to the rank hold here as well. We also observe that the pre-
dictions for s-tests are always sufficient to reconstruet pr
dictions for experiments. However, considering experitaen
is advantageous both theoretically (no duality constouncti
is possible without them) and empirically, as we discuss fur
ther below.

An example
We present a simple example to illustrate our duality con-
struction on a POMDP system. The domain is depicted in
Figure 1 and the corresponding POMDP is in Figure 2.

dual which has s as an observation and an empty sequence Table 1 shows the state-experiment predictions for several

of actions.

tests. Clearly, some of the experiments belong to the same



Table 1: State-experiment prediction matrix

NR NB SR SB ER EB WR WB NNR .. NRNR
sl O 1 0 1 05 05 O 1 0 0
s2 05 05 05 05 05 05 O 1 0.5 0.25
s3 0 1 0 1 05 05 O 1 0 0
s4 05 05 05 05 05 05 O 1 0.5 0.25
for experiments can be defined in terms of predictions of
sl 2 otherexperiments. For instance, the prediction of whether
NERwill succeed is the same are the prediction tBRiwill
succeed after aN action. These areemporal-differencee-
s3 A lationships, of the sort explicitly captured in TD-netwsrk
(?). However, no such relationships exist for tests in differ-

Figure 1: A four-state navigation domain. The top, bot-
tom and left walls are painted Bluel¥, the right wall is
painted Red(R). The robot can take actions: North(=N),
South(=S), East(=E), West(=W), which have the expected
(deterministic) effects. In any state, the robot obserhes t
color of one of the two adjacent walls (randomly chosen with
equal probability).

P(B)

=1
»

~™P(B)=0.5
b S
P(R)=0.5

Figure 2: POMDP (original) representation of the domain.

ent components.

005 W .
N,S,E,W
vs| (on] (o) (o)
E E W 0,0
(2] (s}
0.5,0.5
N,S,E,W N,S,E,W

Figure 3: The automaton corresponding to the dual. Note
that the emission functions are not normalized.

Observe that s-tests end up, in our example here, in dif-
ferent components. This reflects the fact that s-test are not
compositional the prediction of observing;01a,0, cannot
be obtained, in general, from the predictioregb,. This is
due to the fact that making observationcarries informa-
tion, which influences the probability of subsequent exper-

Solid arcs denote transitions and dashed arrows denote emis iments. However, experiments that allow for sequences of

sions.

equivalence class, for exampleRN-,, SR. In fact, we can

identify five equivalence classes of tests with one observa-

tion: el = [NR]4,, €2 = [NB],/, €3 = [ER],, €4 = [WB],,,

t5 = [WR],,. The fragment of the dual automaton contain-
ing these classes is presented in Figure 3. Similarly, we
can identify equivalence classes with two observatiornsg,(e.
NRNR which is equivalent t&RSRNRSR etc), three ob-

actions are compositional; this is clearly shown by the fact
that components consist of multiple related tests and exper
iments.

Similarly we can construct the double-dual, and the most
relevant part of it is depicted in Figure 4. This contains the
equivalence classes for stagg@nds, from the original ma-
chine. In this example, because the POMDP has determinis
tic transitions, there are actually two very simple homieg s
quences: actioi will ensure that the system is 8, while
actionW will ensure that the system is s2. However, such

servations etc. Each of these categories will form a sepa- €xactreseting will not be possible in POMDPs with stochas-
rate fragment, or connected component, of the dual automa- I transitions.

ton, and transitions will be only within that component. In
general, if the observations are stochastic, an infinite-num
ber of such components will exist, and obviously we do not
want an explicit representation for all of them. Analyzing
the structure in terms of the components points us to the fol-
lowing observation. Within each component, the predicion

Relationship to automata theory

An important special case of this theory is that of determin-
istic systems, i.e. automata with deterministic obseovesti

In automata terminology, actions are alphabet symbols, la-
bels or inputs. Most of the work is carried out in systems that



N,S N,S
E
// W \\

4 K
P(e1)=0 P(e1)=0.5
P(e2)=1 P(e2)=0.5

P(e3)=0.5 P(e3)=0.5
P(ed)=1 P(e4)=1
P(e5)=0 P(e5)=0

Figure 4: The automaton corresponding to the double dual.

can just accept or reject, i.e., which have only two observa-
tions. The case of deterministic automata with multiple ob-

servations has been studied by Rivest and Schapire (1994)
who define arupdate graphassociated with an automaton.

The structure of this update graph is exactly the same as the:

transition structure of the dual machine we defined. How-
ever, their work does not describe this as an automaton with
observations.

For deterministic automata, we can show that the double-
dual machine is actually theninimal automatonthat is
equivalent(isomorphic) to the original machine (the proof
is omitted here for lack of space but is presented in a forth-
coming paper). As a matter of fact, a similar construction
for minimizing traditional finite state automata was used by
Brzozowski in 1962. His intriguing algorithm is as follows:

and observations in the system. This becomes a problem if
the number of observations is large.

Now let us consider the case in which observations are
continuous. This case is very important for practical ap-
plications, yet has received very little attention, witheavf
exceptions (Hoey & Poupart, 2005). The definition of a
POMDP can be generalized to this case, e.g., using emission
functions that are probability density functions. Theestat
experiment matrix will now become an operator. However,
operators behave much like matrices, and have a notion of
rank. Itis not hard to see that the rank of the operator will
be limited by the number of states in the original POMDP.
To do this, consider increasingly fine discretizations & th
observation space. For each such discretization, we have
a corresponding finite POMDP. Each such POMDP has a
state-experiment matrix whose rank is limited by the num-
ber of states of the original system. In the limit, as the size
a discretization cell goes to 0, the rank will still be the sam
an limited by the number of states. However, for each of
these systems, the number of parameters needed for a PSR
depends linearly on the number of observations. Hence, ex-
act PSR representations will not be feasible in generak Thi
motivates the need fapproximate method<Of course, in
"POMDPs planning is always performed to a finite horizon,
so this immediately restricts the length of the experimefhts
interest. However, more aggressive methods will be neces-
sary in general.

One suggestion that comes from the double-dual rep-
resentation is to replace equivalence bysaequivalence,
whereg is a parameter that controls the precision of the rep-
resentation. This would allow for a much coarser double-
dual, on which PSR representations can be developed. All
learning and planning algorithms presented so far would
transfer immediately.

Another class of approximations restricts attention te pre

take the transitions of the automaton, reverse them and flip dictions of certain observations. This is the case in TD-
the accepting and non-accepting states. Of course, the re-Nets, where predictions (_)f interest are specified in thegues
sulting machine is not deterministic, so it is determiniged ~ tion network, as well as in the work of Poupart & Boutilier
the usual way. Then reverse the result, flip the accepting (2003) on lossy compression methods for POMDPs, where
and non-accepting states and determinize again. It turns ou the goalis to predict rewards. Point-based planning method
that the result of each of these operations are the dual, andfor POMDPs can also be viewed as working with an approx-
double-dual respectively (for the special case when we only imation of the double-dual, in which only certain parts of
have two observations). the automaton are represente_d (which ones depends on the
A similar duality construction can also be done for the heuristics of the different algorihtms).
case of nondeterministic automata. Remarkable, the double ~ We planto explore these issues further in future work. We
dual of a nondeterministic automaton is the minimal deter- Will also investigate the connections of predictive repres
ministic automaton that produces the same sequences of ob-tations in Al to notions of duality established for automata
servations. The details go beyond this paper and are pre- (Arbib & Manes, 1974) and control theory (Santina et al.,

sented in a forthcoming extended version.

Discussion and extensions
The representations we introduce relate in interestingsway

to both PSRs and TD-networks. As seen above, PSRs are

a finite encoding of the double-dual machine, which exploit
linear independence assumptions. However, to date, all of
the work has been done @xact(lossless) representations
of the original system; the number of parameters needed (in

addition to the core tests) depends on the humber of actions

1996).
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