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Abstract

We define Aumann algebras, an algebraic analog of probabilistic
modal logic. An Aumann algebra consists of a Boolean algebra with
operators modeling probabilistic transitions. We prove that countable
Aumann algebras and countably-generated continuous-space Markov
processes are dual in the sense of Stone. Our results subsume exist-
ing results on completeness of probabilistic modal logics for Markov
processes.

1 Introduction

The Stone representation theorem [1] is a recognized landmarks of mathe-
matics. The theorem states that every (abstract) Boolean algebra is isomor-
phic to a Boolean algebra of sets. In fact, Stone proved much more: that
Boolean algebras are dual to a certain category of topological spaces known
as Stone spaces. See Johnstone [2] for a detailed and eloquent introduction
to this theorem and its ramifications, as well as an account of several other
related dualities, like Gelfand duality, that appear in mathematics.

Formally, Stone duality states that the category of Boolean algebras and
Boolean algebra homomorphisms and the category of Stone spaces and
continuous maps are contravariantly equivalent. Jonsson and Tarski [3] ex-
tended this to modal logic and showed a duality between Boolean algebras
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with additional operators and certain topological spaces with additional
operators.

Stone duality embodies completeness theorems, but goes far beyond
them. Proofs of completeness typically work by constructing an instance
of a model from maximal consistent sets of formulas. Stone duality works
in the same way, but gives a correspondence not just for syntactically gen-
erated algebras, but for any suitable algebra. This includes both smaller
algebras, which could be finite and generate finite structures, or larger al-
gebras, which could be uncountable, thus not syntactically generated. Fur-
thermore, homomorphisms of algebras give rise to maps between the cor-
responding structures in the opposite direction. Thus mathematical argu-
ments can be transferred in both directions.

Stone-type dualities are now recognized as being ubiquitous in com-
puter science. Plotkin [4] and Smyth [5] emphasized that the duality be-
tween state-transformer semantics and predicate-transformer semantics is
an instance of a Stone-type duality. Kozen [6] discovered such a duality
for probabilistic transition systems. Abramsky [7] identified dualities in
domain and concurrency theory. Recently several authors (e.g. [8, 9]) have
emphasized the duality between logics and transition systems from a coal-
gebraic perspective. Mislove et al. [10] found a duality between labeled
Markov processes and C*-algebras based on the closely related classical
Gelfand duality.

For Markov processes, the natural logic is a simple modal logic in which
bounds on probabilities enter into the modalities. This logic can be stripped
down to a very spartan core—just the modalities and finite conjunction—
and still characterize bisimulation for labeled Markov processes [11, 12]. It
is therefore tempting to understand this logic algebraically in the same way
that Boolean algebras capture propositional reasoning and the Jonsson–
Tarski results give duality for algebras arising from modal logics.

In this paper, we develop a Stone-type duality for continuous-space
probabilistic transitions systems and a certain kind of algebra that we have
named Aumann algebras. These are Boolean algebras with operators that be-
have like probabilistic modalities. Recent papers [13–15] have established
completeness theorems and finite model theorems for similar logics. Thus
it seemed ripe to attempt to capture these logics algebraically and explore
duality theory. This is what we do in this paper.

A comparison with related work appears in §7. We note here that we go
beyond existing completeness results [13–15] in a number of ways. Follow-
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ing the pioneering work of Goldblatt [14], the strong completeness theo-
rems use a powerful infinitary axiom scheme called the countably additivity
rule in [14]. This rule has an uncountable set of instances. Moreover, for
strong completeness, one needs to postulate Lindenbaum’s lemma, which
for the aforementioned logics has not been proven. In this paper we use
the Rasiowa–Sikorski lemma [16] to finesse Goldblatt’s axiom and prove
Lindenbaum’s lemma.

Our key results are:

• a description of a new class of algebras that capture in algebraic form
the probabilistic modal logics used for continuous-state Markov pro-
cesses;

• a version of duality for countable algebras and a certain class of countably-
generated Markov processes; and

• a complete axiomatization that does not involve infinitary axiom schemes
with uncountably many instances and avoids postulating Linden-
baum’s lemma as a meta-axioms.

The duality is represented in the diagram below. Here SMP stands
for Stone Markov processes and AA for countable Aumann algebras. The
formal definitions are given in §§3–4.

SMP AAop
A

M

A general Markov process gives rise to a countable Aumann algebra but
a countable Aumann algebra gives rise to a Stone Markov process. How-
ever, starting from a Markov process M, constructing the corresponding
Aumann algebra A, then constructing the corresponding Stone Markov
process corresponding A, one obtains a Markov process bisimilar toM.

1.1 A Summary for Experts

The duality theorem proved in this paper has some novel features that dis-
tinguish it from many others that have appeared in the literature.
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First and foremost, we have minimized the use of infinitary axioms [17]
by using the Rasiowa–Sikorski lemma (whose proof uses the Baire cate-
gory theorem) in the following way. In going from the algebra to the dual
Markov process, we look at ultrafilters that do not respect the infinitary
axioms of Aumann algebras. We call these bad ultrafilters. We show that
these form a meager set (in the sense of the Baire category theorem) and
can be removed without affecting the transition probabilities that we are
trying to define. Countability is essential here. In order to show that we
do not affect the algebra of clopen sets by doing this, we introduce a distin-
guished base of clopen sets in the definition of Markov process, which has
to satisfy some conditions. We show that this forms an Aumann algebra.
We are able to go from a Markov process to an Aumann algebra by using
this distinguished base. Morphisms of Markov processes are required to
preserve distinguished base elements backwards; that is, if f : M → N
and A ∈ AN , then f−1(A) ∈ AM. Thus we get Boolean algebra homomor-
phisms in the dual for free.

Removing bad points has the effect of destroying compactness of the
resulting topological space. We introduce a new concept called saturation
that takes the place of compactness. The idea is that a saturated model has
all the good ultrafilters. The Stone dual of an Aumann algebra is saturated,
because it is constructed that way. However, it is possible to have a Markov
process that is unsaturated but still represents the same algebra. For exam-
ple, we removed bad points and could, in principle, remove a few more;
as long as the remaining points are still dense, we have not changed the
algebra. One can saturate a model by a process akin to compactification.
We explicitly describe how to do this below.

2 Background

LetQ0 = Q∩ [0, 1] andR+ = R∩ [0, ∞).

2.1 Measurable Spaces and Measures

In this section we introduce a few concepts and results from measure theory
that we will find useful. All of these results are well known. For proofs and
related results, we refer the reader to [18] or [19].

Let M be an arbitrary nonempty set.
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• A field (of sets) over M is a Boolean algebra of subsets of M under the
usual set-theoretic Boolean operations.

• A σ-algebra over M is a field of sets over M closed under countable
union. The tuple (M, Σ) is called a measurable space and the elements
of Σ measurable sets.

Given two measurable spaces (M, Σ) and (N, Ω), a function f : M→ N
is measurable if f−1(T) ∈ Σ for all T ∈ Ω. We use JM→ NK to denote the
family of measurable functions from (M, Σ) to (N, Ω).

If Ω ⊆ 2M, the σ-algebra generated by Ω, denoted Ωσ, is the smallest
σ-algebra containing Ω.

A nonnegative real-valued set function µ is finitely additive if µ(A∪ B) =
µ(A) + µ(B) whenever A ∩ B = ∅. We say that µ is countably subadditive if
µ(
⋃

i Ai) ≤ ∑i µ(Ai) for a countable family of measurable sets, and we say
that µ is countably additive if µ(∪i Ai) = ∑i µ(Ai) for a countable pairwise-
disjoint family of measurable sets.

Finite additivity implies monotonicity and countable additivity implies
continuity properties as stated in the theorems below.

Theorem 1. Let F ⊆ 2M be a field of sets. If µ : F → R+ is finitely additive,
then

(i) µ(∅) = 0;

(ii) µ is monotone: if A ⊆ B then µ(A) ≤ µ(B); and

(iii) if A ⊆ B then µ(B \ A) = µ(B)− µ(A).

The next theorem provides five equivalent properties that a finitely ad-
ditive function over a field of sets can have.

Theorem 2. Let F ⊆ 2M be a field of sets. Let µ : F → R+ be finitely additive.
The following are equivalent:

(i) µ is countably subadditive: for any countable collection Ai such that
⋃

i Ai ∈
F ,

µ(
⋃

i

Ai) ≤∑
i

µ(Ai);
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(ii) µ is countably additive: for any countable collection Ai such that
⋃

i Ai ∈ F
and the Ai are pairwise disjoint,

µ(
⋃

i

Ai) = ∑
i

µ(Ai);

(iii) µ is ω-continuous from below: for any countable chain A0 ⊆ A1 ⊆ · · ·
such that

⋃
i Ai ∈ F ,

µ(
⋃

i

Ai) = sup
i

µ(Ai);

(iv) µ is ω-continuous from above: for any countable chain A0 ⊇ A1 ⊇ · · ·
such that

⋂
i Ai ∈ F ,

µ(
⋂

i

Ai) = inf
i

µ(Ai);

(v) µ is ω-continuous from above at∅: for any countable chain A0 ⊇ A1 ⊇ · · ·
such that

⋂
i Ai = ∅,

µ(
⋂

i

Ai) = 0.

A measure on a measurable spaceM = (M, Σ) is a countably additive
set function µ : Σ→ R+. Observe that all measures satisfy the five equiva-
lent properties stated in Theorem 2.

The next theorem is a key tool in our constructions.

Theorem 3 (Theorem 11.3 of [18]). Let F ⊆ 2M be a field of sets. Let µ : F →
R+ be finitely additive and countably subadditive. Then µ extends uniquely to a
measure on F σ.

Proof sketch. This argument is known as the Carathéodory construction.
For B ∈ 2M, define

µ*(B) = inf
B⊆⋃ C
C countable

sup
F⊆C

F finite

µ(
⋃

F),

where the infimum ranges over countable F -covers C of B. The map µ* is
called an outer measure of µ. One can show that µ* satisfies the following
properties:
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• µ* and µ agree on F ;

• µ is monotone;

• µ is countably subadditive.

Now define a set B to be measurable with respect to µ* if for all A ∈ 2M,

µ*(A) = µ*(A ∩ B) + µ*(A \ B).

One now shows that the set of measurable sets is a σ-algebra, therefore
contains F σ, and all properties of measures are satisfied.

A measure is a probability measure if in addition µ(M) = 1. We use
∆(M, Σ) to denote the class of probability measures on (M, Σ). We can view
∆(M, Σ) as a measurable space by considering the σ-algebra generated by
the sets {µ ∈ ∆(M, Σ) | µ(S) ≥ r} for S ∈ Σ and r ∈ [0, 1]. This is the
least σ-algebra on ∆(M, Σ) such that all maps µ 7→ µ(S) : ∆(M, Σ)→ [0, 1]
for S ∈ Σ are measurable, where the real interval [0, 1] is endowed with the
σ-algebra generated by all rational intervals.

2.2 Analytic Spaces

It turns out that one obtains a much richer theory when one combines mea-
sure theory and topology; in fact a standard restriction is to consider so
called Polish spaces. We will work with a broader class called analytic spaces.
We define these and related concepts here.

Every topological space has a natural σ-algebra associated with it, namely
the one generated by the open sets. This is called the Borel algebra of the
space, and the measurable sets are called Borel sets.

Recall that a topological space is said to be separable if it contains a
countable dense subset and second countable if its topology has a countable
base. Second countability implies separability, but not vice versa in general;
however, the two concepts coincide for metric spaces.

A Polish space is the topological space underlying a complete separable
metric space.

An analytic space is a continuous image of a Polish space. More precisely,
if X and Y are Polish spaces and f : X → Y is continuous, then the image
f (X) is an analytic space.
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Remarkably, one does not get a broader class by allowing f to be merely
measurable instead of continuous and by taking the image of a Borel subset
of X instead of X. That is, the measurable image of any Borel subset of a
Polish space is analytic.

Analytic spaces enjoy remarkable properties that were crucial in prov-
ing the logical characterization of bisimulation [12, 20]. We note that the
completeness theorems proved in [13, 21, 22] were established for Markov
processes defined on analytic spaces.

2.3 The Baire Category Theorem

The Baire category theorem is a topological result with important applica-
tions in logic. It can be used to prove the Rasiowa–Sikorski lemma [16] that
is central for our paper.

A subset D of a topological space X is dense if its closure D is all of X.
Equivalently, a dense set is one intersecting every nonempty open set. A set
N ⊆ X is nowhere dense if every nonempty open set contains a nonempty
open subset disjoint from N. A set is said to be of the first category or meager if
it is a countable union of nowhere dense sets. The term “meager” is meant
to suggest that these sets are small in a topological sense. A basic fact that
we use is that the boundary of an open set is nowhere dense.

A Baire space is one in which the intersection of countably many dense
open sets is dense. It follows from these definitions that the complement of
a first category set is dense in any Baire space. Baire originally proved that
the real line is a Baire space. More generally, every Polish space is Baire and
every locally compact Hausdorff space is Baire. For us, the relevant version
is the following special case: every compact Hausdorff space is Baire.

Definition 4. Let B be a Boolean algebra and let T ⊆ B such that T has a greatest
lower bound

∧
T in B. An ultrafilter (maximal filter) U is said to respect T if

T ⊆ U implies that
∧

T ∈ U.

If T is a family of subsets of B, we say that an ultrafilter U respects T if
it respects every member of T .

Theorem 5 (Rasiowa–Sikorski lemma [16]). For any Boolean algebra B and
any countable family T of subsets of B, each member of which has a meet in B,
and for any nonzero x ∈ B, there exists an ultrafilter in B that contains x and
respects T .
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This lemma was later proved by Tarski in a purely algebraic way. See [14]
for a discussion of the role of the Baire category theorem in the proof.

2.4 The Stone Representation Theorem

Starting from a Boolean algebra B, one can construct a topological space
called a Stone space as follows. The points of the space are the ultrafilters of
B, which are in one-to-one correspondence with the Boolean algebra homo-
morphisms B → 2, where 2 is the two-element Boolean algebra. For each
x ∈ B, let x′ be the set of ultrafilters containing x. The sets x′ form a base
for the topology. The resulting space is compact, Hausdorff, and totally
disconnected. The basic open sets x′ are both closed and open (clopen);
spaces with a base of clopen sets are called zero-dimensional. For compact
Hausdorff spaces, the notions of zero-dimensionality and total disconnect-
edness coincide.

A Stone space is defined to be a zero-dimensional compact Hausdorff
space. The family of clopen sets of a Stone space form a Boolean alge-
bra. One can go back and forth from Boolean algebras to Stone spaces; in
both cases one obtains an object isomorphic to the starting object. Jonsson
and Tarski [3] extended this to Boolean algebras with additional operators,
essentially algebraic versions of modal operators, and corresponding topo-
logical spaces equipped with suitable closure operators.

The correspondence lifts to a contravariant equivalence between the
category of Boolean algebras and Boolean algebra homomorphisms and
the category of Stone spaces and continuous maps. Many other dualities in
mathematics are recognized as being of this type [2].

SS BAop
C

U

3 Markov Processes and Markovian Logic

3.1 Markov Processes

Markov processes (MPs) are models of probabilistic systems with a contin-
uous state space and probabilistic transitions [12, 20, 23]. In earlier papers,
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they were called labeled Markov processes to emphasize the fact that there
were multiple possible actions, but here we will suppress the labels, as they
do not contribute any relevant structure for our results.

Definition 6 (Markov process). Given an analytic space (M, Σ), a Markov
process is a measurable mapping θ ∈ JM→ ∆(M, Σ)K.

In what follows we identify a Markov process with the tuple M =
(M, Σ, θ); M is the support set, denoted by supp(M), and θ is the transi-
tion function. For m ∈ M, θ(m) : Σ → [0, 1] is a probability measure on the
state space (M, Σ). For N ∈ Σ, the value θ(m)(N) ∈ [0, 1] represents the
probability of a transition from m to a state in N.

The condition that θ is a measurable function JM→ ∆(M, Σ)K is equiv-
alent to the condition that for fixed N ∈ Σ, the function m 7→ θ(m)(N) is a
measurable function JM→ [0, 1]K (see e.g. Proposition 2.9 of [23]).

3.2 Markovian Logic

Markovian logic (ML) is a multi-modal logic for semantics based on MPs
[13, 15, 21, 24–28]. In addition to the Boolean operators, this logic is equipped
with probabilistic modal operators Lr for r ∈ Q0 that bound the probabilities
of transitions. Intuitively, the formula Lr ϕ is satisfied by m ∈ M whenever
the probability of a transition from m to a state satisfying ϕ is at least r.

Definition 7 (Syntax). The formulas of L are defined, for a set P of atomic propo-
sitions, by the grammar

ϕ ::= p | ⊥ | ϕ→ ϕ | Lr ϕ

where p can be any element of P and r any element ofQ0.

The Boolean operators ∨, ∧, ¬, and > are defined from → and ⊥ as
usual. For r1, . . . , rn ∈ Q0 and ϕ ∈ L, let

Lr1···rn ϕ = Lr1 · · · Lrn ϕ.

The Markovian semantics for L is defined for a given MPM = (M, Σ, θ)
and m ∈ M, on top of an interpretation function i : M→ 2P , as follows.

• M, m, i � p if p ∈ i(m),
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• M, m, i � ⊥ never,

• M, m, i � ϕ→ ψ ifM, m, i � ψ wheneverM, m, i � ϕ,

• M, m, i � Lr ϕ if θ(m)(JϕK) ≥ r,
where JϕK = {m ∈ M | M, m, i � ϕ}.

For the last clause to make sense, JϕK must be measurable. This is guaran-
teed by the fact that θ ∈ JM→ ∆(M, Σ)K (see e.g. [13]). It follows that

• M, m, i � > always,

• M, m, i � ϕ ∧ ψ iffM, m, i � ϕ andM, m, i � ψ,

• M, m, i � ϕ ∨ ψ iffM, m, i � ϕ orM, m, i � ψ,

• M, m, i � ¬ϕ iff notM, m, i � ϕ.

GivenM = (M, Σ, θ) and i, we say that m ∈ M satisfies ϕ ifM, m, i � ϕ.
We write M, m, i 6� ϕ if it is not the case that M, m, i � ϕ; and we write
M, m, i � Φ if M, m, i � ϕ for all ϕ ∈ Φ. We write Φ � ϕ if M, m, i � ϕ
whenever M, m, i � Φ. A formula or set of formulas is satisfiable if there
exist an MPM, an interpretation function i forM and m ∈ supp(M) that
satisfies it. We say that ϕ is valid and write � ϕ if ∅ � ϕ, that is, if ¬ϕ is not
satisfiable.

We now present an axiomatization of ML for Markovian semantics.
The system is a Hilbert-style system consisting of the axioms and rules
of propositional modal logic and the axioms and rules listed in Table 1.
The axioms and the rules are stated for arbitrary ϕ, ψ ∈ L and arbitrary
r, s ∈ Q0.

If Φ ⊆ L and ϕ ∈ L, we write Φ ` ϕ and say that Φ derives ϕ if ϕ is
provable from the axioms and the extra assumptions Φ. We write ` ϕ if
∅ ` ϕ.

A formula or set of formulas is consistent if it cannot derive ⊥. We say
that Φ ⊆ L is maximally consistent if it is consistent and it has no proper
consistent extensions.

The set Φ of formulas is filtered if for all ϕ, ψ ∈ Φ there exists ρ ∈ Φ with
` ρ→ ϕ ∧ ψ.

The (strong) completeness of this logic is proved in [15] by assuming
Lindenbaum’s lemma as a meta-axiom and using the following stronger
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(A1): ` L0ϕ

(A2): ` LrT

(A3): ` Lr ϕ→ ¬Ls¬ϕ, r + s > 1

(A4): ` Lr(ϕ ∧ ψ) ∧ Ls(ϕ ∧ ¬ψ)→ Lr+s ϕ, r + s ≤ 1

(A5): ` ¬Lr(ϕ ∧ ψ) ∧ ¬Ls(ϕ ∧ ¬ψ)→ ¬Lr+s ϕ, r + s ≤ 1

(R1):
` ϕ→ ψ

` Lr ϕ→ Lrψ

(R2): {Lr1···rnrψ | r < s} ` Lr1···rnsψ

Table 1: The axioms of L

version of (R1) for filtered Φ ⊆ L:

Φ ` ϕ

LrΦ ` Lr ϕ

where LrΦ = {Lrψ | ψ ∈ Φ}.
A consequence of our duality theorem is the (strong) completeness of

ML with the axiomatization in Table 1.

4 Aumann Algebras

In this section we introduce an algebraic version of Markovian logic con-
sisting of Boolean algebra with operators Fr for r ∈ Q0 corresponding to
the operators Lr of ML. We call this Aumann Algebra (AA) in honor of
Robert Aumann, who has made fundamental contributions to probabilistic
logic [24, 25].

4.1 Definition of Aumann Algebras

Definition 8 (Aumann algebra). An Aumann algebra (AA) is a structure
A = (A,→,⊥, {Fr}r∈Q0 ,≤) where
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• (A,→,⊥,≤) is a Boolean algebra;

• for each r ∈ Q0, Fr : A→ A is an unary operator; and

• the axioms in Table 2 hold for all a, b ∈ A, r, s, r1, . . . , rn ∈ Q0.

The Boolean operations ∨, ∧, ¬, and >, are defined from→ and ⊥ as usual.

Morphisms of Aumann algebras are Boolean algebra homomorphisms that com-
mute with the operations Fr. The category of Aumann algebras and Aumann alge-
bra homomorphisms is denoted by AA.

We abbreviate Fr1 · · · Frn a by Fr1···rn a.

(AA1) > ≤ F0a

(AA2) > ≤ Fr>

(AA3) Fra ≤ ¬Fs¬a, r + s > 1

(AA4) Fr(a ∧ b) ∧ Fs(a ∧ ¬b) ≤ Fr+sa, r + s ≤ 1

(AA5) ¬Fr(a ∧ b) ∧ ¬Fs(a ∧ ¬b) ≤ ¬Fr+sa, r + s ≤ 1

(AA6) a ≤ b⇒ Fra ≤ Frb

(AA7) (
∧

r<s Fr1···rnra) = Fr1···rnsa

Table 2: Aumann algebra

The operator Fr is the algebraic counterpart of the logical modality Lr.
The first two axioms state tautologies, while the third captures the way Fr
interacts with negation. Axioms (AA4) and (AA5) assert finite additivity,
while (AA6) asserts monotonicity.

The most interesting axiom is the infinitary axiom (AA7). It asserts that
Fr1···rnsa is the greatest lower bound of the set {Fr1···rnra | r < s}with respect
to the natural order ≤. In SMPs, it will imply countable additivity.

The following lemma establishes some basic consequences.

Lemma 9. Let A = (A,→,⊥, {Fr}r∈Q0 ,≤) be an Aumann algebra. For all
a, b ∈ A and r, s ∈ Q0,

(i) Fr⊥ = ⊥ for r > 0;
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(ii) if r ≤ s, then Fsa ≤ Fra;

(iii) if a ≤ ¬b and r + s > 1, then Fra ≤ ¬Fsb.

As expected, the formulas of Markovian logic modulo logical equiva-
lence form a free countable Aumann algebra. Define ≡ on formulas by:
ϕ ≡ ψ if ` ϕ → ψ and ` ψ → ϕ. Let [ϕ] denote the equivalence class of
ϕ modulo ≡, and let L/≡ = {[ϕ] | ϕ ∈ L}. By (R1), the modality Lr is
well defined on ≡-classes. The Boolean operators are also well defined by
considerations of propositional logic.

Theorem 10. The structure

(L/≡,→, [⊥], {Lr}r∈Q0 ,≤)

is an Aumann algebra, where [ϕ] ≤ [ψ] iff ` ϕ→ ψ.

Proof. The axioms of Boolean algebras are trivially satisfied.

Now we have to verify the axioms in Table 2 for Fr = Lr.

(AA1) in this setting corresponds to ` T → L0ϕ, which is equivalent to
` L0ϕ and an instance of axiom (A1) of L.

Similarly, (AA2), (AA3), (AA4) and (AA5) are easily seen to correspond
to axioms (A2), (A3), (A4) and (A5) respectively. (AA6) and (AA7) are in-
stances of the rules (R1) and (R2) respectively. Consequently all the axioms
of Aumann algebra are verified.

Moreover, L is countable.

4.2 Extended Satisfiability Principles for Aumann Algebras

We saw in the previous section that the formulas of ML give rise to an Au-
mann algebra. We now define a satisfiability relation for AAs that general-
izes the satisfiability relation for ML and prove the corresponding sound-
ness result for MPs.

Let M = (M, Σ, θ) be a MP and let J·K be an interpretation of terms
in the language of Aumann algebras as measurable sets in M in which the
Boolean operators have their usual set-theoretic interpretation and for S ∈
Σ and t ∈ Q0,

JFtK(S) = {m ∈ M | θ(m)(S) ≥ t} JFtaK = JFtK(JaK).
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If A is freely generated, then an interpretation function is defined by any
function that associates to each generator of A a subset of M.

Lemma 11. JFtK preserves meets of countable measurable chains; that is, if Si,
i ∈ I is a countable chain of measurable sets, then

JFtK(
⋂
i∈I

Si) =
⋂
i∈I

JFtK(Si).

Proof. We have

JFtK(
⋂
i∈I

Si) = {m ∈ M | θ(m)(
⋂
i∈I

Si) ≥ t}

= {m ∈ M | inf
i∈I

θ(m)(Si) ≥ t}

= {m ∈ M | ∀i ∈ I, θ(m)(Si) ≥ t}
=
⋂
i∈I

{m ∈ M | θ(m)(Si) ≥ t}

=
⋂
i∈I

JFtK(Si).

We can prove now that the axioms of Aumann algebras are sound for
Markov processes.

Theorem 12 (Soundness). Let A be an Aumann algebra and a ∈ A. If > ≤ a,
then for any Markov processM = (M, Σ, θ) and any interpretation J·K of terms
in the language of Aumann algebras as measurable sets in M with the properties
listed above, JaK = M.

Proof. As in the case of soundness for logics, we prove the soundness by
showing that each axiom is satisfied by any Markov process. In the follow-
ing, we only prove it for (AA7).

Let F be the set of terms of the form αr = Ft1···tnra for a ∈ A and 0 ≤
t1, . . . , tn, r ≤ 1. We consider this formula parameterized by r; that is, if
αr = Ft1···tnra, then αs denotes Ft1···tnsa. The axiomatization of AAs includes
all infinitary conditions of the form

αs =
∧
r<s

αr.
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To prove the soundness of (AA7), it is sufficient to prove that

JαsK = J
∧
r<s

αrK.

We proceed by induction on n. For the basis,

JFsaK = JFsK(JaK) = {u | θ(u)(JaK) ≥ s}
= {u | ∀r < s θ(u)(JaK) ≥ r} =

⋂
r<s
{u | θ(u)(JaK) ≥ r}

=
⋂
r<s

JFraK = J
∧
r<s

FraK.

For the induction step, if JαsK = J
∧

r<s αrK and t > 0,

JFtα
sK = JFtK(JαsK) = JFtK(J

∧
r<s

αrK)

= JFtK(
⋂
r<s

JαrK) =
⋂
r<s

JFtK(JαrK) by Lemma 11

=
⋂
r<s

JFtα
rK = J

∧
r<s

Ftα
rK.

5 Stone Markov Processes

In our duality theory, we work with Markov processes constructed from
certain zero-dimensional Hausdorff spaces. We call such structures Stone–
Markov processes (SMPs).

5.1 MPs with Distinguished Base

We restrict our attention to Markov processes (M,A, θ), whereA is a distin-
guished countable base of clopen sets that is closed under the set-theoretic
Boolean operations and the operations

Fr(A) = {m | θ(m)(A) ≥ r}, r ∈ Q0.

The measurable sets Σ are the Borel sets of the topology generated by A.
Morphisms of such spaces are required to preserve the distinguished base;
thus a morphism f :M→ N is a continuous function such that
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• for all m ∈ M and B ∈ ΣN ,

θM(m)( f−1(B)) = θN ( f (m))(B);

• for all A ∈ AN , f−1(A) ∈ AM.

5.2 Saturation

Unlike Stone spaces, SMPs are not topologically compact, but we do pos-
tulate a completeness property that is a weak form of compactness, which
we call saturation. One can saturate a given SMP by a completion proce-
dure that is reminiscent of Stone–Čech compactification. Intuitively, one
adds points to the structure without changing the represented algebra. An
MP is saturated if it is maximal with respect to this operation. The term
comes from a related concept of the same name in model theory [29, Ch. 5].

Formally, consider MP morphisms f :M→ N such that

• f is a homeomorphism betweenM and its image in N ;

• the image f (M) is dense in N; and

• f preserves the distinguished base in the forward direction as well as
the backward; that is, if A ∈ AM, then there exists B ∈ AN such that
A = f−1(B).

Call such a morphism a strict embedding. The collection of all N such that
there exists a strict embeddingM→ N contains a final object, which is the
colimit of the strict embeddingsM→ N . This is the saturation ofM.

One can construct the saturation by completing by a certain family of
ultrafilters called good ultrafilters. These are ultrafilters respecting the infini-
tary condition (AA7) in the definition of Aumann algebras (§4). All ultrafil-
ters represented by a point of an SMP are already good, and one must only
add the rest. The details of this construction are given in §6.

5.3 Definition of SMP

Definition 13 (Stone–Markov Process). A Markov process M = (M,A, θ)
with distinguished base is a Stone–Markov process (SMP) if it is saturated.
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The morphisms of SMPs are just the morphisms of MPs with distinguished
base as defined above.

The category of SMPs and SMP morphisms is denoted SMP.

6 Stone Duality

In this section we describe the duality between SMPs and countable AAs.
This is in the spirit of the classical Stone representation theorem [1], or,
more precisely, the representation theorem of Jonsson and Tarski [3] for
Boolean algebras with operators. Here the details are somewhat different,
as we must deal with measure theory.

6.1 From AAs to SMPs

For this subsection, we fix an arbitrary countable Aumann algebra

A = (A,→,⊥, {Fr}r∈Q0 ,≤).

Let U * be the set of all ultrafilters of A. The classical Stone construction
gives a Boolean algebra of sets isomorphic to A with elements

LaM* = {u ∈ U * | a ∈ u}, a ∈ A LAM* = {LaM* | a ∈ A}.

The sets LaM* generate a Stone topology τ* on U *, and the sets LaM* are ex-
actly the clopen sets of the topology.

Let F be the set of elements of the form αr = Ft1···tnra for a ∈ A and
t1, . . . , tn, r ∈ Q0. As before, we consider this term as parameterized by r;
that is, if αr = Ft1···tnra, then αs denotes Ft1···tnsa. The set F is countable since
A is. Axiom (AA7) asserts all infinitary conditions of the form

αs =
∧
r<s

αr. (1)

for αs ∈ F . Let us call an ultrafilter u bad if it violates one of these conditions
in the sense that for some αs ∈ F , αr ∈ u for all r < s but αs 6∈ u. Otherwise,
u is called good. Let U be the set of good ultrafilters of A.

Let τ = {B ∩ U | B ∈ τ*} be the subspace topology on U , and let

LaM = {u ∈ U | a ∈ u} = LaM* ∩ U LAM = {LaM | a ∈ A}.
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Then τ is countably generated by the sets LaM and all LaM are clopen in the
subspace topology.

The next lemma asserts that the set U \ U * of bad ultrafilters is meager.
We will use this to argue that U is dense in U *, therefore no LaM vanishes as
a result of dropping the bad points from LaM*. It will follow that LAM and
LAM* are isomorphic as Boolean algebras.

Lemma 14. The set U * \ U is of first category in the Stone topology τ*.

Proof. We must prove that U * \ U is a countable union of nowhere dense
sets. Since A countable, the set F is countable as well. Each bad ultrafilter
u ∈ U * \ U violates at least one constraint (1), thus

U * \ U =
⋃

αs∈F
Uαs ,

where

Uαs = {u ∈ U * | αs 6∈ u and ∀r < s αr ∈ u}
= L¬αsM* \

⋃
r<s

L¬αrM*.

Now we argue that each Uαs is nowhere dense. In τ*, L¬αsM* is a closed
set while

⋃
r<sL¬αrM* is a countable union of open sets, hence open. More-

over,
L¬αsM* =

⋃
r<s

L¬αrM*,

where S denotes the closure of S. Consequently, Uαs is the boundary of an
open set, hence nowhere dense.

In the remainder of this section, we show that the topological space
(U , τ) is a zero-dimensional Hausdorff space with base LAM and that this
space gives rise to an SMP (U , LAM, θ). Note that unlike (U *, τ*), the space
(U , τ) is not compact, but it is saturated.

In order to prove these claims, we need to focus on the properties of
the subspace topology. Recall that for a topological space (X, τ) and an
arbitrary set Y ⊆ X, we can view Y as a topological space with the relative
topology τ′ = {u ∩ Y | u ∈ τ}. Moreover, if u is an open (closed) set
in τ, then u ∩ Y is open (closed) in τ′, and if B ⊆ τ is a base for τ, then
B′ = {u ∩Y | u ∈ B} is a base for τ′.

The next lemma is immediate from the definitions.
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Lemma 15. Any subspace of a zero-dimensional space is zero-dimensional, and
any subspace of a Hausdorff space is Hausdorff.

Proof. Let (X, τ) space and (Y, τ′) a subspace with the relative topology.
Suppose that (X, τ) is zero-dimensional. For all u′ ∈ τ′, there exists u ∈ τ
such that u′ = u ∩ Y. Since (X, τ) has a base of clopen sets, we have u =⋃

i∈I ui, where the ui are an indexed collection of clopens in τ. Then

u′ = (
⋃
i∈I

ui) ∩Y =
⋃
i∈I

(ui ∩Y).

Since the ui are clopen in τ, the ui ∩ Y are clopen in τ′, thus the clopens of
τ′ form a base for the topology τ′, therefore (Y, τ′) is zero-dimensional.

If (X, τ) is Hausdorff, then for all x, y ∈ Y there exist disjoint u, v ∈ τ
such that x ∈ u and y ∈ v. Then x ∈ u ∩ Y, y ∈ v ∩ Y, and u ∩ Y and v ∩ Y
are disjoint and in τ′. As x, y were arbitrary, (Y, τ′) is Hausdorff.

Since (U , τ) is a subspace of the Stone space (U *, τ*), the next proposi-
tion is just an instance of Lemma 15.

Proposition 16. The space (U , τ) is a zero-dimensional Hausdorff space.

6.2 Construction of M(A)

We can now form a Markov process M(A) = (U , Σ, θ), where Σ is the
σ-algebra generated by LAM. To define the measure θ(u) for an ultrafilter
u ∈ U , we need to prove some additional results.

Lemma 17. For all a ∈ A and u ∈ U , the set

{r ∈ Q0 | Fra ∈ u}

is nonempty and closed downward in the natural order onQ0.

Proof. The set contains at least 0 by (AA1). Downward closure follows from
Lemma 9(ii).
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It follows that {r ∈ Q0 | ¬Fra ∈ u} is closed upward. Thus we can
define the function θ : U → LAM→ [0, 1] by

θ(u)(LaM) = sup{r ∈ Q0 | Fra ∈ u}
= inf{r ∈ Q0 | ¬Fra ∈ u}.

Note that θ(u)(LaM) is not necessarily rational. In the following, we use
Theorem 3 to show that θ can be uniquely extended to a transition func-
tion. This will allow us to construct a Markov process on the space of good
ultrafilters.

Lemma 18. The set LAM is a field of sets, and for all u ∈ U , the function θ(u) is
finitely additive.

Proof. That the set LAM is a field of sets is immediate from the Stone repre-
sentation theorem and the fact that LAM is dense in LAM*.

To show finite additivity, suppose a, b ∈ A and LaM ∩ LbM = ∅. Then
a ∧ b = 0. We wish to show that

θ(u)(La ∨ bM) = θ(u)(LaM) + θ(u)(LbM).

It suffices to show the inequality in both directions. For≤, by the definition
of θ, it suffices to show

sup{t | Ft(a ∨ b) ∈ u}
≤ inf{r | ¬Fra ∈ u}+ inf{s | ¬Fsb ∈ u}
= inf{r + s | ¬Fra ∈ u and ¬Fsb ∈ u}
= inf{r + s | ¬Fra ∧ ¬Fsb ∈ u};

that is, if Ft(a ∨ b) ∈ u and ¬Fra ∧ ¬Fsb ∈ u, then t ≤ r + s. But

¬Fra ∧ ¬Fsb = ¬Fr((a ∨ b) ∧ a) ∧ ¬Fs((a ∨ b) ∧ ¬a)
≤ ¬Fr+s(a ∨ b) by (AA5),

thus ¬Fr+s(a ∨ b) ∈ u, and t ≤ r + s follows from the characterization of
Lemma 17.

The inequality in the opposite direction is similar, using (AA4). We need
to show

inf{t | ¬Ft(a ∨ b) ∈ u} ≥ sup{r + s | Fra ∧ Fsb ∈ u};
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that is, if ¬Ft(a ∨ b) ∈ u and Fra ∧ Fsb ∈ u, then t ≥ r + s. But

Fra ∧ Fsb = Fr((a ∨ b) ∧ a) ∧ Fs((a ∨ b) ∧ ¬a)
≤ Fr+s(a ∨ b) by (AA4),

thus Fr+s(a ∨ b) ∈ u, and again r + s ≤ t by Lemma 17.

The following is the key technical lemma where we use the fact that we
have removed the bad ultrafilters.

Lemma 19. For u ∈ U , θ(u) is continuous from above at ∅.

Proof. We prove that if u ∈ U (it is a good ultrafilter) and b0 ≥ b1 ≥ · · ·
with

⋂
iLbiM = ∅, then

inf
i

θ(u)(LbiM) = 0.

Consider the countable set F of elements of the form αr = Ft1···tnra for
a ∈ A and rational t1, . . . , tn, r ≥ 0, parameterized by r. If r < s, then
αs ≤ αr. Using (AA4),

θ(u)(Lαr ∧ ¬αsM) ≤ θ(u)(LαrM)− θ(u)(LαsM). (2)

Since u is good, Ftα
r ∈ u for all r < s iff Ftα

s ∈ u, therefore

θ(u)(LαsM) = inf
r<s

θ(u)(LαrM). (3)

Let ε > 0 be an arbitrarily small positive number. For each α ∈ F and
s ∈ Q0, choose εs

α > 0 such that ∑α∈F ∑s∈Q0
εs

α = ε. By (2) and (3), we can
choose rs

α < s such that

θ(u)(Lαrs
α ∧ ¬αsM) ≤ θ(u)(Lαrs

αM)− θ(u)(LαsM) ≤ εs
α.

The assumption
⋂

iLbiM = ∅ implies that
⋂

iLbiM* contains only bad ul-
trafilters. The set of good ultrafilters is

⋂
α∈F

⋂
s∈Q0

(⋃
r<s

L¬αrM* ∪ LαsM*

)
. (4)

Thus
⋂

iLbiM = ∅ is equivalent to the condition(⋂
α∈F

⋂
s∈Q0

(⋃
r<s

L¬αrM* ∪ LαsM*

))
∩
⋂

i

LbiM* = ∅.
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From this it follows that(⋂
α∈F

⋂
s∈Q0

(
L¬αrs

αM* ∪ LαsM*
))
∩
⋂

i

LbiM* = ∅.

Since the space of ultrafilters is compact in the presence of the bad ul-
trafilters and LaM* is a clopen for any a ∈ A, there exist finite sets C0 ⊆ F
and S0 ⊆ Q∩ [0, 1] and j ∈ N such that⋂

α∈C0

⋂
s∈S0

L¬αrs
α ∨ αsM* ∩ LbjM* = ∅,

or in other words,

LbjM* ⊆
⋃

α∈C0

⋃
s∈S0

Lαrs
α ∧ ¬αsM*

= L
∨

α∈C0

∨
s∈S0

(αrs
α ∧ ¬αs) M*

Thus in the Boolean algebra A,

bj ≤
∨

α∈C0

∨
s∈S0

(αrs
α ∧ ¬αs). (5)

Consequently,

θ(u)(LbjM) ≤ θ(u)(L
∨

α∈C0

∨
s∈S0

(αrs
α ∧ ¬αs)M)

≤ ∑
α∈C0

∑
s∈S0

θ(u)(Lαrs
α ∧ ¬αsM)

≤ ∑
α∈C0

∑
s∈S0

εs
α ≤ ε.

As ε > 0 was arbitrary, infi θ(u)(LbiM) = 0.

Since LAM is a field, the previous results and Theorem 3 imply that for
all u ∈ U , the set function θ(u) can be uniquely extended to a measure on
the σ-algebra Σ generated by LAM.

Now we are ready to prove that M(A) is a Stone Markov process.

Theorem 20. If A is a countable Aumann algebra, then M(A) = (U , LAM, θ) is
a Stone Markov process.
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Proof. We first prove that the space of good ultrafilters is analytic. Since
any Stone space is Polish, the set of all ultrafilters (good and bad) is Polish.
The good ultrafilters form a Borel set in the space of all ultrafilters—in fact,
a Gσδ Borel set as given by (4)—and since any Borel set in a Polish space is
analytic, we obtain that the space of good ultrafilters is analytic.

The space is saturated, since all possible good ultrafilters are present,
and the set {LaM | u ∈ LaM} is just u.

To conclude that M(A) is a Markov process, it remains to verify that
θ is a measurable function. Let a ∈ A, r ∈ R ∩ [0, 1], and (ri)i ⊆ Q0 an
increasing sequence with supremum r. Let X = {µ ∈ ∆(U , Σ) | µ(LaM) ≥
r}. It suffices to prove that θ−1(X) ∈ Σ. But

θ−1(X) = {u ∈ U | θ(u)(LaM) ≥ r}
=
⋂

i

{u ∈ U | θ(u)(LaM) ≥ ri}

=
⋂

i

LFri aM ∈ Σ.

Now we are ready to prove the algebraic version of a truth lemma for
Aumann algebras.

Lemma 21 (Extended Truth Lemma). Let A be a countable Aumann algebra
and J·K an interpretation of elements of A as measurable sets inM such that for
any generator p of A, JpK = {u ∈ U | p ∈ u}. Then, for arbitrary a ∈ A,

JaK = LaM.

Proof. We prove it by induction on the structure of the element a.
The case a = p, where p is a generator of A:

JaK = {u ∈ U | u 3 p} = LpM.

The Boolean cases are trivial.
The case a = Frb:

JFrbK = JFrK(JbK) = {u ∈ U | θ(u)(JbK) ≥ r} =

{u ∈ U | θ(u)(LbM) ≥ r} = LFrbM.
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6.3 From SMPs to AAs

LetM = (M,B, θ) be a Stone Markov process with distinguished base B.
By definition, B is a field of clopen sets closed under the operations

Fr(A) = {m ∈ M | θ(m)(A) ≥ r}.

Theorem 22. The structure B with the set-theoretic Boolean operations and the
operations Fr, r ∈ Q0, is a countable Aumann algebra.

We denote this algebra by A(M).

Proof. We verify all the axioms of Aumann algebra.

(AA1) has the form M ⊆ F0c for arbitrary c ∈ B. Trivially true, since
F0c = {m ∈ M | θ(m)(c) ≥ 0} = M.

(AA2) has the form M ⊆ Fr M that is trivially true, since θ(m)(M) = 1
implies Fr M = {m ∈ M | θ(m)(M) ≥ r} = M.

(AA3) has the form Frc ⊆ M \ Fs(M \ c) for arbitrary c ∈ B and r + s >
1. This is equivalent to Frc ∩ Fs(M \ c) = ∅ for s + t > 1.
Note that Fs(M \ c) = {m ∈ M | θ(m)(M \ c) ≥ s} = {m ∈ M | θ(m)(c) ≤
1− s}. If there exists m ∈ Frc ∩ Fs(M \ c), then using the previous obser-
vation we should have r ≤ θ(m)(c) ≤ 1− s, implying r ≤ 1− s, but this
contradicts the fact that r + s > 1.

(AA4) has the form Fr(c ∩ c′) ∩ Fs(c ∩ (M \ c′)) ⊆ Fr+sc. Observe that
Fr(c∩ c′)∩ Fs(c∩ (M \ c′)) = {m ∈ M | θ(m)(c∩ c′) ≥ r and θ(m)(c∩ (M \
c′)) ≥ s}. Using additivity we obtain further that Fr(c ∩ c′) ∩ Fs(c ∩ (M \
c′)) = {m ∈ M | θ(m)(c) ≥ r + s} = Fr+sc.

(AA5) has the form (M \ Fr(c∩ c′))∩ (M \ Fs(c∩ (M \ c′))) ⊆ M \ Fr+sc
and can be proved as the case of (AA4).

(AA6) has the form c ⊆ c′ implies Frc ⊆ Frc′. This follows from the
monotonicity of θ(m).

(AA7) has the form
⋂
r<s

Fr1,...,rn,rc = Fr1,...,rn,sc. The proof is done induc-

tively on n.
For n = 0 we need to prove that

⋂
r<s

Frc = Fsc. Observe that
⋂
r<s

Frc = {m ∈

M | θ(m)(c) ≤ r for all r > s} = {m ∈ M | θ(m)(c) ≤ s} = Fsc.
The inductive step uses (AA6).
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6.4 Duality

In this section we summarize the previous results in the form of the duality
theorem.

Theorem 23 (Duality Theorem).

(i) Any countable Aumann algebra A is isomorphic to A(M(A)) via the map
β : A → A(M(A)) defined by

β(a) = {u ∈ supp(M(A)) | a ∈ u} = LaM.

(ii) Any Stone Markov processM = (M,A, θ) is homeomorphic to M(A(M))
via the map α :M→M(A(M)) defined by

α(m) = {a ∈ A(M) | m ∈ a}.

Proof. (i) The set β(a) is the set of good ultrafilters of A that contain a; that
is, β(a) = LaM. By the classical Stone representation theorem, A and LAM*

are isomorphic as Boolean algebras via the map a 7→ LaM*. By the Rasiowa–
Sikorski lemma (Theorem 5) and Lemma 14, the good ultrafilters are dense
in LAM*, therefore LAM* and LAM are isomorphic as Boolean algebras via the
map LaM* 7→ LaM.

It remains to show that the operations Fr are preserved. Let U = supp(M(A)).
For each r ∈ Q0,

β(Fra) = {u ∈ U | Fra ∈ u}
= {u ∈ U | θ(u)(LaM) ≥ r}
= {u ∈ U | θ(u)(β(a)) ≥ r}
= Fr(β(a)).

(ii) The set α(m) is the set of all elements of A(M) that contain m. We
first prove that this is a good ultrafilter of A(M). It is clearly an ultrafilter,
as it is represented by a point of a set-theoretic Boolean algebra. To show
that it is good, we need to reason that if a ∈ A and Fra ∈ α(m) for all r < s,
then Fsa ∈ α(m). This follows immediately from the fact that Fta ∈ α(m) iff
m ∈ Fta iff θ(m)(a) ≥ t.

The map α is a a strict embedding, since the two distinguished bases A
of M and LAM of M(A(M)) are isomorphic. This embedding must be a
homeomorphism, sinceM is saturated.
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6.5 Duality in Categorical Form

We present the previous results in a more categorical format. The cate-
gories of Aumann algebras (AA) and Stone Markov processes (SMP) were
defined in §4 and §5, respectively.

We define contravariant functors A : SMP → AAop and M : AA →
SMPop. The functor A on an object M produces the Aumann algebra
A(M) defined in Theorem 22. On arrows f : M→ N we define A( f ) =
f−1 : A(N ) → A(M). It is well known that this is a Boolean algebra ho-
momorphism. It is also easy to verify from the definition of morphisms in
the category SMP (Definition 13) that it is an Aumann algebra homomor-
phism.

To see this explicitly, let A ∈ AN . We wish to show that

f−1(FNr (A)) = FMr ( f−1(A)).

Using the fact that

θN ( f (m))(A) = θM(m)( f−1(A)),

we have

m ∈ f−1(FNr (A))⇔ f (m) ∈ FNr (A)

⇔ θN ( f (m))(A) ≥ r

⇔ θM(m)( f−1(A)) ≥ r

⇔ m ∈ FMr ( f−1(A)).

The functor M : AA→ SMPop on an object A gives the Stone–Markov
process M(A) defined in Theorem 20. On morphisms h : A → B, it maps
ultrafilters to ultrafilters by M(h) = h−1 : M(B)→M(A); that is,

M(h)(u) = h−1(u) = {A ∈ AN | h(A) ∈ u}.

Another way to view M(h) is by composition, recalling that an ultrafilter
can be identified with a homomorphism u : A → 2 by u = {a | u(a) = 1}.
In this view,

M(h)(u) = u ◦ h,

where ◦ denotes function composition.
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We know from classical Stone duality that this is continuous. We need
to verify that it is a morphism. It suffices to verify it on sets of the form
LaM as these generate the σ-algebra. Because h is a homomorphism, we
calculate as follows:

θB(u)(M(h)−1(LaM)) = sup{r | Fr(h(a)) ∈ u}
= sup{r | h(Fr(a)) ∈ u}
= {r | u(h(Fr(a))) = 1}
= {r | Fr(a) ∈M(h)(u)}
= θA(M(h)(u)(LaM)).

Theorem 24. The functors M and A define a dual equivalence of categories.

SMP AAop
A

M

Proof. We need to show that we have a contravariant adjunction A a M

and that the unit and counit of the adjunction are isomorphisms.

A(M) A

M M(A)

AA:

SMP:

A M

The unit and counit are the natural transformations

α′ : M ◦A→ I β′ : A ◦M→ I

respectively, with components

α′M : M(A(M))→M β′A : A(M(A))→ A,

the inverses of the α and β defined in Theorem 23. Here we are using ′ to
denote functional inverse so as not to conflict with our previous usage of
−1 as f−1(X) = {x | f (x) ∈ X}. We have already shown that these are
isomorphisms.

To verify that we have an adjunction with unit α′ and counit β′, it suf-
fices to verify the conditions

β′A ◦Aα′ = I Mβ′ ◦ α′M = I.
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Since α′ and β′ are invertible, these are equivalent to

Aα′ = βA Mβ′ = αM.

Specializing at componentsA andM and using the definition of A and M

on morphisms, it suffices to show

α′−1
M = βA(M) β′−1

A = αM(A).

For the left-hand equation, as αM is invertible, all elements of M(A(M))
are of the form αM(m) for some m ∈ M, and α′M(αM(m)) = m. Thus for
C ∈ A(M(A(M))),

α′−1
M (C) = {αM(m) | α′M(αM(m)) ∈ C}

= {αM(m) | m ∈ C}
= {αM(m) | C ∈ αM(m)}
= {αM(m) | αM(m) ∈ βA(M)(C)}
= βA(M)(C).

The argument for the right-hand equation is symmetric.

7 Related Work

Stone duality in semantics originates with the pioneering work of Plotkin [4]
and Smyth [5], who discovered a Stone-type duality between the predicate-
transformer semantics of Dijkstra and state-transformer semantics. Kozen [6]
developed a probabilistic analogue of this duality. Abramsky [7] studied
dualities in domain and concurrency theory.

The theory of Stone-type dualities for transition systems has been inves-
tigated at length by Bonsangue and Kurz [8] and there have been many re-
cent investigations of Stone-type dualities from the viewpoint of coalgebra
and automata theory [30–32]. Recent very interesting work by Jacobs [33]
has explored convex dualities for probability and quantum mechanics.

Duality theory for LMPs was discussed by Mislove et al. [10] which is
based on Gelfand duality for C*-algebras. This is very interesting work, but
in rather a different direction from the present work, which is very much in
the spirit of logics for Markov processes and is related to bisimulation and
its logical characterization [12]. By contrast, the work of Mislove et al. [10]
is related to testing.
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The most closely related work to ours is the work of Goldblatt [14] on
the role of the Baire category theorem in completeness proofs, and even
more closely his work on deduction systems for coalgebras [17]. The main
difference between his work and ours is that we have eliminated some
of the infinitary axioms that he uses, although we still retain one, and of
course we have developed a duality rather than just a completeness theo-
rem. He uses one of his infinitary axioms in order to show countable ad-
ditivity of the measures that he defines; this is what we have been able to
eliminate by our use of the Rasiowa–Sikorski lemma to eliminate the bad
ultrafilters. As far as we know this is a new idea.

8 Conclusions

As promised, we have proved a duality theorem between Stone–Markov
processes and Aumann algebras which subsumes and extends the com-
pleteness theorems in the literature. Our treatment improves on the exist-
ing axiomatizations as well.

The following novel features appear in our proof:

1. We must remove ultrafilters that fail to satisfy a key infinitary axiom,
and we must show that this does not change the represented algebra
by showing that these are “rare” in a topological sense (meager).

2. As a result, the usual compactness for Stone spaces fails, and we need
a new concept, which we call saturation, instead.

3. We must establish the relevant measure theoretic properties of the
Markov kernels that we construct from the algebras. This again uses
the Baire category theorem in a crucial way.

4. We define our Markov processes with a distinguished base and use
this to constrain the morphisms in order to achieve duality.

There are many variations one can imagine exploring. Perhaps the most
interesting one is to consider more general measure spaces and work with
different bisimulation notions [34] that apply more generally. Our treat-
ment is not fully localic, and perhaps some of the topological subtleties of
the present proof would disappear once we adopted a more localic point of
view.
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