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Summary. In nature one observes that in three space dimensions particles are
either symmetric under interchange (bosons) or antisymmetric (fermions). These
phases give rise to the two possible “statistics” that one observes. In two dimensions,
however, a whole continuum of phases is possible. “Anyon” is a term coined in by
Frank Wilczek to describe particles in 2 dimensions that can acquire “any” phase
when two or more of them are interchanged. The exchange of two such anyons can
be expressed via representations of the braid group and hence, it permits one to
encode information in topological features of a system composed of many anyons.
Kitaev suggested the possibility that such topological excitations would be stable
and could thus be used for robust quantum computation.

This paper aims to

1. give the categorical structure necessary to describe such a computing process;

2. illustrate this structure with a concrete example namely: Fibonacci anyons.

1 Introduction

The mathematics and physics of anyons probe the most fundamental princi-
ples of quantum mechanics. They involve a fascinating mix of experimental
phenomena (the fractional quantum Hall effect), topology (braids), algebra
(Temperley-Lieb algebra, braid group and category theory) and quantum field
theory. Because of their topological nature, it is hoped that one can use them
as stable realisations of qubits for quantum computation, as proposed origi-
nally by Kitaev [28]. In this article we review the mathematics of anyons and
discuss the relations with braids, topology and modular tensor categories.

The spin-statistics theorem [34, 37, 43, 46] says, roughly speaking, that
particles with 1

2 -integer spin satisfy Fermi-Dirac statistics (or are “fermions”)
while particles with integer spin satisfy Bose-Einstein statistics (or are “bo-
sons”). This statement is one of the few actual theorems of relativistic quan-
tum field theory. What this means is that it can be proved from very general
assumptions of quantum mechanics and relativity and does not depend on
particular models of particles.
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The proofs traditionally given [46, 17, 18] involve quantum field theory
and rest on assumptions about causality, invariance and positivity of energy.
Nevertheless, the statement seems to have a compellingly topological flavor.
Indeed such a topological reading has been given by Finkelstein and Rubin-
stein [20], but for extended objects rather than for elementary particles. The
review article by Duck and Sudarshan [17] critiques this and other approaches
to the spin-statistics theorem. Their essential point is that elementary parti-
cles are not extended objects and thus the topological arguments do not apply.
Wightman points out that relativistic invariance is essential to the proof and
argues that there is no spin-statistics connection when only euclidean invari-
ance is assumed.

What is clear is that the proof does depend on the fact that relativistic
quantum field theory is formulated on a 3 + 1 dimensional spacetime. In a
2 + 1 dimensional spacetime – which can be realised in the laboratory using
surface phenomena – the usual argument for the existence of two kinds of
statistics is not valid anymore. Nor is the argument for the existence of two
kinds of spins. There is still a connection between spin and statistics but now
a continuum of possibilities for each exists.

The experimental investigations of the relevant surface phenomena reveal
many surprises. For example, the entities involved have flux tubes that are
extended objects, so the topological intuitions underlying the spin-statistics
theorem are no longer just heuristic. Furthermore there are collective excita-
tions that behave like particles but like particles with fractional electric charge.
Such fractional electric charges are never seen in nature and there are strong
theoretical reasons (superselection rules) to think that they cannot occur free
in nature.

In the mathematical physics literature, anyons seem to be intimately re-
lated to concepts such as modular tensor categories (MTC), a particular class
of monoidal categories, modular functors (MF), topological quantum field the-
ory (TQFT) and conformal field theory (CFT). There is, however, an order
to this collection of ideas. Indeed, the preceding mathematical constructions
may be related in the following way [5]:

MTC oo //

))TTTTTTTTTTTTTTTT topological 2D MF oo //

		

complex analytic 2D MF

3D TQFT

II

rational CFT

OO

Definitions and an expository account of these relations – along with the
precise assumptions needed to define them – are given by Bakalov and Kir-
ilov in [5]. There, they essentially present a complete picture of the results
found in [4, 13, 27, 40, 41] and [47]. The main point is that most of these
structure are essentially equivalent. Using this and the fact that the theory of
anyons is correctly described by semisimple MTCs, the categorical semantics
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for topological quantum computation with anyons that we present in section 4
is based on these.

The prerequisites for this paper are relatively modest. We will assume
that the reader is familiar with basic category theory and quantum compu-
tation. For an introduction to category theory, the reader is referred to [12]
or, for a more technical introduction, to [31]. For quantum computation, we
suggest [36] or, for a more categorical introduction to the subject [2].

1.1 Physical background

The physical effect most associated with anyons is called the fractional quan-
tum Hall effect (fqHe). In order to set the stage we first explain the classical
Hall effect, then the (integer) quantum Hall effect and finally the remarkable
features of the fqHe. The summary here is very brief and is no substitute for
the many thorough papers that have been written in the physics literature. A
particularly lucid presentation of the physical ideas appears in the 1998 Nobel
lecture of Horst Störmer [45].

The Hall effect was discovered the same year that Einstein was born, 1879.
The idea is very simple. Consider a fixed current flowing through a conductor,
which we take to be a flat strip. The current flows along the long axis of
the strip. If one measures the voltage at various points along the direction
of current flow, one gets a drop in the voltage associated with the normal
electrical resistance of the material. According to Ohm’s law we have R = V/I,
where V is the measured voltage drop between two points, I is the current and
R is the resistance between the two points. One can also measure the voltage
drop between two points lying transverse to the flow of the current. One does
not expect to see a voltage drop, and indeed none is detected. However, if one
applies a magnetic field in the direction perpendicular to the strip then there
is a transverse force on the electrons flowing through the conductor: this is
the well known Lorentz force law. This can be written as

F = qv × B

where F is the force, v is the velocity of the charged particle, q is its charge
and B is the applied magnetic field. The × denotes the 3-vector cross product,
so the force is perpendicular to both the direction of motion of the charge and
the direction of the applied magnetic field. The upshot is that the electrons
are pushed to one side and a voltage develops in the direction across the
current flow. This is the Hall effect and is well understood in terms of classical
electrodynamics.

The transverse voltage in the Hall effect VH , yields an effective Hall “re-
sistance” denoted by RH = VH/I. The resistance is now a tensor : the voltage
and current are no longer in the same direction. Since the transverse force in-
creases linearly with the applied magnetic field, one expects that RH depends
linearly on the applied magnetic field B; this is indeed what Hall found. Less
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obvious is the fact that the Hall resistance decreases with increasing electron
density. The reason for this is that, for a fixed current, the electrons have to
travel faster to achieve the same current so according to the Lorentz force law
the transverse force is greater.

A remarkable thing happens in two-dimensional systems at low tempera-
tures. The simple linear behavior of the Hall resistance on the applied mag-
netic field is replaced by a complicated graph featuring plateaus followed by
jumps. Furthermore, the value of the Hall resistance jumps according to a
very simple law

RH =
h

ie2

where, h is Planck’s constant, e is the charge of an electron and i takes on pos-
itive integer values. The Hall resistance seems to be “quantised.” In addition
to this strange behavior of the Hall resistance, the ordinary resistance van-
ishes at the points corresponding to the plateaus of the Hall resistance. This
behavior has been measured very accurately and seems to be universal, i.e. in-
dependent of the actual materials used. This phenomenon is called the integer
quantum Hall effect. It was discovered in 1980 by Klaus von Klitzing [30].

It is worth emphasising that the two-dimensional nature of the system is
crucial. In this case, by “two-dimensional” we mean that electrons are really
confined to thin layers and can only move in two dimensions. The “thin” strips
used by Hall are, of course, monstrously thick by these standards. Part of the
brilliance of the experimentalists who made these discoveries is their skill in
making ultra-thin and ultra-pure materials.

Roughly speaking, one can understand the iqHe as arising from the same
mechanism that causes electron orbits in atoms to be quantised. From the
wave mechanics point of view, electron orbits are quantised because the elec-
tron wave function for a confined electron has to obey periodic boundary
conditions; this is the same reason that guitar strings have discrete spectra.
In the case of the iqHe the Lorentz force does not cause the electrons to move
in circular orbits but they tend that way. This is, of course, a very intuitive
explanation. A rigorous understanding requires much more sophisticated ar-
guments and detailed calculations. In 1981 Robert Laughlin [32] explained
the iqHe as a manifestation of gauge invariance: a deep symmetry principle.
However, despite the complexity of the phenomenon, the explanation of the
iqHe can be given entirely in terms of the behavior of electrons at low tem-
perature confined to two dimensions and interacting with impurities and with
the applied magnetic field.

The fractional quantum Hall effect is like the iqHe except that instead of
the integer values appearing in the formula

RH =
h

ie2

we can have fractional values of i at which plateaus appear. Furthermore, these
fractional values are simple fractions like 1

3 or 2
5 . This discovery was made by
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Horst Störmer and Daniel Tsui in 1981 and was a complete surprise [45]. The
electrons formed complicated composite entities that behaved as if they had
fractional charges! Free particles with fractions of the basic electron charge are
never seen in nature. It is natural to think that composite entities could seem
to have some multiple of the electronic charge but these fractionally charged
“particles” were astonishing.

The crucial point is that one cannot explain the fqHe in terms of the
behavior of electrons qua electrons. One has to think of the collection of
electrons moving in a two-dimensional landscape as collectively forming a fluid
with the excitations having a strikingly different character than individual
electrons. They are effectively extended objects with nontrivial topological
possibilities. The interaction with the magnetic field creates flux tubes that
intersect the plane in which the electrons are confined and thus yield ribbon-
like objects that can be wound around each other. These are called chargeon-
fluxon composites.

2 Spin and Statistics

Consider a system of n identical particles in quantum mechanics. A permu-
tation of these particles leaves the system physically unchanged in 3 space
dimensions. Thus, the only way that the state of the system can change is
to be multiplied by a phase. The Hilbert space of the system must carry a
unitary representation ρ of the permutation group Sn.

Now if σ is a permutation, ρ(σ) = eiθI since all that can happen is a
change of phase. Let τ be a transposition: τ2 = id, where id is the identity
permutation. Thus, ρ(τ2) = [ρ(τ)]2 = I so ρ(τ) = ±I. This holds for any
transposition. Suppose that τ1 and τ2 share an element, i.e. τ1 interchanges a
and b while τ2 interchanges b and c. This means that τ1τ2τ1 = τ2τ1τ2. It follows
that ρ(τ1) = ρ(τ2), for, if one of them, say τ1, mapped to −I and the other to
I under ρ we would have ρ(τ1τ2τ1) = I while ρ(τ2τ1τ2) = −I. We infer that,
for a given ρ, either all transpositions map to I or all transpositions map to
−I. Every permutation is the product of transpositions. Thus, there are just
two possibilities for ρ, either all permutations map to I or all permutations σ
map to (−1)sign(σ)I. Particles obeying the former type of statistics are called
bosons and those obeying the latter are called fermions.

We now consider the effect of transporting a particle in a loop. If we bring
the particle back to its original position the physics must be unchanged. The
Hilbert space must carry a representation of the rotation group SO(3) which
describes how the particle transforms under rotation. The group SO(3) can be
visualised as a sphere with antipodal points identified. Its homotopy group is
Z2. This means that there are two kinds of loops: a closed loop on the surface
of the sphere and a curve from a point on the sphere to its antipode. The first
kind of loop is deformable to the trivial identity loop: that is, the loop that
stays at a point. If one performs a 4π rotation the curve is homotopic to the
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identity. Thus a 4π rotation must correspond to the identity transformation
and a 2π rotation to multiplication by ±1.

The group SO(3) has a covering group, that is, a group with trivial homo-
topy with continuous surjective homomorphism onto SO(3); this is the group
SU(2) of unitary 2-by-2 matrices with determinant +1. The representations of
SU(2) are well understood: they are classified by a number s – called the spin
– which is either an integer or a half-integer in natural units. The dimension
of the representation is 2s+1: a qubit is often thought of as a spin 1

2 particle.
Particles in nature come in these two species: integer spin or half-integer spin.

According to the spin-statistics theorem, particles that obey Bose-Einstein
statistics have integer spin while particles that obey Fermi-Dirac statistics
have half-integer spin. This is not an assumption about particular models
of elementary particles; it is one of the fundamental theorems of relativistic
quantum field theory.

The spin-statistics theorem was first proved by Fierz [19] and Pauli [37] in
1940 for non-interacting quantum fields. Further proofs were given by Pauli
himself [38] and deWet [15]. Almost 20 years after the original proof, the spin-
statistics theorem was extended to interacting quantum fields by Lüders and
Zumino [34] and by Burgoyne [11]. Later several new proofs were given.

The basic mathematical structure of some of the proofs was placed in the
context of rigorous quantum field theory by Streater and Wightman [46] using
the idea of describing a field theory in terms of the complex analytic properties
of vacuum expectation values [48].

The proof in Streater and Wightman [46] is based on the following as-
sumptions:

1. Poincaré invariance,
2. the vacuum is the lowest energy state, thus, the energy spectrum is

bounded below,
3. particle annihilation operators annihilate the vacuum,
4. locality: fields at spacelike separation commute or anti-commute and
5. the metric on Hilbert space is positive definite3.

The proof given by Streater and Wightman depends heavily on proper-
ties of vacuum expectation values of monomials of field operators and their
properties as holomorphic functions.

The proof goes by assuming the wrong statistics – e.g. by assuming com-
mutators for spin 1

2 particles – and then taking vacuum expectation values
and finally using analytic continuation to deduce an equation from which it
follows that the field vanishes. The analytic continuation process uses a com-
plexified version of the Lorentz group. The essential reason why the proof

3 To a mathematician this is part of the definition of Hilbert space. However, there
have been proposals in physics to consider analogues of Hilbert spaces with an
indefinite metric. In the physics literature these are sometimes also called “Hilbert
spaces.”
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works is that with the wrong sign in the commutation relations the energy is
not bounded below.

This proof makes no mention of topology. Is there a topological reason for
the spin-statistics theorem? There have been several papers on this topic: an
interesting one is by Finkelstein and Rubinstein [20]. Their argument is based
on the idea that the exchange of two particles can be deformed to a rotation
by 2π of one of them. They give a very appealing heuristic argument for this
based on a “rubber band lemma.” They make all this precise in the context of
solitons – not for the elementary particles for which the original spin-statistics
theorem was proved. Rafael Sorkin has been a major presence in the topologi-
cal approach to spin-statistics theorems. Topological arguments were given by
Balachandran et al. [6] for various situations; for example, in [7] they proved a
topological spin-statistics theorem for strings. Many subsequent papers were
written about a spin-statistics theorem for various kinds of “kinks”, “geons”
and other entities constructed from topological non-trivialities, see, for ex-
ample [16]. In an important paper Berry and Robbins [8] showed that one
could associate a geometric phase shift associated with exchanging two spin
1
2 particles and obtain a spin-statistics theorem this way. However, this has
not been extended to many particle systems.

There have been several critiques of the non-traditional proofs of the spin-
statistics theorem. In a survey article Duck and Sudarshan [17] discuss these
and several other proofs. The main point that they make is that the topolog-
ical proofs apply to “extended objects” and that elementary particles cannot
be assumed to have ribbons or other topologically nontrivial structures asso-
ciated with them. Thus, the topological proofs go not give a substitute for
the classical spin-statistics theorem. Wightman [49] pointed out that in the
absence of Lorentz invariance there is no spin-statistics connection. Thus at-
tempts to derive it from elementary principles based on euclidean invariance
rather than invariance under the Poincaré group are doomed.

3 Anyons and Braids

The fact that in two dimensions there are more possibilities for the spin and
the statistics is originally due to Leinaas and Myrheim [33], who said “ In one
and two dimensions a continuum of possible intermediate cases connects the
bosons and fermion cases.” The possibility was independently rediscovered a
few years later by Wilczek [50, 51] and Sorkin [44].

Consider what happens when there are many particles. If they are all
labeled as being distinct then arbitrary trajectories can be deformed into
the identity transformation. However, in quantum mechanics particles are
indistinguishable. Now when there is a trajectory it could correspond to an
arbitrary permutation of the particles. However, the strands corresponding to
each trajectory can be disentangled so all one has is the permutation.
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When a particle in 2 + 1 dimensional spacetime is wound around another
twice a nontrivial winding occurs and there is no reason why the phase change
should be ±1. For a system of N particles the transformation in the wave
function is given by a representation of the braid group.

The state-space of an n-particle system has to carry a representation of
the braid group rather than of the permutation group. The representations
are a much richer collection and we have the possibility of many more kinds
of statistics in two dimensions: these particles are the anyons.

There is still a spin-statistics connection, however, it is now more compli-
cated. As we have seen there are more than two possibilities for the “statis-
tics”: interchanging particles can cause arbitrary phase shifts. The rotation
group in two dimensions is SO(2). This group has the same homotopy group
as a circle so it has an infinite family of types of “spin.”

There is another new feature to be considered. As we have mentioned
before, the physical quasi-particles that arise in the fractional quantum Hall
effect are extended objects with charge and tubes of magnetic flux. Not only
is there braiding but also twisting. Later, when we formalise the theory cat-
egorically we will introduce additional algebraic structure: the aptly named
ribbon structure to capture this. For the moment we confine our attention to
braiding.

The braid group can be described by giving generators and relations. We
think of there being a fixed set of n points along a line segment and we
visualise an element of the braid group as a set of strands connecting two
such collections of n points. Each strand must go from one of the lower points
to one of the upper points. The generators are interchanges of two adjacent
strands: this can happen in two ways, the strand of particle i crosses over the
strand of particle i+1 – we call this bi – or it can cross under, we call this b−1

i .
For n points the generators are b1 to bn−1 and their inverses. The generators
obey the following equations:

bibj = bjbi for |i − j| ≥ 2 (1)

bibi+1bi = bi+1bibi+1 for 1 ≤ i ≤ n − 1. (2)

which respectively depicts as:

=

i i + 1 j j + 1

...... ...

i i + 1 j j + 1

...... ...

and
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=

i i + 1

... ...

i + 2i i + 1

... ...

i + 2

Now a collection of N anyons corresponds to a representation of the
braid group on N particles. The simplest case is when they correspond to
one-dimensional representations; higher dimensional representations are, in
principle, also possible. In the case of one dimensional representations the
wavefunction will transform in response to one particle being wound around
another by acquiring a phase factor exp(iθ); clearly one-dimensional repre-
sentations of any group are always abelian. Thus, the generator bj is repre-
sented by a exp(iθj). Note that – unlike in the permutation group – b2

j 6= Id
so exp(2iθj) need not be equal to 1. If one looks at the elements of the
braid group in this representation they form an abelian group since, for each
generator bj occurring in a word, one gets a factor of exp(ikθj) where k
is the number of times that bj appears in the word minus the number of
times b−1

j occurs. The order in which the generators appear is not impor-
tant in this simple representation and for this reason anyons obeying these
rules are called abelian anyons. In fact, the equations for the generators
(the so-called Yang-Baxter equation) implies that the phase factors are the
same for all the generators. To see this note that this equation implies that
exp(iθj) exp(iθj+1) exp(iθj) = exp(iθj+1) exp(iθj) exp(iθj+1), whence the re-
sult follows immediately. Anyons transforming according to higher dimen-
sional representations of the braid group will not have this simple abelian
character: they are called nonabelian anyons.

Physically anyons are collective excitations rather than “elementary” par-
ticles. Thus when they are put together they form new excitations in complex
ways. What is remarkable is that the complicated physics is summarised by
simple algebraic rules called fusion rules. The best way to express the fusion
rules is through the theory of semisimple monoidal categories which we will
do in the next section.

In order to understand the meaning of fusion rules consider spin in quan-
tum mechanics. Recall that elementary particles carry irreducible representa-
tions of SU(2). When two particles are combined to form a composite entity
one gets a system that transforms according to the tensor product of the
representations. Such a tensor product need not be irreducible so one has
to decompose it into irreducible representations: this is called “plethysm” in
the mathematics literature. Thus, for example, when one combines a spin j
particle with a spin k particle the one gets a system that can be in states
of spin |j − k| up to j + k (see, for example, Quantum Mechanics II by A.
Messiah [35]). Thus one can write heuristically
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J⊗ K = J − K⊕ . . . ⊕ J + K.

The characterization of the irreducible representation of SU(2) comes from
the algebra of the infinitesimal generators (the Lie algebra su(2)). These are
the familiar angular momentum operators obeying the following equations

[Jx, Jy]
def
= JxJy − JyJx = i~εxyzJz.

In general, for a Lie algebra, one can have relations of the form

[Kα, Kβ] = Cγ
αβKγ

where the Ks are from the Lie algebra and the Cs are constants called struc-
ture constants. For more complicated groups like SU(3) one can write similar
relations: in the case of SU(3) there are examples with more than one copy
of a given representation.

In considering combinations of anyons of different types we associate with
each type of anyon a charge, really this is just another name for “type.” Then
one will have rules for decomposing combinations of anyons of charges, say,
A and B, which will take the form A ⊗ B = . . .. The theory of monoidal
categories is just an abstract presentation of the notion of tensor products so
it is the ideal setting to describe the combinatorics of fusion rules.

We can write the fusion rules in a form that looks like the defining equa-
tions for a Lie algebra. We write 〈a, b〉 for the fusion of anyons of type a and
b. Then we can express fusion rules as

〈a, b〉 = N c
abc,

where a, b and c are anyon types and the Ns are just natural numbers. Thus
a rule of the form

〈a, b〉 = 2a + b + 3c

would mean that fusing an a-type anyon with a b-type anyon yields either an
a-type anyon, which can occur in two ways, or a b type anyon, or a c-type
anyon, this last possibility can occur in three ways. For abelian anyons we have
Nk

ij = 0 unless k = i + j, in which case it is 1. Formally, this looks like the
rules for decomposing tensor products of irreducible representations of a Lie
group into irreducible representations. However, this does not mean that the
fusion rules correspond to the rules for combining irreducible representations
of some Lie group. The resemblance is purely formal.

What is the connection between physical anyons and qubits? It is not an
anyon by itself that forms a qubit, rather it is the set of fusion possibilities
that forms a qubit. If we have a fusion rule with N c

ab = 2 then when we fuse an
“a” anyon with a “b” anyon to obtain a “c” anyon, we get a two dimensional
space of fusion possibilities. This fusion space forms the qubit. In the case
of Fibonacci anyons, to be discussed in detail in later sections, we have two
types of anyons 1 and τ with fusion rule 〈τ, τ〉 = 1+ τ . If we fuse τ and 〈τ, τ〉
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we get 1+2 · τ . Thus, if we look at the case when we have a τ as the result we
get a 2-dimensional space of fusion possibilities and this simulates a qubit. An
operation or a one-qubit gate on such a qubit consists of a braid connecting
three τ anyons to three τ anyons where both triple have τ as global charge.
Similarly, a two-qubit gate will be a braiding of two such triples.

4 The algebra of anyons: Modular tensor categories

From the discussion so far we can see that there are two aspects of any-
onic behavior that need to be formalized. The first is the rather complicated
kinematics involving braiding and the second is the dynamics of the anyons.
Formalising the former entails having an algebraic structure rich enough to
capture charges, braiding and fusion rules and the second requires a way of
linking the kinematics with the dynamics according to the usual rules of quan-
tum mechanics formulated in Hilbert spaces.

The kinematic side requires that we have a set of of algebraic rules that
describes a system of anyons, their charge, their fusion rules and all this
together with an action of the braid group, a formal system which embodies
– at least partially – their trajectories in a 2+1 dimensional space4. Our aim
is to give a categorical semantics that will take care of both the algebraic
structures describing a system of anyons and that allows one to overlay the
dynamics on top. Modular tensor categories provides such a language.

At this point it is worth reflecting on the use of categories. The first es-
sential point is that there are different kinds of charges. Thus, an algebraic
description must embody several types of objects. This is exactly what cat-
egories allow. Indeed, one can think of category theory as a kind of “higher-
dimensional” algebra as advocated, for example, by John Baez. Second, the
paths swept out by anyons are a crucial part of the physical description. One
needs an algebraic formalism that allows these relations between anyons to be
captured, the morphisms or arrows in a category give the right level of extra
structure to express this. In particular we can have notions of objects being
isomorphic without being identical.

Consider a category with tensor products, written ⊗. It could happen that
A⊗(B⊗C) is identical to (A⊗B)⊗C; if this is the case we say we have strict
associativity. More commonly we have mere isomorphism between these two
objects. In ordinary algebra equations like this are interpreted as identities
and one would be forced to make everything strict. With categories one can
have these equations holding non-strictly, or, as in the jargon of category
theory, “holding up to isomorphism.”

Let us first consider the basic properties of anyons and the algebra that is
necessary to express these properties:

4 Indeed, the braid group is not sufficient as anyons are extended objects. We need
to have ribbons (or framed) strands to adequately represent all movements such
as, for instance, a rotation of an anyon by 2π.
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1. First, we have a system of labels, or types, that will represent the charges
of our anyons.

2. We also need a way to express a compound system of anyons. This will
be expressed by a monoidal (tensor) structure; this way, we will represent
a compound system of anyons as the tensor product of their respective
charges. The trivial charge is simply the tensor unit. Importantly, this
category is not strict monoidal in general. This is physically important
because, for instance, the bracketing of a compound system of charges
will indicate in which order fusions occur.

3. As we saw in the preceding section, the worldlines of a system of anyons is
described by representations of the braid group. We will require that our
monoidal category has a braid structure as opposed to being symmetric5.

4. We need a way to express the notion of conjugate charge i.e. for a given
charge A, its conjugate charge A∗ is the unique charge that can fuse with
A to yield the trivial charge. The structure that captures these notions is
called a rigid structure.

5. The fact that the objects we are looking at are extended objects – flux
tubes – means that, in general, representing their movements graphically
with strands in 2 + 1 dimensions is not enough; the correct graphical
representation is realised by using ribbons, which can be twisted, instead of
strands. The algebraic axiomatization of this has been given – long before
mathematicians were aware of anyons – and is called a ribbon structure on
our category. The axioms for a ribbon structure encapsulate correctly the
algebraic rules imposed by the topological properties of ribbons including
the possibility of twisting a ribbon.

6. We need a formal way to express the fusion rules and to map all the
preceding algebraic formalism into the context of Hilbert spaces. This
will be taken care of by an semisimple structure compatible with all the
preceding structures.

7. Finally, we will consider a special class of semisimple ribbon categories
called modular tensor categories. Such categories prohibit an infinite num-
ber of possible charges for an anyon of a given theory. Moreover, such a
category contains within its defining data information about the fusion
rules.

Note that most of the results that we present below are known and are dis-
cussed in from a physical standpoint in [9, 14, 22, 24] and [39]. Our presenta-
tion contrasts with these in the sense that we emphasise the link between the
categorical structures and the physical phenomena.

We now give detailed definitions of the categorical structures we mentioned
above. Some of them are already given in [12] where the reader is referred for
a more detailed discussion on these topics.

5 Being symmetric means that the braiding σ is such that σB,AσA,B = 1A⊗B for
all A and B.
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4.1 Charges and compound systems: Monoidal categories

Definition 1. A monoidal category is a category C equipped with a bifunctor

⊗ : C× C → C

and three natural isomorphisms α, λ and ρ with components

αA,B;C : (A⊗B)⊗C → A⊗ (B⊗C) , λA : 1⊗A → A and ρA : A⊗1 → A

such that for all A, B, C and D ∈ |C|, both
(i) Pentagon axiom.

((A ⊗ B) ⊗ C) ⊗ D
αA,B;C⊗1D

ttiiiiiiiiiiiii αA⊗B,C;D

**UUUUUUUUUUUUU

(A ⊗ (B ⊗ C)) ⊗ D

αA,B⊗C;D

��

(A ⊗ B) ⊗ (C ⊗ D)

αA,B;C⊗D

��
A ⊗ ((B ⊗ C) ⊗ D)

1A⊗αB,C;D

// A ⊗ (B ⊗ (C ⊗ D))

and
(ii) Triangle axiom.

(A ⊗ 1) ⊗ B
αA,1;B //

ρA⊗1B

&&LLLLLLLLLLLL
A ⊗ (1⊗ B)

1A⊗λB

xxrrrrrrrrrrrr

A ⊗ B

commute.

We interpret the components of this definition as follows:

- Objects: We will regard an A ∈ |C| as a label for a set of anyons. Note that
this set might contain a single anyon. However, in that case, the object
must satisfy some properties that we will consider below. Nonetheless, for
simplicity purpose, in what follows, we will assume that an object A is the
charge of a single anyon; this will make the explanations simpler.

- Tensor: Given a set of n charges A1, A2, ..., An, the compound charge of
the system will be described by the n-fold tensor product A1⊗A2⊗...⊗An.

- Unit: The unit 1 ∈ |C| is the label indicating the trivial charge.

The natural isomorphisms are interpreted as:

- α: The bracketing of an n-fold tensor product indicates the order of the
fusions of the n components of the tensor product. The associativity iso-
morphism is used to change the pattern of fusion meaning that

αA,B;C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C)

changes the order of the fusions from A ⊗ B to B ⊗ C occurring first.
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- λ and ρ: The natural isomorphisms λA : 1⊗ A → A and ρA : A ⊗ 1 → A
simply tells us that combining an anyon with charge A with the trivial
charge 1 changes nothing about the compound charge or even to the charge
of an anyon obtained by fusing these two anyons together.

4.2 Worldlines: Braided monoidal categories

To correctly handle the movements of the anyons, our category needs at least
a braid structure. As a compound system of charges is represented by their
tensor product, the braiding will act on the components of such a tensor
product of charges. Thus, the braid structure must behave coherently with
the monoidal structure. What we need is called a braided monoidal category
which is formally defined as follows:

Definition 2. A braided monoidal category C is a monoidal category equipped
with a family of isomorphisms

σA,B : A ⊗ B ∼−→ B ⊗ A

natural in A and B ∈ |C|, such that

A ⊗ 1

σ1,A

��

λA // A

1⊗ A

ρA

==zzzzzzzzzzzz

and both

A ⊗ (B ⊗ C)
σA,B⊗C // (B ⊗ C) ⊗ A

αB,C;A

''OOOOOOOOOOOOOO

(A ⊗ B) ⊗ C

αA,B;C

77oooooooooooooo

σA,B⊗1C

''OOOOOOOOOOOOOO
B ⊗ (C ⊗ A)

(B ⊗ A) ⊗ C αA,B;C

// B ⊗ (A ⊗ C)

1B⊗σA,C

77oooooooooooooo

and the same diagram with σ−1 instead of σ, commute for all A, B and C ∈
|C|.

Of course,

- σ: The natural isomorphism σA,B is interpreted as the exchange of the
charges A and B.
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The reader might wonder if such a definition is enough for our purposes, in
the sense that this is enough to adequately express the worldlines of a tuple
of anyons. The remarkable answer is “yes!” There is a coherence theorem
for braided monoidal categories, due to Joyal and Street, which says that
given a natural isomorphism built from tensoring and composing identities
and components of α, λ, ρ and σ from the braided monoidal structure, there
is an associated braid. Moreover, two such isomorphisms are equal if and only
if their associated braids are equal. The proof of this theorem is quite technical
and, for our purposes, the preceding comment is enough. We refer the reader
to [25] for the details.

Remark 1. Despite the fact that the our category is not strict and since ev-
ery monoidal category is equivalent to a strict monoidal category [31], we
may omit bracketing and unit isomorphisms if these aren’t necessary for the
exposition.

4.3 Charge conjugation: Rigidity

Now that we have some of the algebraic tools that describe the worldlines
of anyons, we introduce another structure to express the conjugation of the
charges which is similar to the notion of a compact structure on a monoidal
category. This is given via the notion of duals within C.

Definition 3. Let C be a braided monoidal category and A ∈ |C|. A dual of
A is an object A∗ ∈ |C| together with two morphisms iA : 1 → A ⊗ A∗ and
eA : A∗ ⊗ A → 1 that are such that

A∗
1A∗⊗i //

1A∗

%%KKKKKKKKKKKKK A∗ ⊗ A ⊗ A∗

e⊗1A∗

��
and

A
i⊗1A //

1A

%%JJJJJJJJJJJJJ A ⊗ A∗ ⊗ A

1A⊗e

��
A∗ A

commute. A braided monoidal category C is rigid if each A ∈ |C| has a dual.

Physically speaking, we will interpret the structural morphisms of the
previous definition in the following way:

- i: is interpreted as the creation of a particle-antiparticle pair – anyons with
respective dual charges – and

- e: as the annihilation of an antiparticle-particle pair.

Now, given an f : A → B in a rigid braided monoidal category, we can
define f∗ : B∗ → A∗ as the composite

B∗ 1B∗⊗iA
−→ B∗ ⊗ A ⊗ A∗

1B∗⊗f⊗1A∗

−→ B∗ ⊗ B ⊗ A∗ eB⊗1A∗

−→ A∗. (3)

It is easily verified this operation on morphisms together with A 7→ A∗ on
objects defines a functor.

Later, we will need the following
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Proposition 1. [5] Let C be a rigid braided monoidal category and B ∈ |C|
together with its dual B∗ ∈ |C| then, there are canonical isomorphisms

Hom(A ⊗ B, C) ≃ Hom(A, C ⊗ B∗)

Hom(A, B ⊗ C) ≃ Hom(B∗ ⊗ A, C).

4.4 Graphical calculus for rigid braided monoidal categories

As we showed in section 3, we can illustrate components of the braid group and
their composition with pictures. In fact, we can do more: we will now give pic-
torial representation depicting completely the trajectories of anyons in 2+1 di-
mensions. Such a graphical calculus comes for free with rigid braided monoidal
categories and adequately represents morphisms in such categories [5].

Let us now give the basic building blocs of such a graphical calculus:

- The identity on 1 ∈ |C| is represented as the empty picture. This is not
surprising: adding the trivial charge to the system is the same thing as
adding nothing.

- The identity on a charge A ∈ |C| and its dual are respectively represented
by

A A

- A morphism f : A → B is depicted as

A

B

f

- The composition of morphisms f : A → B and g : B → C is given by
stacking the graphical representations of and f and g and connecting the
arrows labeled by B i.e.,

A

B

f

g

C
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- The tensor product of morphisms f : A → B and g : C → D is given by
aligning the graphical representations of and f and g side by side in the
f ⊗ g order i.e.,

A

B

f g

C

D

hence obtaining the representation for f ⊗ g : A ⊗ C → B ⊗ D.
- The morphisms iA : 1 → A⊗A∗ and eA : A∗⊗A → 1 of the rigid structure

on A ∈ |C| are represented as

A
Aand

respectively.
- The braiding σAB : A ⊗ B → B ⊗ A and it’s inverse are respectively

depicted as

and

A

A

B

B

A

A

B

B

Remark 2. Note that the natural isomorphisms α, ρ and λ are not captured
by this formalism. For the first, we will introduce a graphical notation for
fusion later. For the latter two, it does not matter as already mentioned in
our comment on the representation of 11.

4.5 A twist in the worldlines: Ribbon categories

As noted in the introduction of this section, the braid group is not enough to
capture completely the kinematics of the anyons. For instance, an anyon can
revolve around some center by 2π and the change induced on the system is
not an identity. Let us consider what this means.

Based on the language we already have from the theory of rigid braided
monoidal categories, we can build the following process:

1. A pair of particles with respective charges A and A∗ is created,
2. The two particles are swapped with the particle of charge A going behind

the antiparticle of charge A∗ and, finally,
3. They annihilate.



18 P. Panangaden and É. O. Paquette

Such a process is built from structural morphisms as

f = iA ◦ σ−1
A,A∗ ◦ eA.

From the graphical calculus on morphisms, f : 1 → 1 gets depicted as:

A Creation

Swap

Annihilation

The key point here is that the amplitude of the process is non-trivial as there
is an exchange occurring. Moreover, we have the following topological equiv-
alences:

=

A

=

A A

telling us that the amplitude for the first process is equal to the amplitude of
the third which is, from bottom to top:

1. The creation of both an antiparticle-particle and particle-antiparticle pair,
2. The exchange of the particle from the left pair with the one from the right

and
3. The annihilation of the particle from the right pair with the antiparticle

from the left pair and the annihilation of the particle from the left pair
with the antiparticle the right pair.

Now, consider the following deformation:

= =

A

A
A

6=

A

The third picture can be read as the creation of an antiparticle-particle pair
and the particle gets rotated about 2π of some center which illustrated in the
gray box. Now, as noted, this amplitude is different from the trivial amplitude



A categorical presentation of quantum computation with anyons 19

depicted as the fourth picture. We conclude from this that illustrating the
worldlines of our anyons with strands is not completely faithful to the process.
Instead, we will use ribbons – or framed strands – so that:

=

AAA

6=

A

→
framing

A A

==

This “winding around some center” is almost given already by the rigid
braided monoidal structure. Indeed, in any rigid braided monoidal category
C, one can define

γA : A∗∗ → A as γA := (A ⊗ eA∗) ◦ (A ⊗ σ−1
A∗A∗∗) ◦ (iA ⊗ A∗∗)

for any A ∈ |C| (the reader may check that γA is topologically equivalent to
the framed ribbon of the preceding picture). However, note that we have a
type mismatch if we compare with the twist depicted above as the later is of
type A → A. To complete the definition, we need a natural isomorphism of
type A → A∗∗ which will behave coherently with the rest of the structure.
Formally:

Definition 4. A ribbon category6 C is a rigid braided monoidal equipped with
a natural isomorphism δ with components

δA : A → A∗∗

satisfying

i) δA⊗B = δA ⊗ δB;
ii) δA∗ = (δ∗A)−1 and,
iii) δ1 = 1.

This is enough to formally define the “twist” that we discussed:

Definition 5. Let C be a ribbon category. The twist map is defined as the
natural isomorphism θ with components

θA := γA ◦ δA : A → A.

Graphically, this is denoted as

:= = =: θA

AAAA

6 Sometimes called a tortile category.
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where we have deliberately omitted the isomorphism δA to avoid cluttering the
picture. Note that we can (and did) get back to our strand notation and this
is done without loss inasmuch as we use this notation for the twist, keeping
in mind that this is a rotation of 2π of the strand around its center.

Interestingly, provided that we use these graphical conventions, any two
processes that can obtained by obtained by continuously deforming one into
the other will have the same amplitude! In fact, a theorem due to Reshetikhin
and Tuarev tells us that for two such diagrams, the isomorphisms correspond-
ing to each of these diagrams are equal. For an exact statement and a detailed
proof, the reader is referred to [40].

This completes our discussion on the algebraic context describing the
worldlines of anyons.

4.6 Towards fusion: Semisimple ribbon categories

Now, we need fusion rules to build the fusion spaces where our quantum
computational interpretation will take place but before, we need to introduce
some new concepts:

Definition 6. A morphism m : A → B is a monomorphism (or is monic)
when for any two f, g : C → A, we have

m ◦ f = m ◦ g ⇒ f = g.

Conversely,

Definition 7. A morphism h : A → B is an epimorphism (or is an epi) when
for any two f, g : B → C,

f ◦ h = g ◦ h ⇒ f = g.

Because of its defining condition, a monomorphism (resp. epimorphism) is
sometime called left-cancellable (resp. right-cancellable). The two previous
definitions generalise the notions of injection and surjection in the usual sense.
In fact, one may check that in Set, these concepts coincide i.e., monics are
exactly injections and epis are exactly surjections.

Definition 8. A zero object in a category C is an object 0 ∈ |C| which is
both initial and terminal.

In particular, the presence of such an object enables us to define a zero mor-
phism. Indeed, if C is a category with a zero object then, for any A, B ∈ |C|,
there exists a unique morphism 0 : A → B defined as the composition
A→0→B. Uniqueness of the zero morphism follows from the fact that 0 is
simultaneously initial and terminal and hence, the set of arrows to and from
it are singletons.

Such an object and its associated morphism enables in turn a generalisa-
tion of the notion of kernel as follows:
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Definition 9. The kernel of a morphism f : A → B in C, a category with a
zero object, is an arrow

Ker(f) := k : S → A

such that if f ◦ k = 0, the zero morphism, then for every h : C → A such that
h ◦ f = 0, h factors uniquely through k as h = h′ ◦ k. Diagrammatically,

S
0

%%

k

##GG
GG

GG
GG

GG

A
f // B

C

h′

OO

h

;;wwwwwwwwww 0

99

We can also define the dual notion:

Definition 10. The cokernel of a morphism f : A → B in C, a category with
a zero object, is an arrow

CoKer(f) := u : B → S

such that if u ◦ f = 0 and if h : B → C is such that h ◦ f = 0, then h factors
uniquely through u as h = u ◦ h′ i.e.:

S

h′

��

A

0

22

f //

0 ,,

B

u

;;wwwwwwwwww

h
##GG

GG
GG

GG
GG

C

We now can state the central definition of this subsection7:

Definition 11. A category C is

a. Preadditive if its homsets are abelian groups (written additively) and the
composition of morphism is bilinear over the integers;

b. It is additive if, in addition, every finite set of objects has a biproduct;
c. It is preabelian if it is additive and every morphism in C has a kernel and

a cokernel and finally,
d. It is abelian if, in addition, every monomorphism is a kernel and epimor-

phism is a cokernel.

7 This definition is equivalent [23] to the standard definition of an abelian cate-
gory [31].
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Let us emphasise the most important part of the previous definition from
our point of view. The fact that a category C is abelian comes with a bonus:
indeed, the previous definitions not only says that the kernels and the cokernels
in C behave the same way as in vector spaces but also that its hom-sets are
abelian groups and this can be seen as a first step toward an interpretation
of our formalism within the context of complex vector spaces. To really get
there, we need yet another notion inspired by the following fact: the charges of
our basic anyons are irreducible in the sense that they cannot be decomposed
into more elementary entities8. Such a property of the charges can be recast
in categorical terms as follows:

Definition 12. Let C be an abelian category then, an S ∈ |C| such that S 6≃ 0
is simple if for all B ∈ |C|, f : B →֒ S is either the zero morphism or an
isomorphism.

This is the same as saying that A has no other subobject other than 0 and
itself. From this, we have

Definition 13. An abelian category C is semisimple if any A ∈ |C| is such
that

A ≃
⊕

j∈J

NjSj

where Sj is a simple object, J is the set of isomorphism classes of simple
objects and Nj ∈ N are such that only a finite number of them are non-zero.

This is enough to give our last definition in which there are now two distinct
monoidal products; one from the abelian structure written as ⊕ and one from
the ribbon structure denoted by ⊗.

Definition 14. A semisimple ribbon category C is a semisimple category en-
dowed with a ribbon structure where the tensor unit 1 ∈ |C| is simple, the ten-
sor product is bilinear and where for each simple object S ∈ |C|, End(S) ≃ K,
a field of characteristic 0.

Remark 3. In what follows, we will assume that the field mentioned in the last
definition is C, the complex field.

Remark 4. To lighten the notation, we will often use the index of simple
objects to identify morphisms involving these. For instance, 1i is the iden-
tity on the simple object Si and the natural isomorphism σij is of type
Si ⊗ Sj → Sj ⊗ Si. Correspondingly, we will label the wires in the picture
calculus only with the index i instead of the label Si.

Now, having such a semisimple structure on C has many consequences. First,
we can now handle fusions of anyons. Second, it is from this structure that
complex vector spaces arise. Indeed, it is this fact that will enables us to define
splitting spaces and unitary representations of the braid group therein. Such
a structure also enables the following results:

8 Of course, this is an approximation in the effective field theory of these excitations.
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Proposition 2. In semisimple ribbon categories, there are natural isomor-
phisms

A ⊗ (B ⊕ C) ≃ (A ⊗ B) ⊕ (A ⊗ C) and (A ⊕ B) ⊗ C ≃ (A ⊗ C) ⊕ (B ⊗ C).

Moreover,
(A ⊕ B)∗ ≃ A∗ ⊕ B∗ and 0∗ = 0.

4.7 Modular tensor categories

Semi-simple ribbon categories can already handle the kinematics of a system
of anyons, our description of a particular model of anyon will take place within
a particular class of such categories namely, modular tensor categories. First,
such categories only allow a finite number of charges or rather, a finite set
of isomorphism classes of simple objects. There is no reason to think that
this is true in nature, however, all the applications that we have in mind
for quantum computation can be done with a finite number of anyon types.
A second point that we will inspect later is that the s-matrix defining the
modularity condition has surprising connexions with the fusion rules.

More generally, these extra assumptions on semisimple ribbon categories
lead to many interesting results; in particular, we can derive an equivalence
between MTCs and modular functors. Since the goal of this paper is to give
an introduction to computing with anyons, these results are not pursued here.
The interested reader might want to look at [5] for a complete exposition of
these subjects.

Definition 15. A modular tensor category is a semisimple ribbon category C
such that

1. Finiteness condition: The index set J of isomorphism classes of simple
objects is finite and S0 := 1.

2. Modularity condition: For i, j ∈ J , the matrix s with entries

(s)ij = [λ1 ◦ (ei ⊗ ej) ◦ (idi ⊗ σij ⊗ idj) ◦ (idi ⊗ σji ⊗ idj) ◦ (ii ⊗ ij) ◦λ−1
1

]ij

which are depicted as

i j

is invertible.

Remark 5. We indeed get a matrix for s since we have End(1) ≃ C – a field
of characteristic 0 – and the morphism depicted above is really of type 1 → 1
hence, a scalar.
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The scalar components of the s-matrix form the so-called Hopf link. They
can be thought of as the amplitude of the following process:

1. Two pairs of particle-antiparticle are created,
2. The particle from one pair is wound around the particle from the other

pair and
3. The two pairs annihilate.

We don’t have yet the machinery to describe the surprising results that the
modularity constraint entails, but we will do so in the subsection on the Ver-
linde Formula below.

4.8 Fusion rules

For now on, we fix C to be a modular tensor category. As already mentioned,
the charge of an anyon is represented by a simple object in C. Suppose that
two anyons with charges Si and Sj fuse together into an anyon of charge Sk

and that in Nk
ij ways, we will write this as

Si ⊗ Sj ≃ Nk
ijSk.

There, the lower labels of Nk
ij then indicate which charges fuse together in

order to yield the charge identified by the upper label.

Remark 6. Note that such an expression always makes sense, since by assump-
tion the category is semisimple thus, each object is isomorphic to a direct sum
of simple ones.

Now, the fusion process can produce different charges and this constitutes a
generalisation of our description above. Taking in account this fact, we get
the following

Definition 16. [Fusion rule] Let Si and Sj be simple objects in C and J be
the index set for the isomorphism classes of simple objects. The fusion rule of
Si and Sj is given by

Si ⊗ Sj ≃
⊕

k∈J

Nk
ijSk.

There, the coefficients Nk
ij = Dim(Hom((Si ⊗ Sj), Sk) are called the fusion

coefficients of the fusion rule.

It is easy to verify that the fusion coefficients satisfy

Nk
ij = Nk

ji = N i∗
jk∗ = Nk∗

i∗j∗ = N0
i∗j∗k = ... and N0

ij = δij∗ .

and hence, in particular, we can lower and raise indices.
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4.9 Translation to the Hilbert space context: Fusion and splitting
spaces

We now come to the crux of the story. We now need to connect our rather
abstract algebraic rules describing the kinematics of our anyons to dynamics
which is expressed in the language of Hilbert spaces. Such a translation is
already built-in a modular tensor category C. Indeed, we will use the facts
that hom-sets of C are vector spaces over C and that for all simple objects
S, End(S) ≃ C to build the so-called splitting and fusion spaces in which we
will simulate our qubits and coqubits.

Before carrying on to define such spaces for a family of anyons, we will
need the following variant of Schur’s lemma:

Lemma 1. Let C be a semisimple abelian category and Si, Sj ∈ |C| be simple
objects such that i 6= j, then Hom(Si, Sj) = {0}.

Proof: Let f : Si → Sj be arbitrary and consider Ker(f) : U →֒ Si (the
kernel is necessary monic) then, as Si is simple by assumption, it follows that
Ker(f) is either 0 or an isomorphism. If the kernel is 0, then f is an injection
and hence, an isomorphism since Sj is simple, but this cannot be possible as
i 6= j. Therefore, by simplicity of Si we have U ≃ Si and f = 0 from which
we conclude that Hom(Si, Sj) = {0} as f is arbitrary. 2

As a consequence of semisimplicity, the homset

Hom(Sk, Si ⊗ Sj)

is really a complex vector space whose dimension is fixed by the fusion rule.
Generally speaking, the passage from our modular tensor category to the
category of finite dimensional complex vector spaces will be handled by this
fact.

Definition 17. Let Si, Sj and Sk be simple objects in C, a splitting space9

is a complex vector space

V ij
k ≃ Hom(Sk, Si ⊗ Sj)

of dimension N ij
k = dim(Hom(Sk, Si ⊗ Sj)) – the number of ways the charge

Sk can split as the compound charge Si ⊗ Sj. Its states

Hom(Sk, Sk) // Hom(Sk, Si ⊗ Sj)

are called splitting states.

9 Such a space is also called a fusion space however, as the initialisation of a state
takes place via a splitting, we prefer our proposed terminology.
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Note that the type of the splitting states makes sense. Indeed, if the split-
ting rule tells us that Dim(Hom(Sk, Si ⊗ Sj)) = N ij

k , then through the fact
homsets are complex vector spaces, a splitting state is a linear map of type

C −→ C
Nij

k .

We now define the basis vectors of a splitting space. Let us introduce the
following notation: For Si, Sj and Sk, some simple objects of C, if the following
fusion rule Si ⊗ Sj ≃ Nk

ijSk holds, we will denote the basis state representing
the corresponding to the ηth possible splitting of Sk into Si ⊗ Sj as |ij; k, η〉

so that the set of basis vectors that spans the splitting space V ij
k is

{|ij; k, η〉 | η ∈ {1, 2, ..., N ij
k }}.

In the category FdVectC, the basis vector |i−1〉 : C → Cn of Cn := C⊕...⊕C

n times, can be assimilated to the i-th canonical injection

ιi : C −→ C
n :: 1 7→

















0
...
1
...
0

















with the “1” on the i-th line and 0’s elsewhere. Lifting this to our context, we
can define the basis vector

|ij; k, η〉

for fixed k and η as

Hom(Sk, Sk)
|ij;k,η〉 //

Hom(1Sk
,ιη) **TTTTTTTTTTTTTTTT

Hom(Sk, Si ⊗ Sj)

Hom(Sk, N ij
k Sk)

≃

OO

where ιη is the ηth canonical injection into the N ij
k -fold biproduct of Sk’s.

According to the general form of the fusion rule, the compound charge
Si ⊗ Sj could be obtained via the splitting of different charges. In the light
of lemma 1, each such splitting spaces are orthogonal one to the other. Thus,
what we actually get is a tuple10 of splitting spaces 〈V ij

k1
, ..., V ij

kn
〉 where

{k1, ..., kn} ⊆ J , the index set of isomorphism classes of simple objects. Each
component of this tuple carries a different possible branch of the computa-
tion labeled by the charge Skl

. These spaces are mutually orthogonal in the

10 Strictly speaking, it is a biproduct of fusion spaces but as the later is simultane-
ously a product and a coproduct, it also makes sense to speak of tuples.
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topological vector space V ij of dimension
∑

kl∈J N ij
kl

spanned by the set of
vectors

{|ij; kl, η〉 | kl ∈ {k1, ..., kn}, η ∈ {1, 2, ..., N ij
kl
}}.

Remark 7. We can also define costates. Indeed, so far, we have spoken of a
splitting state but the anyons can also – of course – fuse together thus yielding
costates. As an example, for each basis vector |ij; k, η〉, we can define a bra
〈ij; k, η| dualising the defining diagram for the basis vector and using canonical
projections instead of the canonical injections.

Returning to our splitting spaces, we see that there is a morphism of type
Sk → Si ⊗ Sj underlying each basis vector of a given splitting space. As it
is determined by the ηth canonical injection and the splitting rule, we depict
such a morphism as:

η

k

i j

Of course, such a family of morphisms satisfies the following two relations:

= δk,k′δηη′and

j

η

k

η

i

ji

∑

η,k =

ji

η′

k′

η

k

i k

(a) (b)

This is unsurprising as they define basis vectors. Indeed, the pictures above
are simply the abstraction of the equations

∑

η,k

|ij; k, η〉〈ij; k, η| = id and 〈ij; k, η|ij, k′, η′〉 = δk,k′δη,η′

satisfied by an orthonormal set of basis vectors.
More generally, a morphism

f : A → B,

where A and B are understood as compound systems of anyons, is of the form

⊕

j∈J

(

Hom(Sj , A)
Hom(1Sj

,f)
// Hom(Sj , B)

)

.
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Indeed, lemma 1 tells us that it is not possible to change the global charge
from Si to Sj for i 6= j as the set of transformation between different simple
objects is trivial. We will see some examples of such morphisms in the next
section on Fibonacci anyons.

4.10 Quantum dimension

In a modular tensor category, the trace of a map f : A → A is defined as

Tr(A) : 1
iA−→ A ⊗ A∗ f⊗1A

−→ A ⊗ A∗ δA⊗1A∗

−→ A∗∗ ⊗ A∗ eA∗

−→ 1. (4)

Now, each charge Si has its own dimension. In fact, it is calculated much in
the same way than in FdVectC. Indeed, it is given by

di := Tr(1i).

Pictorially, this is

di =

i

Such a number is called the quantum dimension of Si. Before discussing
the properties of this number consider the following

Lemma 2. [39] Let Si, Sj and Sk ∈ C be simple objects then

didj = N ij
k dk.

Proof: We give a pictorial proof:

= =didj =
i j i j

j

η

k

i

∑

k,η

η

where for the last equality we used (a) from the relations for the morphism
underlying the basis vectors. Now, using the topological invariance of the
diagram, we get
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η

=
∑

k,η

η

k

ji
=
∑

k Nk
ij

k
=

∑

k Nk
ijdk

Where for the first equality we used (b) from the same pair of relations. 2

From this, it is easy to see that the quantum dimension of abelian anyons
is always 1 and that, independently of the charge. For a non-abelian anyon of
charge Si however, we have di > 1.

Example 1. We now give a specific example of quantum dimension via the
Fibonacci anyons briefly introduced at the end of section 3. Consider the
splitting space

Hom(I, τ⊗n)

there, τ⊗n is the n-fold tensor product of τ ’s all bracketed from the left.
The dimension of this splitting space can be calculated using the fusion rule
τ ⊗ τ ≃ 1⊕ τ . In doing so, one sees quite quickly that

τ⊗n ≃ Fn−2 · I ⊕ Fn−1 · τ,

where Fm is the mth Fibonacci number. Now, using lemma 1, we have that

Hom(I, τ⊗n) ≃ Hom(I, Fn−2 · I) ⊕ Hom(I, Fn−1 · τ) ≃ Hom(I, Fn−2 · I).

Thus, for the first few values of n ≥ 2, we have

1, 1, 2, 3, 5, 8, 13, 21, ...

As this is the sequence of the Fibonacci numbers, the rate of growth must be
given by the golden ratio φ.

On the other hand, using our calculations above, we find that dI = 1 as
two charges I fuse trivially. For dτ , we have that

d2
τ = 1 + dτ

from which one gets that, again, dτ = φ, the golden ratio.

The fact that the quantum dimension is an irrational number illustrates
that the splitting space obtained via such a set of τ anyons cannot be de-
composed as a tensor product of smaller ones or, in other words, that the
information is encoded into global degrees of freedom rather than local ones
such as, for instance, the spin of an electron.
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4.11 The Verlinde formula

Let C be a semisimple modular tensor category, we can build the fusion algebra
K of C. Without getting into the technical details of such a construction11 let
us say that it has for basis the set of xj = 〈Sj〉 for j ∈ J and for unit 1 = x0.
There, 〈Sj〉 denotes the isomorphism class of Sj . Of course, the multiplication
in K is given by the fusion rules i.e.

xixj =
∑

k

Nk
ijxk.

It turns out that this algebra can be diagonalised i.e. there exists a base in
which the multiplication becomes diagonal:

x′
ix

′
j = δijαx′

j

where α is a scalar. The matrix that performs this diagonalisation is a renor-
malised s-matrix, the (modular) S-matrix which we now define.

Definition 18. Let dj be the quantum dimension of Sj ∈ |C| and D be the
scalar

√

∑

j∈J

d2
j .

The S-matrix is

S :=
1

D
s.

We now have from [5] p. 52 the following

Proposition 3. For a fixed j ∈ J , let Nj be the matrix of multiplication by
xj in the basis {xj} that is (Nj)ab = Na

jb and also, let Dj be the diagonal
matrix (Dj)ab = δabSia/S0a, then

SNaS
−1 = Da.

In fact, this proposition states that the S-matrix diagonalises the fusion rules.
A more complete discussion along with proofs is given in the source of this
proposition and [39].

Now, the previous proposition yields to the well-known result:

Theorem 1. [Verlinde Formula]

Nk
ij =

∑

r

SijSjrSk∗r

S1r
.

In turn, this theorem says that the S-matrix is not only related to the braids
used to define it but also that given an S-matrix, one can calculate the fusion
coefficients in C.
11 This algebra is defined as K(C)⊗Z K where K(C) is the Grothendieck ring of C.

See for instance [5] pp. 32 and 53–54.
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4.12 Categorical epilogue

This complete our categorical presentation of the algebra of a family of anyons.
Note that even if, in what follows, we use only the semisimple ribbon structure
in our description of topological quantum computation, specifying completely
the modular tensor category structure was worth the work: indeed, specifying
the simple objects, the fusion rules, the pentagon and hexagon axioms, the
twist and the S-matrix completely determine the topological properties of a
species of anyons!

5 An example: Fibonacci anyons

The strategy now will be to assume a set of fusion rules of a given species of
anyons and solve the various algebraic constraints imposed by the semisimple
modular structure. Our intended model to illustrate quantum computation
with anyons is the formal semisimple modular tensor category Fib which
captures the rules of Fibonacci anyons (see [9, 14, 22, 24, 39] from which the
material of this section is derived).

• Fibonacci anyons have only two charges: 1 and τ , where 1 is the trivial
charge,

• Both are their own anti-charge,
• They satisfies the following fusion rules:

1⊗ 1 ≃ 1

1⊗ τ ≃ τ ⊗ 1 ≃ τ

τ ⊗ τ ≃ 1⊕ τ

Categorically, this says that the semisimple modular tensor category Fib has

• Two simple objects 1 and τ where 1 is the tensor unit,
• That they are their own dual i.e.: 1∗ = 1 and τ∗ = τ and,
• That 1 and τ satisfy the fusion rules given above.

Let us inspect the fusion rules. While the two first trivially hold, the third
one says that the charge resulting from the fusion of two anyons of charge τ
is either 1 or τ . It is precisely this third rule that tells us that our anyons are
non-abelian as they can fuse in two distinct ways.

Now, back to our model, consider three anyons of charge τ all lined up
(τ ⊗ τ) ⊗ τ and let them fuse in the order fixed by the bracketing. Such a
process is algebraically described by:

(τ ⊗ τ) ⊗ τ ≃ (1 ⊕ τ) ⊗ τ

≃ (1 ⊗ τ) ⊕ (τ ⊗ τ)

≃ τ ⊕ (1 ⊕ τ)

≃ 1⊕ 2 · τ.
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Hence, the fusion process for three τ anyons yields a final charge τ in 2 different
ways or 1 in a single way. These three scenarios depict as

τ τ τ

τ

τ

or or

τ τ τ

1

τ

τ τ τ

τ

1

We now pass to the context of finite-dimensional complex vector spaces via
the splitting spaces whose basis vectors are dual to the fusion states described
above. Consider

Hom(b, (τ ⊗ τ) ⊗ τ) ≃ Hom(b,1⊕ 2 · τ)

≃ Hom(b,1) ⊕ Hom(b, 2 · τ) and as 2 · τ := τ ⊕ τ this is

≃ Hom(b,1) ⊕ 2 · Hom(b, τ). (5)

Now, using lemma 1 in conjunction with the property that for any b ∈ {1, τ},
End(b) ≃ C; if we set b = 1, then (5) is isomorphic to C ⊕ 2 · 0. Conversely if
b = τ , then it is isomorphic to 0 ⊕ 2 · C.

From this, we conclude that considering the space of states with global
charge b ∈ {1, τ} is the same as considering

Hom(b, (τ ⊗ τ) ⊗ τ).

In its turn, such a consideration fixes either of the splitting spaces C or 2 ·C :=
C2 as orthogonal subspaces of C3, the topological space representing our triple
of anyons. It is within this two-dimensional complex vector space that we will
simulate our qubit. Indeed, if b = τ , we are left with two degrees of freedom
which are the two possible outputs of the second splitting.

Remark 8. It is worth stressing that it takes three anyons of charge τ to sim-
ulate a single qubit. Moreover, we shall see later that braiding these anyons
together simulates a unitary transformation on such a simulated qubit.

Remark 9. Since Fib is rigid, we can apply proposition 1. We have

Hom(τ, (τ ⊗ τ) ⊗ τ) ≃ Hom(1 ⊗ τ, (τ ⊗ τ) ⊗ τ)

≃ Hom(1, ((τ ⊗ τ) ⊗ τ) ⊗ τ).

Comparing this fact with what we got in example 1, we see that these two
encodings are essentially the same. It is because of this that some authors, for
instance J. Preskill in [39], prefer to encode their qubits within a quadruple
of anyons of individual charge τ with global charge 1 instead. We choose the
former to align with the work of Bonesteel et al. [9] that we will explain in
section 6.
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Now that we have an expression for the topological spaces in Fib, it will
be handy to fix a basis for them. Using the diagram given in the section on
splitting spaces, we get

Hom(τ, τ)
|i−2〉 //

Hom(1τ ,ιi) **TTTTTTTTTTTTTTTT
Hom(τ, (τ ⊗ τ) ⊗ τ)

Hom(τ,1 ⊕ 2 · τ)

≃

OO

with i ∈ {2, 3} and where the vertical isomorphism is built from the fusion
rules.

Analogously, the basis vector |NC〉 spanning the one dimensional fusion
space is defined as

Hom(1,1)
|NC〉 //

Hom(11,ι1) **UUUUUUUUUUUUUUUU
Hom(1, (τ ⊗ τ) ⊗ τ)

Hom(1,1⊕ 2 · τ)

≃

OO

It is labeled NC for Non-Computational. Indeed, the superposition of |NC〉
with |0〉 or |1〉 is prohibited.

5.1 The F-matrix

In order to ensure consistency of the model Fib, splitting has to be asso-
ciative as expressed categorically via the pentagon axiom from the monoidal
structure.

There are two splitting spaces that can be obtained from a triple of anyons
i.e.: (τ ⊗τ)⊗τ and τ ⊗(τ ⊗τ). The basis vectors for these two splitting spaces
are – of course – related by a unitary transformation called the F -matrix
acting on the splitting spaces and defined via the natural transformation α in
the following way:

F : Hom(W, (S ⊗ T )⊗ U)
Hom(1W ,αS,T ;U ) // Hom(W, S ⊗ (T ⊗ U)). (6)

There, S, T, U and W ∈ {1, τ}.
Using splitting diagrams, we have:

=
∑

b(F
STU
W )ba

S T U

b

W

S T U

a

W
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Considering the splitting diagram for fixed a and W as a basis vector, this is
nothing but the matrix expression of F . In order to obtain a solution for the
F -matrix, we need to recast the pentagon axiom from the monoidal structure
in this context in such a way that we obtain a matrix equation. Consider

S T U V

W

S T U V

W

S T U V

W

S T U V

W

S T U V

W

a
b

a

e

d

e

b

c
d

c

=

F

~

F

~F

-

F

+ F

S T U V

W

a
b

S T U V

W

e

b

S T U V

W

e

d

S T U V

W

c
d

S T U V

W

a c

==

=

There, we explicitly expressed where F was acting on the splitting states via
subdiagrams drawn in solid lines. Passing to the underlying pentagon axiom
is made via the expression of F given in equation 6.

Now, equating both sides of the diagram yields

(FSTc
W )da(F aUV

W )cb =
∑

e

(FTUV
d )ce(F

SeV
W )db(F

STU
b )ea. (7)

Solving this in conjunction with a given set of fusion rules yields the F -matrix.
To solve such an equation, one has to fix the labels for all the possible states
in the splitting basis and solve the resulting system of equations.

In Fib, for a triple of anyons of charge τ , the trivial charge can split into
such a triple in only one way. In this particular case, the F -matrix is

F τττ
1

= [1]

as the first splitting must yields τ ⊗ τ .
Conversely, if the initial charge is τ then, the splitting process can occur in

two distinct manners. In order to get the F -matrix, we must use equation 7.
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For instance, a possible splitting scenario occurs when one fixes a = 1 = c
and d = τ = b. Using this with 7 gives:

(F ττ1

1
)τ1(F 1ττ

1
)1τ =

∑

e∈{1,τ}

(F τττ
τ )1e(F

τeτ
1

)ττ (F τττ
τ )e1

1 = F 2
11

+ Fτ1F1τ .

Using this, the other consistency relations and the fact that F is unitary, we
find:

F τττ
τ =

[

F11 F1τ

Fτ1 Fττ

]

=

[

φ−1
√

φ−1
√

φ−1 −φ−1

]

where φ is the golden ratio.
Finally, combining the results for F τττ

τ and F τττ
1

yields

F =





1 0 0

0 φ−1
√

φ−1

0
√

φ−1 −φ−1





which is also unitary. The lower-right block induces a change of basis on the
2-dimensional splitting space while the upper-left block is the trivial transfor-
mation on the one-dimensional splitting space.

5.2 Braiding anyons

We now express what will be the consequence of exchanging two anyons on
the splitting space. As such an exchange is represented categorically by a
braiding, this will yield a representation of the braid group in the splitting
space.

The R-matrix

The game here is very similar to the one for the F -matrix except that we
use the hexagon axiom from the braided monoidal structure instead. The
R-matrix is a morphism

R : Hom(W, (S ⊗ T ) ⊗ U)
Hom(1W ,σS,T ⊗1U ) // Hom(W, (T ⊗ S) ⊗ U).

or, using splitting diagrams:

[RST
a ]aa=

S T U

W

a

ST U

W

a
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We already have the F -matrix thus, the hexagon needs to be solved only for
the R-matrix. Recasted with splitting diagrams, the hexagon axiom becomes:

S T U

W

a

F F

R

F
R

S T U

W
b

ST U

W

ST U

W
c

ST U

W
b

R

ST U

W
c

a

Writing it as a matrix equation yields

RSU
c (FTSU

W )caRST
a =

∑

b

(FTUS
W )bcR

Sb
W (FSTU

W )ba.

For a triple of anyons with charge τ , explicit calculations of the R-matrix
yields:





−e−2iπ/5 0 0

0 e−4iπ/5 0
0 0 −e−2iπ/5





Such a diagonal form is not surprising: whether the global charge of a couple
is 1 (resp. τ), it must remain so even if we exchange the two components of
the pair.

The B-matrix

The R-matrix provided in the previous section give us a way to exchange the
two leftmost anyons in a set of three. We now need a way to find the matrix
that exchanges the two rightmost anyons, this will be the B-matrix and is
defined as

Hom(W, (S ⊗ T ) ⊗ U)
B //

Hom(1W ,αS,T ;U )

��

Hom(W, (S ⊗ U) ⊗ T )

Hom(W, S ⊗ (T ⊗ U))
Hom(1W ,1S⊗σT,U )

// Hom(W, S ⊗ (U ⊗ T ))

Hom(1W ,α−1
S,U;T )

OO

As we found both the F and the R matrix in Fib, we can compute the B-
matrix as

B := F−1RF
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6 Universal quantum computation with Fibonacci

anyons

The basic idea to simulate quantum computation with anyons is given by the
following steps:

1. Consider a compound system of anyons. We initialise a state in the split-
ting space by fixing the charges of subsets of anyons according to the way
they will fuse. This determines the basis state in which the computation
starts.

2. We braid the anyons together, it will induce a unitary action on the chosen
splitting space.

3. Finally, we let the anyons fuse together and the way they fuse determines
which state is measured and this constitutes the output of our computa-
tion.

Simulating qubits

First, the topological space for such a triple is a pair 〈C, C2〉 where the
2-dimensional space is spanned by the fusion states

|0〉 := |(τ ⊗ τ) ⊗ τ ; τ, 1〉 and |1〉 := |(τ ⊗ τ) ⊗ τ ; τ, 2〉,

and the space of dimension one is spanned by:

|NC〉 := |(τ ⊗ τ) ⊗ τ ;1, 1〉.

Of course, the simulation of a qubit will occur on the 2-dimensional space
spanned by {|0〉, |1〉}. Compound system of two or more qubits will be given
by the compound system of such a triple of anyons. Note that even if we fix
the global charge of the triple as τ , in the real world, it is possible that we
may still measure 1. These errors are known as “leakage errors” as there is
some unexpected “leaks” into another splitting space.

Quantum computation

To perform actual quantum computation, it seems at first glance that we
have two problems:

1. First, we would like to apply any gate on our simulated qubits but we
have only the two braiding matrices and their inverses.

2. Second, even if we solve our first problem, it remains that this is not
enough to quantum compute. Indeed, we also need a two-qubit gate.

We answer these. First, a composition of length l of R- and B-matrices and
their inverses can get arbitrarily close to any element of SU(2) and that, with
l reasonably small. This is a consequence of the fact that our matrices together
with their inverse satisfies the Solovay-Kitaev theorem, see [36] pp. 617–624
for a precise statement and a proof.
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We now address the second problem. Following the works of Bonesteel et
al. in [9], we explain how to build a CNOT gate for our anyons; for this we
will need two triplets of τ anyons; one of them will act as our test qubit while
the other will be the target qubit. The idea is relatively simple: we need to
intertwine a pair of quasi-particles from the first triplet – the control pair –
with the target triplet without disturbing it ; as the braid operators are dense
in SU(2), we will arrange such an intertwining so that its representation in
SU(2) is close enough to to the identity. The next thing is to implement
a NOT – actually a i · NOT – by braiding our two anyons of the control
pair with those of the target triple. Finally, we extract the control pair from
the second triplet – again – without disturbing it. Now, the key point is the
following: a braiding involving the trivial charge 1 with an anyon of arbitrary
charge does not change anything. Thus, when measuring the control pair, the
i ·NOT will occur if and only if the two anyons from the control pair fuse as
an anyon of charge τ ; otherwise the control pair only induces a trivial change
on the system.

a) Consider the following braiding:

As an action on the splitting space of the three anyons involved, this is, in
the same order as depicted in the picture:

B
3
R

−2
B

−4
R

2
B

4
R

2
B

−2
R

−2
B

−4
R

−4
B

−2
R

4
B

2
R

−2
B

2
R

2
B

−2
R

3
∼

0

@

1 0 0
0 1 0

0 0 1

1

A

This tells us how the given braid insert an anyon within a triplet without
disturbing it. In fact, this stresses the distinction between the dynamics
of the anyons and the consequences on the splitting space. Indeed, even
if we disturbed the initial configuration of anyons via multiple braidings,
the effect on the splitting space is approximately the identity.

b) Now, we implement an i ·NOT as the following braid:

The unitary acting on the splitting space of the initial triple is given by:
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R
−2

B
−4

R
4
B

−2
R

2
B

2
R

−2
B

4
R

−2
B

4
R

2
B

−4
R

2
B

−2
R

2
B

−2
R

−2
∼

0

@

0 i 0
i 0 0

0 0 1

1

A

This combination of braids tells us how to implements a i ·NOT gate on
the two dimensional fusion space of our triple of anyons. Again, this gate
is approximated.

c) Finally, the i ·CNOT gate acting on two topological qubits is realised as
follows:

insert NOT extract

First, instead of inserting 1 anyon, we insert a couple that will be used as a
test couple and that in the very same manner as described in a) – as these
two will fuse together yielding either 1 or τ , this is exactly what we want.
Secondly, we apply the i·NOT-gate computed in b). Finally, we extract the
control pair returning it to its original position by applying the insertion
procedure in reverse order. This is done, again, without disturbing the
triple at stance here.

We claim that this implements a CNOT. Indeed, the test couple can fuse in
two ways. If it fuse as 1, then nothing happens as 1 is the trivial charge. If it
fuse as τ , then we effectively apply the i · NOT gate computed in b).

Interestingly, we may replace the i·NOT by any other braid thus obtaining
a way to perform other controlled operations give such a pair of topological
qubits. It turns out that this gate together with the R and B matrices form
a universal set of quantum gates [10] as i ·CNOT is entangling.

7 Conclusions

As we noted in the introduction of section 4 the results that we presented
here are not new. We gave an explicit description of the algebra of anyons
in terms of modular categories, a description that is given in mathematical
physics papers that may not be accessible to everyone.

The very rich nature of this subject makes the task of writing a complete in-
troduction concisely almost impossible therefore, to complement our attempt,
we now give some additional pointers to the litterature. On the physical side,
Frank Wilczek edited Fractional statistics and anyon superconductivity [52],
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a book which comprises papers explaining central concepts related to anyons.
This list wouldn’t be complete without A. Kitaev’s paper Anyons in an exactly
solved model and beyond [29] where the reader can find another introduction
on the algebra of anyons with a more physical flavour in appendix E.

On the quantum computing side, there is a growing interest in topological
quantum computation due to the fact that such a model provides a more ro-
bust form of quantum computation. Some papers which emphasise topological
quantum computation are [3] and [42]. Perhaps closer to the essence of the
present paper are the works of Freedman, Kitaev, Larsen and Wang presented
in [21] and [22] .

Of course, apart from modular tensor categories, there are other links to
draw between topology and quantum mechanics or quantum computing; for
instance, the works of Louis H. Kaufman and Samuel J. Lomonaco Jr., in par-
ticular [26] in which they describe the role of braiding in quantum computing.
There is also the work of S. Abramsky [1] that describes connections between
knot theory, categorical quantum mechanics, logic and computation.

Finally, although the aim of this paper was to draw parallels between
categorical structures and anyons, there is still work to do; for instance, our
exposition was oriented towards FdHilb, the category of finite-dimensional
Hilbert spaces. However, †-compact categories [2] constitute a correct frame-
work to describe quantum mechanics and it would be interesting to see the
benefits of describing topological quantum computation within this more ab-
stract context.
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