let reverse \(\ell = \)

| \([\text{I}] \rightarrow [\text{I}]\) |
| \(x::xs \rightarrow \text{append}(\text{reverse } xs, [x])\)

let append \((\ell_1, \ell_2) = \)

| \([\text{I}] \rightarrow \ell_2\) |
| \(x::xs \rightarrow x::(\text{append}(xs, \ell_2))\)

proof for append:

want: \(\text{append}(\ell_1, \ell_2) = [x_1, \ldots, x_n, y_1, \ldots, y_m]\) when \(\ell_1 = [x_1, \ldots, x_n]\) and \(\ell_2 = [y_1, \ldots, y_m]\)

base case: \(n = 0\) \(\rightarrow\) \(\text{append}(\ell_1, \ell_2) = \ell_2 = [y_1, \ldots, y_m]\)

inductive step: assume append works for \(|\ell_1| \leq n\), prove for \(|\ell_1| = n + 1\)

\(\ell_1 = [x_0, \ldots, x_n] \rightarrow\) so we match to case 2:

\(\ell_2 = [y_1, \ldots, y_m]\)

\(x = x_0\) \(xs = [x_1, \ldots, x_n]\) \n
and \(\text{append}(\ell_1, \ell_2) = x_0::(\text{append}(xs, \ell_2))\)

by 1.H. \(\text{append}(xs, \ell_2) = [x_1, \ldots, x_n, y_1, \ldots, y_m]\)

so \(\text{append}(\ell_1, \ell_2) = x_0::[x_1, \ldots, x_n, y_1, \ldots, y_m]\)

\(= [x_0, x_1, \ldots, x_n, y_1, \ldots, y_m]\) \(\Box\)

proof for reverse:

want: \(\text{reverse } \ell = [x_n, \ldots, x_1]\) if \(\ell = [x_1, \ldots, x_n]\)

base case: \(n = 0\)

\(\ell = [\text{I}] \rightarrow \text{reverse } \ell = [\text{I}]\)

induction step: assume reverse works for \(|\ell| \leq n\), prove for \(|\ell| = n + 1\)

\(\ell = [x_0, x_1, \ldots, x_n] \rightarrow\) \(\text{reverse } \ell = \text{append}(\text{reverse } [x_1, \ldots, x_n], [x_0])\)

by induction hypothesis (1.H.) \(\text{reverse } [x_1, \ldots, x_n] = [x_n, \ldots, x_1]\)

by proof of append, \(\text{append}(\ell, \ell_2) = [x_0, x_1, \ldots, x_n, x_0]\) \(\Box\)
let rev l = helper (l, [])

let helper (l, acc) =
 match l with
 | [] -> acc
 | x::xs -> helper (xs, x::acc)

proof for rev l:

want: rev l = [x_n, ..., x_1] when [x_1, ..., x_n] = l

to show this, we need to show that helper ([x_1, ..., x_n], [y_1, ..., y_m]) = [x_n, ..., x_1, y_1, ..., y_m]

base case: n = 0
helper ([], [y_1, ..., y_m]) -> [y_1, ..., y_m]

inductive step: i.h.: rev k works correctly for |k| < n

helper ([x_0, x_1, ..., x_n], [y_1, ..., y_m]) -> helper ([x_1, ..., x_n], [x_0, y_1, ..., y_m])

by i.h., this = [x_n, ..., x_1, x_0, y_1, ..., y_m] □

Russian peasant exponentiation

recursive method to compute b^e

rpe (b, e) =
 if (e = 0) then 1
 elif (b = 0) then 0 // catches special case
 elif (e is odd) then (b * rpe (b, e-1))
 else // e is even
 let a = rpe (b, e/2) in a * a

proof for rpe:
want to show rpe (b, e) = b^e for all e ≥ 0

base case: e = 0
rpe (b, 0) = 1

inductive step: Assume rpe (b, e) works correctly for e < n

if e is odd, rpe (b, e) = (b * rpe (b, e-1))
 by i.h. rpe (b, e-1) = b^(e-1)
 then b * b^(e-1) = b^e

if e is even, rpe (b, e) = (rpe (b, e/2) * rpe (b, e/2))
 by i.h. rpe (b, e/2) = b^(e/2)
 then b^(e/2) * b^(e/2) = b^e □
Another way to compute exponents:

\[
\text{fastexp} \left(b, e \right) = \\
\text{let helper} \left(b, e, a \right) = \\
\quad \text{if } \left(e = 0 \right) \text{ then } a \\
\quad \cdot \text{ else helper} \left(b, e - 1, b \times a \right) \\
\quad \cdot \text{ else helper} \left(b, e, b^2, a \right) \\
\quad \text{if } b = 0 \text{ then } 0 \cdot \text{ else helper} \left(b, e, 1 \right)
\]

How can we reason about this program? We are no longer making recursive calls using strictly decreasing arguments, so we can't use the same technique we applied previously.

New idea: use an invariant. This is a quantity that remains constant after each step.

For \text{fastexp}, we will define our invariant to be \(I = b^e \cdot a \)

proof: No matter what branch we take in \text{helper}, \(I \) remains constant.

\(e \) is odd:

\[
\text{helper} \left(b_0, e_0, a_0 \right) \rightarrow \text{helper} \left(b_0, e_0 - 1, b_0 \times a \right) \\
\quad b_n \quad e_n \quad a_n
\]

w.t.s. \(b_0 \cdot b_0 \cdot a_0 = b_0^{e_0} \cdot a_0 \\
\quad = b_0^{e_0 - 1} \cdot (b_0 \cdot a_0) \\
\quad = b_0^{e_0} \cdot a_0 \quad \checkmark
\]

\(e \) is even:

\[
\text{helper} \left(b_0, e_0, a_0 \right) \rightarrow \text{helper} \left(b_0, e_0, b_0^{e_0 / 2}, a_0 \right) \\
\quad b_n \quad e_n \quad a_n
\]

w.t.s. \(b_0 \cdot a_0 = b_0^{e_0} \cdot a_0 \\
\quad = (b_0 \cdot b_0)^{e_0 / 2} \cdot a_0 \\
\quad = b_0^{e_0} \cdot a_0 \quad \checkmark \quad \Box \quad I \text{ is an invariant}
\]

proof that \text{fastexp} is correct; w.t.s.: \(\text{fastexp} \left(b, e \right) = b^e \)

\(\text{if } b = 0, \quad \text{fastexp} \left(0, e \right) = 0 \checkmark \)

\(\text{if } b > 0, \quad \text{fastexp} \left(b, e \right) = \text{helper} \left(b, e, 1 \right) \)

so in the initial call, \(I = b^e \)

by examining the code, we see \text{helper} ends when \(e = 0 \), outputting \(a_f \). Does \(a_f = b^e \) at this point?

We showed \(I \) remains constant, so

\[
b^e = b_f^0 \cdot a_f \quad \text{(where } b_f \text{ denotes } "e \text{ final"}) \\
\quad = 1 \cdot a_f = a_f \quad \checkmark \quad \Box \quad \text{fastexp} \left(b, e \right) = b^e
\]

Is we proved that the value of \(I \) remains constant at each step, so the value of \(I \) at the beginning must equal the value of \(I \) when helper terminates,

initially \(I = b^e \cdot 1 \quad \checkmark \quad \text{at the end } I = b_f^0 \cdot a_f = 1 \cdot a_f \)

\[
b^e = b^e \quad \checkmark
\]

\(a_f \) is our output and \(a_f = b^e \checkmark \)