
McGill University COMP251 Fall 2009 Instructor: Phuong Nguyen

Correctness of the algorithm for finding strongly connected components

Recall the key lemma:
Key lemma: Let C be a strongly connected component of G, and v be a vertex not in C.

Suppose that there is a path from C to v (i.e., there is a path from some vertex in C to v). Then
max{f [u] : u ∈ C} > f [v].

From this we obtain:
Corollary 1: Let C1, C2 be two strongly connected components of G, and suppose that there

is a path from (some vertex in) C1 to (some vertex in) C2. Then max{f [u] : u ∈ C1} > max{f [v] :
v ∈ C2}

And from this we obtain:
Corollary 2: Let C1, C2 be two strongly connected components of G, and suppose that

max{f [u] : u ∈ C1} > max{f [v] : v ∈ C2}. Then there is no path in G from C2 to C1.
From Corollary 2 we obtain the following corollary, which is crucial for our algorithm:
Corollary 3: Let C1, C2 be two strongly connected components of G, and suppose that

max{f [u] : u ∈ C1} > max{f [v] : v ∈ C2}. Then there is no path in GT from C1 to C2.
(Recall that GT is the transpose of G which is obtained from G by reversing all the edges of

G.)
Recall that the idea of the algorithm is as follows:

1. call DFS(G) to compute the finishing time f [v] for every vertex v, sort the vertices of G in
decreasing order of their finishing time;

2. compute the transpose GT of G;

3. Perform another DFS on G, this time in the main for-loop we go through the vertices of G

in the decreasing order of f [v];

4. output the vertices of each tree in the DFS forest (formed by the second DFS) as a separate
strongly connected component.

To prove the correctness of the SCC algorithm, we prove the following theorem. Recall that we
use the colors White, Gray, Black for the first DFS, and Black, Blue, Red for the second DFS.

Theorem: Let C1, C2, . . . , Ck be all strongly connected components of G, such that

max{f [u] : u ∈ C1} > max{f [u] : u ∈ C2} > . . . > max{f [u] : u ∈ Ck}

Then by the time the i-th Black vertex is seen in the main for-loop of the second DFS, all
C1, C2, . . . , Ci−1 have been visited, and Ci, . . . , Ck have not been visited.

Proof: We prove the theorem by induction on i.
Base case: i = 1: the first Black vertex seen in the main for-loop of DFS 2 is the vertex u with

maximum f [u]. So u ∈ C1. When is it first seen in the for-loop, none of the components has been
visited.

Induction step: Assume that the theorem is true for some i, 1 ≤ i < k. We prove it for i + 1.
By the induction hypothesis, the i-th Black vertex that is seen in the main for-loop is the vertex
u such that f [u] is maximum among all vertices in Ci, Ci+1, . . . , Ck. So u is in Ci. By Corollary

1



3, there are no path in GT from Ci+1, Ci+2, . . . , Ck to Ci. Hence Visit2 starting at u visits only
(and all) vertices in Ci. Thus by the time the (i + 1)-st Black vertex is seen in the main for-loop
of DFS2, we have visited all C1, C2, . . . , Ci−1, Ci but none of Ci+1, Ci+2, . . . , Ck. QED.

It follows from the theorem that the i-th DFS tree produced by the second DFS consists of all
vertices of Ci.

2


