Correctness of BFS

Lemma 1 If (u, v) is an edge, then

$$dist(s, v) \le dist(s, u) + 1$$

Lemma 2 Upon termination of the BFS,

$$dist(s, u) \leq d[u]$$

Lemma 3 Suppose that during the execution of BFS, at some point we have

 $Q = \langle v_1, v_2, \dots, v_r \rangle$

(where v_1 is the head, v_r is the tail of the queue). Then

$$d[v_1] \le d[v_2] \le \ldots \le d[v_r] \le d[v_1] + 1$$

Corollary 1 If v is enqueued before u, then $d[v] \le d[u]$. **Proof** Consider the sequence of vertices that are enqueued in between v and u:

$$v_1 = v, v_2, v_3, \ldots, v_{k-1}, v_k = u$$

Then $d[v_1] \le d[v_2] \le d[v_3] \le \ldots \le d[v_{k-1}] \le d[v_k]$

Corollary 2 If v is a neighbor of u, then $d[v] \le d[u] + 1$ **Proof** When u is dequeued, either

- v is not colored, so v will be colored in the for-loop, and therefore d[v] = d[u] + 1;
- or v is colored, then either
 - -v is black: then v is enqueued before u, so $d[v] \leq d[u]$ by Corollary 1, or
 - -v is gray: v is in the queue, so by Lemma 3 we have $d[v] \le d[u] + 1$.

Theorem Upon termination of BFS, d[v] = dist(s, v) for all vertices v.

Proof By contradiction. Suppose for a contradiction that there are vertices v such that $dist(s, v) \neq d[v]$. Let v be such a vertex with smallest dist(s, v). First of all, $v \neq s$ (because d[s] = dist(s, s) = 0). So $dist(s, v) \geq 1$.

By Lemma 2, $d[v] \ge dist(s, v)$, so $d[v] \ge dist(s, v) + 1$.

There is a neighbor u of v so that dist(s, u) + 1 = dist(s, v). So dist(s, u) < dist(s, v), and so by the choice of v we have dist(s, u) = d[u]. Now by Corollary 2: $d[v] \le d[u] + 1$. So $d[v] \le dist(s, u) + 1$, so $d[v] \le dist(s, v)$. So $dist(s, v) + 1 \le dist(s, v)$: contradiction.