
COMP-409 Fall 2010 Midterm page 1

Computer Science COMP-409, Fall 2010

Concurrent Programming

Midterm Solutions

1. A modulo semaphore is similar to a counting semaphore. Rather than a normaldown() operation, however, it
provides adown(int m) operation. This generalizesdown(), causing a caller to block as long as the count
is 0 modm instead of just 0.

Give an implementation in pseudo-code of modulo semaphores using monitors and condition variables. 5

public class MS {
private int count;
public MS(int init) { count = init; }
public synchronized void down(int m) {

while (count % m == 0)
try { wait(); } catch(InterruptedException ie) {}

count--;
notifyAll(); // decrementing may change waiting conditions

}
public synchronized void up() {

count++;
notifyAll(); // incrementing may change waiting conditions

}
}

2. LL/SC and CAS are supposed to be at least as general as FA and TS. 5

Show how to implement FA and TS using LL/SC.

FA(x,v) TS(x,y)
redo: lwarx r1,0,x redo: lwarx r1,0,x

addi r2,r1,v stwcx. y,0,x
stwcx. r2,0,x bne redo
bne redo return r1
return r1

Show how to implement FA and TS using CAS.

FA(x,v) TS(x,y)
do { do {

r1 = x; r1 = x
r2 = r1+v; r2 = CAS(x,r1,y)
r3 = CAS(x,r1,r2) } while(r2!=r1);

} while(r3!=r1); return r1;
return r1;

COMP-409 Fall 2010 Midterm page 2

3. A filing system is indexed by alphabetic strings. Suppose multiple threads (repeatedly) need to access a set of
files, each thread requiring simultaneous and exclusive access of 3 filesat a time. Each file is protected by a
mutex. Give pseudo code for blocking functions:

acquire(String f1, String f2, String f3)

and:

release(String f1, String f2, String f3)

Your solution should never deadlock. 5

acquire(String f1, String f2, String f3) {
// sort the names first, lexicographically
// and always lock in order: no deadlock possible.
String s1 = min(f1,min(f2,f3));
String s3 = max(f1,max(f2,f3));
String s2 = (s1==f1) ? ((s2==f2) ? f3 : f2) :

(s1==f2) ? ((s2==f1) ? f3 : f1) :
((s2==f1) ? f2 : f1);

s1.lock();
s2.lock();
s3.lock();

}
release(String f1, String f2, String f3) {

f1.unlock(); // no special order required to unlock
f2.unlock();
f3.unlock();

}

4. A3-way rendezvous allows 3 threads to synchronously trade data. ThreadA executes a = rendezvous(dataA),
while threadB executes b = rendezvous(dataB), andC executes c = rendezvous(dataC). Each thread blocks
until both of the others are at the rendezvous call. Once all are there, thedata is exchanged, a==dataC and
b==dataA and c==dataB, and the threads may proceed.

Show how to build rendezvous. You may use any blocking synchronization. 5

sa=sb=sc=0
A B C
dataA=... dataB=... dataC=...
up(sb); up(sc) up(sa)
up(sb); up(sc) up(sa)
down(sa); down(sa) down(sb)
down(sc); down(sb) down(sc)
a=dataC b=dataA c=dataB
// another barrier after is required to allow it to be
// reused.

COMP-409 Fall 2010 Midterm page 3

5. An algorithm is divided inton stages, which must be executed in sequence. Each stage takes equal time if
executed sequentially, but has different parallelization limits: stagei (i = 0, . . . , n − 1) can be efficiently
parallelized by only up to2i threads, after which performance of that stage is not improved by more threads. 6

What is the maximum speedup possible given an infinite number of threads forn = 4?

With 4 sections, the total speedup can be calculated using Amdahl’s law.
Assume unit time for the sequential version. Then the speedup from the
parallel version with as many threads as possible would be:

1

(1
4
)/20 + (1

4
)/21 + (1

4
)/22 + (1

4
)/23

This reduces to:
1

8

32
+ 4

32
+ 2

32
+ 1

32

and then to:
32

15

Develop a general formula; what is the maximum speedup for an arbitrary givenn > 1?

Each of the 1/n stages takes 1/n of the unit sequential time. Thus, total
speedup is given by:

1
n−1∑

i=0

(1
n

1

2i
)

which reduces to:
1

1

n

n−1∑

i=0

(1

2i
)

and to:
n

n−1∑

i=0

(1

2i
)

COMP-409 Fall 2010 Midterm page 4

6. In class you saw priority inversion explained using 3 threads and a single mutex in a single CPU context.
Assume a strict priority-preemptive model. 4

Can priority inversion ever happen with 3 threads, a single lock, and a two-CPU system? What if there are 4
threads available (the 4th of any priority)?

With 2 CPUs and 3 threads, no---a priority preemptive model would require
the two highest priority threads be executing. If one blocked, then the third
thread could certainly make progress. With 4 threads yes: the additional
thread can be active on the 2nd CPU, reducing the problem to the original
one of 3 threads on a single CPU.

In general, under what combinations ofn threads andm CPUs, can priority inversion occur?

When n > m + 1 priority inversion can occur. m − 1 threads can be active
and consuming m− 1 CPUs, leaving a single CPU with 3 threads.

Total Marks: 30

