
1a) a race condition occurs when more than one thread accesses the same memory location (same

data) with no ordering constraints, such that at least one of these accesses is a write. Both threads in

question 1 perform reads and writes to both x and y, and these operations can be interleaved such that

the order of the operations is not deterministic. Therefore this program DOES have race conditions.

Note: the fact that the variables are all declared as volatile doesn't change anything with regards to race

conditions.

1b) the following control flow would lead the program to terminate:

 T2: while (x == y) // true

 T1: while (stop == 0) // true

 T2: y = x; // y = 1

 T1: y = 2*y; // y = 2

 T2: x = y; // x = 2

 T1: x = 2*x; // x = 4

 T2: stop = (x - y); // stop = 2

 T1: while (stop == 0) // false

 T2: while (x == y) // false

 --terminated--

1c) Please see next page

	1a,b
	1c

