
Homework 1 Sample Solutions
COMP 766-001 – Machine Learning for Bioinformatics

[1] Assuming i.i.d. exponentially-distribution data, the likelihood of the data is

P (x1, . . . , xN |λ) = ΠN

i=1P (xi|λ) (1)

= ΠN

i=1λe−λxi (2)

We want to chooseλ to maximize the likelihood of the data. The “log trick” says that we can instead
maximize the log-likelihood of the data, which is

l(x1, . . . , xN |λ) = log(ΠN

i=1
λe−λxi) (3)

=
N∑

i=1

log(λe−λxi) (4)

=
N∑

i=1

log λ − λxi (5)

= N log λ − λ

N∑

i=1

xi (6)

Technically, we should maximize the log-likelihood over the rangeλ ∈ (0,+∞)—that is, we require that
λ > 0. We take the derivative w.r.t.λ and set it equal to zero.

d

dλ
l(x1, . . . , xN |λ) =

N

λ
−

N∑

i=1

xi = 0

This implies

λ =
N

∑
N

i=1
xi

,

which is just one over the sample mean. If all thexi are non-negative and at least one is positive, then this
estimate forλ is positive, so the constraintλ > 0 is satisfied. It can be verified by taking the second erivative
or be examining the limitsλ → 0 andλ → +∞ that this value forλ indeed maximizes the likelihood (rather
than minimizing it).

[2] For the given data, the maximum likelihood estimate forλ is 0.02788668603064. (Of course, all these
digits are not significant.) Below is a histogram of the data,with bins of width 10, and a red curve showing
the exponential fit (multiplied by522 × 10 = 5220 so that the area under both curves is the same).
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[3] I first tried fitting Parzen windows to the data, however, splitting the data into a training set and a
validation set did not give a satisfying estimate of a good width parameter,h. As shown below left, the
probability of the validation set was zero whenh was below about 32, because one of the validation set
points was not sufficiently near any of the training set points. Above 32, the validation set probability
monotonically declined. So, I could have gone with the value32, but this is highly dependent on the
particularly training/validation split of the data, and the slope of the curve there suggests a smaller value of
h is really better. This all reveals a weakness in this approach to estimatingh, which is that a single data
point can have a large influence on our validation set probability.

I thus decided to fit a non-parametric density with Gaussian basis functions. The middle figure below shows
training and validation set probability for a range ofσ. The validation set likelihood is optimize somewhere
in the rangeσ ∈ [3, 4]. The plot below right shows the density estimate forσ = 4, scaled so that the area
under the red curve is the same as the area in the boxes of the histogram.
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[4] The data was not generated from an exponential distribution. It’s actually fruit fly expression data. The
main problem with the exponential fit is that there isn’t enough density near zero and there’s too much
density a medium value ofx (around 25 to 50). That said, it’s not a horrible fit. Depending on your purpose
for fitting the data, it might be satisfactory.
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My code:

%%%%%%%%%%%%%%%%%%
%%% Solutions! %%%
%%%%%%%%%%%%%%%%%%

% Question 2 %

if 0
load Homework_01_data.txt
lambda = length(Homework_01_data)/sum(Homework_01_dat a);
BinWidth = 10;
hist(Homework_01_data,5:BinWidth:245);
set(gca,’xlim’,[0 250]);
xlim=get(gca,’xlim’);
hold on;
x = xlim(1):0.01:xlim(2);
y = lambda * exp(-lambda * x);
h = plot(x,length(Homework_01_data) * BinWidth * y,’r-’);
set(h,’linewidth’,3);
hold off;
legend(’exponential fit (scaled)’,’histogram of data’);
print -depsc2 Two.eps

end

% Question 3 %

% Parzen windows, trying to optimize h

if 0
if 0

hrange = 1:1:50;
PLPtrain = 0 * hrange;
PLPvalid = 0 * hrange;
Xtrain = Homework_01_data(1:261);
Xvalid = Homework_01_data(262:end);
for i=1:length(hrange)

PLPtrain(i) = ParzenLogProb(Xtrain,Xtrain,hrange(i));
PLPvalid(i) = ParzenLogProb(Xtrain,Xvalid,hrange(i));

end
end
h1=plot(hrange,PLPtrain,’b-’);
hold on;
h2=plot(hrange,PLPvalid,’r-’);
hold off;
set([h1 h2],’linewidth’,3);
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xlabel(’h’)
ylabel(’log_1_0 probability of data’);
legend(’log prob of training data’,’log prob of validation data’);
print -depsc Three_Parzen_h.eps

end

% Gaussian basis functions, trying to optimize sigma

if 0
if 1

sigma_range = 0.1:0.1:20;
LPtrain = 0 * sigma_range;
LPvalid = 0 * sigma_range;
Xtrain = Homework_01_data(1:261);
Xvalid = Homework_01_data(262:end);
for i=1:length(sigma_range)

LPtrain(i) = GaussLogProb(Xtrain,Xtrain,sigma_range(i ));
LPvalid(i) = GaussLogProb(Xtrain,Xvalid,sigma_range(i ));

end
end
h1=plot(sigma_range,LPtrain,’b-’);
hold on;
h2=plot(sigma_range,LPvalid,’r-’);
hold off;
set([h1 h2],’linewidth’,3);
set(gca,’fontsize’,18);
xlabel(’\sigma’)
ylabel(’log_1_0 probability of data’);
legend(’log prob of training data’,’log prob of validation data’);
set(gca,’xtick’,0:20)
print -depsc2 Three_Gauss_Sigma.eps

end

% Plotting the density estimate based on Gaussians

if 1
x = 0:0.1:250;
y = GaussCurve(Homework_01_data,x,4);
hist(Homework_01_data,5:10:245);
hold on;
h=plot(x,length(Homework_01_data) * 10* y,’r-’);
hold off;
set(h,’linewidth’,3);
set(gca,’fontsize’,18);
xlabel(’x’);
legend(’Nonparametric fit (scaled, Gaussian, \sigma=4)’ ,’histogram of data’);
print -depsc2 Three_Fit.eps

end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function PC = ParzenCurve(Data,Over,h);

PC = 0* Over;
Inc = 1/(h * length(Data));
for i=1:length(Over)

for j=1:length(Data)
if abs(Over(i)-Data(j))<=(h/2)

PC(i) = PC(i)+Inc;
end

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function PLP = ParzenLogProb(Data,Over,h);

PLP = sum(log(ParzenCurve(Data,Over,h)));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function GC = GaussCurve(Data,Over,sigma);

GC = 0* Over;
N = length(Data);
A = 1/(sqrt(2 * pi) * sigma * N);
for i=1:length(Over)

GC(i) = sum(A * exp(((Over(i)-Data).ˆ2)/(-2 * sigmaˆ2)));
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function GLP = GaussLogProb(Data,Over,sigma)

GLP = sum(log(GaussCurve(Data,Over,sigma)));
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