
COMP 652 - Lecture 22 1 / 42

COMP 652: Machine Learning

Lecture 22

Today

COMP 652 - Lecture 22 2 / 42

! Generalization error and the bias-variance-noise decomposition
! Bias-variance trade-off
! Estimating bias and variance
! Bagging
! Boosting

Linear regression revisited

COMP 652 - Lecture 22 3 / 42

! Suppose we have examples 〈x, y〉 where y = f(x) + ε and ε is Gaussian
noise with zero mean and standard deviation σ

! In linear regression, given a set of examples 〈xi, yi〉i=1...m, we fit a linear
hypothesis h(x) = wTx, such as to minimize sum-squared error over the
training data:

m∑

i=1

(yi − h(xi))2

! Because of the hypothesis class that we chose (linear hypotheses) for
some functions f we will have a systematic prediction error

! Depending on the data set we have, the parameters w that we find will be
different

An example (Tom Dietterich)

COMP 652 - Lecture 22 4 / 42

The sine is the true function, the circles are the data points and the straight
line is the linear regression fit

Example continued

COMP 652 - Lecture 22 5 / 42

With different sets of 20 points, we get different lines

Bias-variance analysis

COMP 652 - Lecture 22 6 / 42

! Given a new data point x, what is the expected prediction error?

! Assume that the data points are drawn i.i.d. from
a unique underlying probability distribution P

! The goal of the analysis is to compute, for an arbitrary new point x,

EP
[
(y − h(x))2

]

where y is the value of x that could be present in a data set, and the
expectation is over all all training sets (of a certain size) drawn according
to P

! We will decompose this expectation into three components: bias, variance
and noise

Bias-variance decomposition

COMP 652 - Lecture 22 7 / 42

! First, a “variance lemma”: E(X2) = Var(X) + (E(X))2

! Then:

EP
[
(y − h(x))2

]
= EP

[
(h(x))2 − 2yh(x) + y2

]

= EP
[
(h(x))2

]
+ EP

[
y2

]
− 2EP [y]EP [h(x)]

! Let h̄(x) = EP [h(x)] denote the mean prediction of the hypothesis at x,
when h is trained with data drawn from P

! For the first term, using the variance lemma, we have:

EP [(h(x))2] = EP [(h(x) − h̄(x))2] + (h̄(x))2

! Note that EP [y] = EP [f(x) + ε] = f(x)
! For the second term, using the variance lemma, we have:

E[y2] = E[(y − f(x))2] + (f(x))2

Bias-variance decomposition (II)

COMP 652 - Lecture 22 8 / 42

! Putting everything together, we have:

EP
[
(y − h(x))2

]
= EP [(h(x) − h̄(x))2] + (h̄(x))2 − 2f(x)h̄(x)
+ EP [(y − f(x))2] + (f(x))2

= EP [(h(x) − h̄(x))2] + (f(x) − h̄(x))2

+ E[(y − f(x))2]

! The first term is the variance of the hypothesis h when trained with finite
data sets sampled randomly from P

! The second term is the squared bias (or systematic error) which is
associated with the class of hypotheses we are considering

! The last term is the noise, which is due to the problem at hand, and
cannot be avoided

Example revisited: Bias

COMP 652 - Lecture 22 9 / 42

Example revisited: Variance

COMP 652 - Lecture 22 10 / 42

Example revisited: Noise

COMP 652 - Lecture 22 11 / 42

A point with low bias

COMP 652 - Lecture 22 12 / 42

A point with high bias

COMP 652 - Lecture 22 13 / 42

Bias-variance trade-off

COMP 652 - Lecture 22 14 / 42

! Consider fitting a logistic regression neuron to a data set, vs fitting a large
neural net.

! Which one do you expect to have higher bias? Higher variance?

Bias-variance trade-off

COMP 652 - Lecture 22 15 / 42

! Consider fitting a logistic regression neuron to a data set, vs fitting a large
neural net.

! Which one do you expect to have higher bias? Higher variance?

! Typically, bias comes from not having good hypotheses in the considered
class

! Variance results from the hypothesis class containing too many
hypotheses

! Hence, we are faced with a trade-off: choose a more expressive class of
hypotheses, which will generate higher variance, or a less expressive class,
which will generate higher bias

Sources of bias

COMP 652 - Lecture 22 16 / 42

! Inability to represent certain decision boundaries
E.g. linear threshold units, naive Bayes, decision trees

! Incorrect assumptions
E.g. failure of independence assumption in naive Bayes

! Classifiers that are “too global” (or, sometimes, too smooth)
E.g. a single linear separator, a small decision tree

If the bias is high, the model is underfitting the data

Sources of variance

COMP 652 - Lecture 22 17 / 42

! Classifiers that are “too local” and can easily fit the data
E.g. nearest neighbor, large decision trees, RBF

! Making decisions based on small subsets of the data
E.g. decision tree splits near the leaves

! Randomization in the learning algorithm
E.g. neural nets with random initial weights

! Learning algorithms that make sharp decisions can be unstable (e.g. the
decision boundary can change if one training example changes)

If the variance is high, the model is overfitting the data

One nearest neighbor

COMP 652 - Lecture 22 18 / 42

! 100 data set, each with 20 data points
! Blue is individual predictors, red is mean of predictors, green is true

function

0 2 4 6 8 10
!2

0

2

4

6

8

10

12

14

x

y

Measuring bias and variance

COMP 652 - Lecture 22 19 / 42

! Bias, variance, noise are all well-defined theoretically

! But we can’t compute them directly – because we don’t know P , f , or σ

! Can they be estimated somehow?

Measuring bias and variance in practice

COMP 652 - Lecture 22 20 / 42

! Recall that bias and variance are both defined as expectations:

Bias(x) = EP [f(x) − h̄(x)]

V ar(x) = EP [(h(x) − h̄(x))2]

! We can try to estimate these for a particular x (though which one?)

! Or, we can try to estimate these averaged over the input space (say,
according to the distribution P)

! If we had multiple data sets, we could estimate these by averaging
(This is what we did in the earlier example.)

! What if we have only one data set?

Bootstrap replicates

COMP 652 - Lecture 22 21 / 42

! Given data set D, construct a bootstrap replicate of D, called Db, which
has the same number of examples, by drawing samples from D
with replacement

! Use the learning algorithm to construct a hypothesis hb by training on Db

! Compute the prediction of hb on each of the remaining points, from the
set Tb = D − Db

! This process is repeated B times, where B is typically a few hundred

! If D is very large, the replicates should contain m < |D| points (still
drawn with replacement)

Estimating bias and variance

COMP 652 - Lecture 22 22 / 42

! For each point, we have a set of estimates h1(x), . . . hK(x), with K ≤ B

! The average prediction, determined empirically, is:

h̄(x) =
1
K

K∑

k=1

hk(x)

! We will estimate the bias as:

y − h̄(x)

(This conflates bias and noise, really.)

! We estimate the variance as:

1
K − 1

K∑

k=1

(h̄(x) − hk(x))2

Approximations

COMP 652 - Lecture 22 23 / 42

! Bootstrap replicates are not real data

– We’ll never get an x or y value not in the original data set
– Resampling the data approximates resampling from P , but is affected

by the amount of data / statistical irregularities in data

! We typically ignore the noise, although

– If we had multiple points with the same x value, we can estimate the
noise

– Alternatively, we can do an estimation using ”similar points”

! (E.g., if we have tightly clustered points, and assume f is smooth
in that region, we can fit a locally-linear model, and estimate
variability by the residuals.)

! That assumes Gaussian additive noise, of course

Example: Bootstrapping linear fits

COMP 652 - Lecture 22 24 / 42

0 2 4 6 8 10
!4

!2

0

2

4

6

8

10

12

14

x

y

Black = data, Blue = bootstrap fits, Red = mean fit, Green = true f

Example: Bootstrapping one nearest neighbor

COMP 652 - Lecture 22 25 / 42

0 2 4 6 8 10
0

2

4

6

8

10

12

x

y

Black = data, Blue = bootstrap fits, Red = mean fit, Green = true f

Bagging: Bootstrap aggregation

COMP 652 - Lecture 22 26 / 42

! If we did all the work to get the hypotheses hb, why not use all of them to
make a prediction?

! All hypotheses can have a vote, in the classification case, and we pick the
majority class

! For regression, we can average all the predictions

! Which hypotheses classes would benefit most from this approach?

Estimated bias and variance of bagging

COMP 652 - Lecture 22 27 / 42

! According with our way of estimating variance and bias, bagging
eliminates variance altogether!

! In practice, bagging tends to reduce variance and increase bias

! Hence, the main benefit is for “unstable” learners, i.e., learners with high
variance.

! This includes complex hypotheses classes, e.g. decision trees (even
unpruned), neural networks, nearest-neighbor-type methods

Experiment: Bagging decision trees (Dietterich)

COMP 652 - Lecture 22 28 / 42

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Er
ro

r R
at

e
of

 C
4.

5

Error Rate of Bagged C4.5

Bagged C4.5 is as good as or better than building one decision tree, for all 30
data sets.

Ensemble learning in general

COMP 652 - Lecture 22 29 / 42

! Ensemble learning algorithms work by running a base learning algorithm
multiple times, then combining the predictions of the different hypotheses
obtained using some form of voting

! One approach is to construct several classifiers independently, then
combine their predictions. Examples include:

– Bagging
– Using a different subset of input features to train different neural nets
– Randomizing the learning/fitting

(E.g., randomizing test selection in decision trees, different random
initial parameters for neural nets, stochastic gradient descent)

⇒ Again, more beneficial with higher variance predictors

! A second approach is to coordinate the construction of the hypotheses in
the ensemble.

Boosting

COMP 652 - Lecture 22 30 / 42

! Why construct different members of an ensemble independently?

! Why not construct the members serially, and focus the “attention” of
subsequent members on the examples / parts of input space that previous
members get wrong?

! AdaBoost (short for Adaptive Boosting), is by far the best-known
algorithm for doing this.

– At each iteration, AdaBoost reweights the examples, where the weight
is how “important” it is to get that example right

– AdaBoost has a particular rule for combining the classifiers in the end

Notation

COMP 652 - Lecture 22 31 / 42

! We consider binary classification problems {(xi, yi)}m
i=1, where

y ∈ {−1, +1}

! Let a weighting of the examples be a length-m vector that sums to one.

! Given the data set, a hypothesis h, and a weighting P , define the
weighted 0-1 loss as:

JP (h) =
m∑

i=1

P (i)
{

1 if h(xi) '= yi

0 otherwise

=
∑

i:h(xi) !=yi

P (i)

(This can be viewed as the expected 0-1 loss, with respect to distribution
P .)

Weak learners

COMP 652 - Lecture 22 32 / 42

! Adaboost assumes access to a “weak” binary classification algorithm
(E.g., decision stumps, maybe logistic regressor)

! The weak learning must be able to accept a weighted binary classification
problem {(xi, yi)}m

i=1, P

! It should output a classifier h that satisfies

JP (h) < 1/2 − γ where γ > 0

(Note, JP (h) ≤ 1/2 is trivially achievable by choosing the hypothesis that
always outputs the class whose examples have greater total weight.)

Boosting classifier

COMP 652 - Lecture 22 33 / 42

! In general, boosting produces a sequence of classifiers
! Each is based on a different weighting of the data set
! The weightings depend on the errors of the previous classifiers
! The classifiers are combined in a certain way at the end

Data

Weak Learner

Weak Learner

Weak Learner

H1

H2

Hn

Final
hypothesis

F(H1,H2,...Hn)

D1

D2

Dn

Original

AdaBoost

COMP 652 - Lecture 22 34 / 42

1. For data set {(xi, yi)}m
i=1, let the initial weighting be uniform:

D1(i) = 1/m

2. For t = 1, 2, 3, . . . , T

! Produce ht by running the weak learner with the weights Dt(i)
! If JDt(ht) ≥ 1/2, GOTO step 3!

! Choose a “weight” for the classifier as a whole: αt = 1
2 log 1−JDt (ht)

JDt (ht)

! Construct a new weighting for the data:

Dt+1(i) =
Dt(i)e−αtyiht(xi)

∑
j Dt(j)e−αtyjht(xj)

3. Final classifier is hf (x) = sign (
∑

t αtht(x))

(Aside: These rules make some intuitive sense, but they are also justified by
various learning-theoretic and statistical arguments — but so are other rules.)

Empirical comparison: Boosted stumps vs. C4.5

COMP 652 - Lecture 22 35 / 42

5 10 15 20 25 30

5

10

15

20

25

30

Why does boosting work?

COMP 652 - Lecture 22 36 / 42

! Weak learners have high bias

! By combining them, we get more expressive classifiers

! Hence, boosting is a bias-reduction technique

! What happens as we run boosting longer?
⇒ Intuitively, we get more and more complex hypotheses

! How would you expect bias and variance to evolve over time?

A naive (but reasonable) analysis of generalization error

COMP 652 - Lecture 22 37 / 42

! Expect the training error to continue to drop (until it reaches 0)
! Expect the test error to increase as we get more voters, and hf becomes

too complex.

20 40 60 80 100

0.2

0.4

0.6

0.8

1

Actual typical run of AdaBoost

COMP 652 - Lecture 22 38 / 42

Boosting C4.5 on the letter dataset:

10 100 1000
0

5

10

15

20

! Test error does not increase even after 1000 runs! (more than 2 million
decision nodes!)

! Test error continues to drop even after training error reaches 0!

These are consistent results through many sets of experiments!

Classification margin

COMP 652 - Lecture 22 39 / 42

! Boosting constructs hypotheses of the form hf (x) = sign(f(x))
! The classification of an example is correct if sign(f(x)) = y
! Consider the margin-related notion:

margin(f,xi, yi) = yi · f(xi)

! This margin tells us how close the decision boundary is to the data points
on each side.

! A higher margin on the training set should yield a lower generalization
error

! Intuitively, increasing the margin is similar to lowering the variance

Effect of boosting on the margin

COMP 652 - Lecture 22 40 / 42

10 100 1000
0

5

10

15

20

-1 -0.5 0.5 1

0.5

1.0

! Between rounds 5 and 10 there is no training error reduction

! But there is a significant shift in margin distribution!

! There is a formal proof that boosting increases the margin

Bagging vs. Boosting

COMP 652 - Lecture 22 41 / 42

0

5

10

15

20

25

30

0 5 10 15 20 25 30

Er
ro

r r
at

e
of

 B
ag

gi
ng

 w
ith

 C
4

Error rate of AdaBoost with C4

Summary and final comments

COMP 652 - Lecture 22 42 / 42

! We showed generalization error (for regression) can be decomposed into
bias, variance, and noise components

! Bias and variance can be estimated by bootstrapping (with some caveats)
! Ensemble methods combine several hypotheses into one prediction
! They work better than the best individual hypothesis from the same class

because they reduce bias or variance (or both)
! Bagging is mainly a variance-reduction technique, useful for complex

hypotheses
! Boosting is mainly a bias-reduction technique, which utilizes weak learners

focussed on harder examples, and gives a weighted vote to the
hypotheses.

! Boosting can be thrown off by mislabeled data
! Neither technique weights ensemble elements differently in different parts

of input space – which some more elaborate techniques do

