COMP 652: Machine Learning

Lecture 19

COMP 652 - Lecture 19 1 /37



Today

[

Estimating value functions for large state spaces

(Via Monte Carlo and supervised learning)

Approximate policy iteration

Relating state values — Bellman equations, Bellman optimality equations
Model-based reinforcement learning

Model-free reinforcement learning

OO o o

COMP 652 - Lecture 19 2 /37



Recall: Markov Decision Process (MDP)

An MDP is defined by:

O Set of states S
0 Set of actions A(s) available in each state s
0 Rewards:

rog = F {Tt_|_1‘8t = S,at = A, S¢11 = S’}

0  Transition probabilities

a /
Doy = P (st+1 =S |St = S,a; = a)

COMP 652 - Lecture 19 3/ 37



Recall: Policy and action-value functions

O A deterministic policy maps every state to an action: 7 : S — A.

O The value function of a policy is the expected return the agent receives if
following m, conditioned on the state in which the environment starts:

V™(s) = E{rua +rge +7°ras + ... st = s,ap = w(sy) for all ¢ > ¢}
E{ris1 +yrivs + Voris 4 .. |5y = s}

O The action-value function of a policy the expected return of choosing an
action and following the policy afterwards, conditioned on the state in
which the environment starts:

Q7 (s,a) = Ex{ret1 +yreqe + Viriis 4. |se = 5,04 = a}

O (These are for v € (0, 1], though finiteness for v = 1 requires extra
conditions. )

COMP 652 - Lecture 19 4 /37



Policy iteration

Last time, we describe Monte Carlo methods for estimating V™ and Q™
We showed the policy iteration algorithm, which alternates:

L1 O

— Estimating Q)™
— Updating 7 to be “greedy” with respect to Q™

O Policy iteration terminates at a globally optimal policy, 7*

— Forallsandall 7/, V™ (s) > V™ (s)
~ Forall s, all @, and all 7/, Q™ (s,a) > Q™ (s, a)

O The Monte Carlo approach uses data quite inefficiently. . .a problem to

which we return shortly.
O What if S is too large, even infinite, so that we cannot represent V'™

explicitly?

COMP 652 - Lecture 19 5/ 37



Dealing with large/continuous state spaces

0 Consider the problem of V™ estimation when |S| is too large /
continuous, so that explicit, tabular representation is not possible.
O What can we do?

COMP 652 - Lecture 19 6 /37



Estimating V"™ by supervised learning

O Consider a sample trajectory sg, ag, 71, S1,a1,72, ... taken under policy 7
0 Suppose we represent states by some feature mapping ¢(s)

0 We can formulate the supervised learning (regression) problem:

Input output

(s0) | 71+ yre + %3+ ...
¢(s1) | T2+ T3+ a4
¢(s2) | r3+yra+y7rs + ...
G(s3) | T4+ 75+ 776 + ...

0 We can fit this data with any regressor: linear/polynomial regression,
neural network, nearest-neighbor, regression tree, . ..

O If we have multiple trajectories, each one contributes data similarly.

COMP 652 - Lecture 19 7 /37



Estimating ()" by supervised learning

O Estimating Q7 is slightly trickier. How can we do it?

COMP 652 - Lecture 19 8 /37



Estimating ()" by supervised learning

0 Can define a feature mapping ¢(s, a)
0  One way (Monte Carlo exploring starts):

— Generate multiple trajectories, 71, T, ..., Tm

— Trajectory 7; =< s}, ab,rt, st a},ry, ... > generated by choosing
random initial state sg, random initial action a%, and following 7
afterwards

— Supervised learning data is:

input output

P(sg,ap) | r1 +yry + T3+ ...

(st a8) | r¥ +yrs + %15 + ...

P(sg,al) | ri +rs + %5 + ...

O Alternatively, one can define a state-feature mapping, ¢(s), and learn a
separate approximator for each action’s value (as a function of state).

COMP 652 - Lecture 19 9 /37



Approximate policy iteration

O This enables approximate policy iteration, one version of which is:

— Start with an arbitrary initial policy
— Repeat the following steps:

1. Approximate Q™ for the current policy, m;, by generated Monte
Carlo Exploring Starts (MCES) data, and applying some
supervised learning method.

2. Define m;11(s) implicitly as arg max, Q™ (s, a)

[

Does it converge?
Does it converge to an optimal policy?

[

COMP 652 - Lecture 19 10 / 37



Approximate policy iteration

O This enables approximate policy iteration, one version of which is:

— Start with an arbitrary initial policy
— Repeat the following steps:

1. Approximate Q™ for the current policy, m;, by generated Monte
Carlo Exploring Starts (MCES) data, and applying some
supervised learning method.

2. Define m;11(s) implicitly as arg max, Q™ (s, a)

O Does it converge?

= In general, no. For certain kinds of MDPs and/or function approximators,
though, it does.

O Does it converge to an optimal policy?

= In general, no. Though one can bound degree of suboptimality in terms of

error in Q™ approximation.

COMP 652 - Lecture 19 11 / 37



Relationships between state values

0 V7™(s) an expected sum of future rewards
0 But intuitively, a state's value must by related to the states to which it
leads

COMP 652 - Lecture 19 12 / 37



Relationships between state values (Il)

VT(s) = Ex{reei+yrae + 77143+ .. st = s}
— ZP 11 = 5|8t = 8)En{ris1 +ree + Y iz + ... |5e = 5,841 =

) + YEA{riq2 +yrigs + . |5t =5, 5041 = '}

ZPW(S ) V()

|
Rﬂ

These are called the Bellman equations for policy value

Treating the V™ (s) as a set of | S| variables, the above gives a linear
system of |S| equations with |S| unknowns.

= We can use linear system solvers to find V™ (s), if we know p?, and ¢,
(There's other ways to do it too, though.)

0 Are solutions unique?

COMP 652 - Lecture 19 13 / 37



Uniqueness of solutions for V'™

O Let r™ be a the expected immediate reward upon following policy 7 in
state s:
) = P
S/

We will treat ™ as a length |S| column vector

O Let P™(s,s) = p:(,s) be the probability that state s’ follows state s, when

S
agent acts according to 7.

We will treat this as an |S| x |S| matrix.

O Then considering V™ as a length |.S| column vector, the equation of the
previous slide says that:

V?T — 7,,7'(' _|_ /YPT('VT('

COMP 652 - Lecture 19 14 / 37



Uniqueness of solutions for V™ (1)

O Rearranging, we find that:

([ —~PT)VT =7¢T

O P7 is a Markov matrix. If it describes a non-terminating chain, its largest
eigenvalue is 1. If it describe a terminating chain, its largest eigenvalue is
< 1.

O If P™ is non-terminating and v < 1, or if P™ is terminating, then the
largest eigenvalue of (I —~vP7) is < 0.

O Thus, it is invertible, and V™ is uniquely determined as:

VT — (I . ’}/PW)_lvﬁ

COMP 652 - Lecture 19 15 / 37



An alternative approach to computing /'™

Matrix inversion is computationally expensive
Iterative approaches are more commonly used for computing value

L1 O

functions, e.g.:

— Initialize V™ (s) arbitrarily
— Repeat, until changes are sufficiently small:

&l Hzpsss) ) V7 () for all s

[0 This can be shown to converge exponentially quickly to the correct values.
(Aside: What does “exponentially quickly” mean?)

COMP 652 - Lecture 19 16 / 37



Example

Imagine the simple deterministic “maze” below

Goal is to get into the dotted square in the lower right room
Reward of +1 upon arrival to goal

Discount factor v = 0.9

7 is correct, optimal policy

Initialize V™ (s) = 0 for all s, except goal, which is set to +1
Figure shows values by dots of radius proportional to value

N I I I N R

lteration #1 Iteration #2 Iteration #3

COMP 652 - Lecture 19 17 / 37



Action-value functions

O Similar reasoning holds for action-value functions.
O First, note that V™(s) = Q™ (s, 7(s)). Then:
Q"(s,a) = Ex{roa +rer2 +7° 03+ s = 5,00 = a}
— ZPZS/ res +YEr{rire + 93+ se = 8,00 = a, 5041 = 8
S/
— Zpgs’ [T.Csbs’ + ’YVW(S/)]
3/
— Zpgs’ [rgs’ + VQW(SC 7-‘-(8/))]
S/
O We have ), |A(s)| linear equations in the same number of unknowns.
O A similar matrix argument shows the solution, )™, is unique.
0 An iterative-style algorithm can be used to compute it:

Q7(s,a) = ) pey(rey +7Q7 (s, 7(s))

S

COMP 652 - Lecture 19 18 / 37



Finding optimal policies

[

The previous techniques can be used to implement exact policy iteration
However, there is another approach based on Bellman optimality
equations (see below)
O Recall that there is at least one optimal policy 7*.

(It satisfies V7™ (s) > V™(s) and Q™ (s,a) > Q™ (s, a) for all 7, s,a.)
O For an optimal policy 7, we must have:

[

*

V™ (s) = maxQ™ (s,a)
= max D i (rly + VT ()

Q™ (s,0) = > pl(rly +V™(5)
3/
— Z P (reg +7 max Q™ (s, d)
S/

O These are nonlinear systems of equations

COMP 652 - Lecture 19 19 / 37



Solving the Bellman optimality equations

[

Solutions can be found by linear programming
More common, however, is value iteration:

[

V(s) —max | Y pla(rly +V™ (s))

0 Or action-value iteration:

Q(s,a) «— Y ply(rly +ymax Q™ (s, a')
, a

S

[0 These approaches converge exponentially quickly to the optimal value
function V* or action-value function Q* (under the same conditions
needed for well-definedness)

COMP 652 - Lecture 19 20 / 37



Back to reinforcement learning

O The previous discussion assumes that we know p% , and ¢,
O  What if we don’t?

COMP 652 - Lecture 19 21 / 37



Back to reinforcement learning

O The previous discussion assumes that we know p% , and ¢,
O  What if we don’t?

— Model-based value function learning
— Model-free value function learning
— Value function-free learning

COMP 652 - Lecture 19 22 / 37



Model-based reinforcement learning

O Model-based learning algorithms use experience from the environment to

. - /\a/ /\al
build an approximate model 7%, p%,,

0 Then we pretend the approximate model is correct and use it to compute
the optimal value function/policy as above

O How do we estimate the rewards and transition probabilities?

— If |.S] is small enough for tabular representation, 7%, can be estimated
as the empirical mean reward from every s — a — r — s’ quadruple in
the data. p?, can be taken to be the empirical probability that s’

follows s — a In the data.
— Otherwise, solutions are ad hoc. For low-dimensional continuous state

spaces, state aggregation or interpolators are often used.

COMP 652 - Lecture 19 23 / 37



Example

+10

S

-5

0 Followed Rand policy (equal chance of left or right action)

0 10 trajectories

0 Estimated rewards and transition probabilities

COMP 652 - Lecture 19

24 / 37



Results

O Reward function exactly correct
0 Transition probabilities somewhat correct:

state s 2
left
ls’?;l 0.6
e

Ps 541 0.4

right 0.25
Sight | o
rig

Pg at1 0.75

p

O @* estimate a bit off, but 7* estimate correct:

state s

Q™ (s, left)
Q™ (s, right)

7 (s)

COMP 652 - Lecture 19

25 / 37



Pros and cons of model-based RL

+ Tend to be very data-efficient
+ The models may be of independent interest

+ If reward function changes, or dynamics of only small part of the
environment changes, lots of information can be reused

— |If state set S or action set A are very large or infinite, it will be very hard
to estimate the model from data—especially for the transition
probabilities; this can lead to poor performance.

— Even if model is accurate, solving for 7* can be nontrivial.
(It's polynomial in |S| and |A|, but if large, can be problematic.)

COMP 652 - Lecture 19 26 / 37



Model-based RL with state-features

O Suppose that we represented every state s with a feature vector ¢, of
size k < | S|

O We can represent all the feature vectors, for all the state, in a
feature matrix ®, of size k x |S|, where the sth column is ¢

O Important special case: if each column has exactly one element equal to 1
and all the others are 0, the matrix represents a state partition, where the
state space has been partitioned in k£ disjoint subsets.

O In general, the features (also called basis functions) can be anything
(Gaussian, sine-cosine, etc)

COMP 652 - Lecture 19 27 | 37



Bellman equations with features

00 Consider the Bellman equations:

where V7 is a column vector repesenting V7 (s), r”™ is the expected
rewards following each state, and P™ is the matrix containing p7(s).

O We multiply at the left by ®:
V" = or" + yPP"V"
0 We make ®V7™ appear on the right hand side as well:
P"V™ =P"IV" = P"® V"
0 Now we can re-write the Bellman equations:

PV™ = Br" + yPP "B dV™ = (I - v®P" P )BV™ = &r"

COMP 652 - Lecture 19 28 / 37



Approximate models

O We re-write the above equation as:
PV™ = (I - yeP"®! ) 1@r™

(I'm glossing over assumption needed to ensure the inverse exists.)

O Let ™ = ®r™; this is a vector of size k, representing the reward for every
feature

O E.g., in the special case of state partitioning, the reward associated with a
partition will be the sum of the rewards for the states in that partition

(why?)
0 Let P™ = ®P7®7; thisis a k x k matrix showing transitions between
features

O Since this is typically much smaller than the original matrix, it can be
estimated more accurately with less data

COMP 652 - Lecture 19 29 / 37



Approximate value function

PV™ = (I—-yeP"®" ) '@or™

0 Let V7 = &V, this is the approximation of the value function using the
features

O E.g., in the case of a state partition, each partition will have a value

associated with it, and all states in the partition share the same value

Obviously, not all value functions can be represented correctly anymore.

The Bellman equations for approximate values become:

L1 O

V™ = (I - AP™)i"

COMP 652 - Lecture 19 30 / 37



Trade-off

0 The above systems has k equations with & unknowns
0 Model-based approximate methods will estimate ™ and P™ from data

[0 The smaller k£ is, the less data we need to do this estimation, and the
easier it is to solve the system

O But the smaller &k is, the less accurate will the value function be

O Instead of estimating V™, Q™ can be estimated, leading to an alternative
approximate policy iteration algorithm

COMP 652 - Lecture 19 31 /37



Modeling value, not dynamics

O In model-free value function-based RL, we directly estimate value
function, but not r¢,, or p%,

0 The Monte Carlo methods describe last lecture and at the start of this
lecture are one way to do so

O However, the iterative (dynamic programming) approaches to value
function computation provide inspiration for another class of approaches

COMP 652 - Lecture 19 32 / 37



Modeling value, not dynamics (Il)

[

Consider a trajectory, with actions selected according to policy :
£ £, £
1 5 . ”2(5*—\ . z+3®7 o
o % w 4 @ o) ” 4.3

The Bellman equation is:

S

V™(st) = Er [re41 + 7V (8e41)]5¢]
which suggested the dynamic programming update:
V(st) & Er [res1 + 9V (se41)[s1]

In general, we do not know this expected value, but we do have an
possibly-biased sample estimate of it, rr1 + YV (St41)

We can make an update towards the sample value, with step size «:

V(st) = (1 = a)V(st) + a(reen + 7V (s041))

COMP 652 - Lecture 19 33 / 37



Temporal-Difference (TD) Learning

O We can rewrite the previous as:

Vi(st) < Vst) + alrer £V (s641) = V(st))

00 The term after the « is called the “temporal difference” — it is the
difference between what our estimate V' (s;) suggested we would see, and

ria1 + YV (spa1)

O Does it converge to V77

COMP 652 - Lecture 19 34 / 37



Temporal-Difference (TD) Learning

O We can rewrite the previous as:

Vi(st) < Vst) + alrer £V (s641) = V(st))

00 The term after the « is called the “temporal difference” — it is the
difference between what our estimate V' (s;) suggested we would see, and

rer1 + YV (St41)
O Does it converge to V™7 Yes! If:

— We have infinitely much data collected under policy 7

— If all states s appear infinitely often in the data

— If learning rate(s) « decrease towards zero at an appropriate rate
(Robbins-Monroe conditions)

COMP 652 - Lecture 19 35 / 37



Q-Learning

O That's fine for learning V™. A similar procedure can be designed to learn
Q7.

What about learning optimal policies?

Suppose we generate experience (g, ag, 1, S1,01,72, . ..) from the
environment, and update an action-value function as:

L1 O

Q(st,ar) — (1 — a)Q(st, ar) + a(rip1 + ’YHZE}X Q(st41,a"))

O This is motivated by the Bellman optimality equation:

* / *
Q*(s,a) = Zp?sl(rgs/ +ymax Q*(s',a’))
p a

S

O This is called Q-Learning

COMP 652 - Lecture 19 36 / 37



Q-Learning convergence

O Does Q-Learning converge? Yes!

[0 The experience can be generated under any policy 7 at all — or not even
according to a policy, strictly speaking

O We need infinitely much data

O Every possible state-action pair must occur infinitely many times

[0 Learning rates need to be scheduled appropriately

COMP 652 - Lecture 19 37 / 37



