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COMP 652: Machine Learning

Lecture 17



Today
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! Control learning / the reinforcement learning problem
! Multi-armed bandit problems
! Markov decision processes
! Alternative definitions of return (long-term reward)



The general problem: Control Learning

COMP 652 - Lecture 17 3 / 28

Consider learning to choose actions, e.g.,

! Robot learning to dock on battery charger
! Choose actions to optimize factory output
! Playing Backgammon, Go, Poker, ...
! Choosing medical tests and treatments
! Conversation
! Portofolio management
! Flying a helicopter
! Queue / router control

⇒ All of these are sequential decision making problems



Reinforcement Learning Problem
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Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

! At each discrete time t, the agent (learning system) observes state st ∈ S
and chooses action at ∈ A

! Then it receives an immediate reward rt+1 and the state changes to st+1

! Goal is to maximize the total reward over time



Example: Backgammon (Tesauro, 1992-1995)
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white pieces move 
   counterclockwise

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

1 8 1 7 1 6 1 5 1 4 1 31 92 02 12 22 32 4

    black pieces 
move clockwise

! The states are board positions in which the agent can move
! The actions are the possible moves
! Reward is 0 until the end of the game, when it is ±1 depending on

whether the agent wins or loses
! Maximizing total reward thus equates to maximizing the chance of

winning (regardless of how long it takes)



A simpler case: The multi-armed bandit
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! There are k arms.
! Each “pull” of an arm i, gives a random reward with distribution Pi(r)

and expectation Ri, both unknown
! Each reward in an independent r.v.; the machine/arms have no internal

state
! At each turn you choose one arm to pull.
! The game never ends.



A simpler case: The multi-armed bandit
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Various problem can be considered:

! Identify the reward distributions of every arm
! Identify the expected reward of every arm
! Identify the arm with greatest expected reward
! Earn as much reward as possible



Some real-life motivations
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! Actual gambling, of course
! Adaptive routing (on the internet)
! Experimental drug evaluation (sort of)
! Choosing a restaurant



Identifying reward distributions of every arm?
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How can we do it?



Identifying reward distributions of every arm?
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! Keep looping through all arms, pulling each once
. . . or, just keep choosing arms randomly

! Keep track of every reward obtained
! Use some kind of density estimator



Example 1
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! Consider a 4-armed bandit with reward distributions depicted below:
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! Suppose we:

– Keep playing each arm in turn, for 1000 pulls
– Assume each arm’s reward distribution, Pi, is Gaussian with mean µi

and standard deviation σi

– Keep track of sample mean and sample standard deviation of rewards
for each arm



Example 1: Results
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! Parameter estimates converge toward correct values (indicated by X’s):
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Example 2
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! Consider a 4-armed bandit with reward distributions depicted below:
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! Suppose we:

– Keep playing each arm in turn, for 1000 pulls
– Assume each arm’s reward distribution, Pi, is Gaussian with mean µi

and standard deviation σi

– Keep track of sample mean and sample standard deviation of rewards
for each arm



Example 2: Results
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! Parameter estimates converge actual correct values mean and standard
deviations of reward distributions: (indicated by X’s):
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Example 2: Results (II)
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! Of course, the estimate reward distributions do not converge to the
correct thing:
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Questions
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! What can we do if we don’t know the correct form of the distribution?
! How much reward is obtained during this process?



Questions and Answers
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! What can we do if we don’t know the correct form of the distribution?

– Non-parametric density estimators may be a good choice. With proper
parameterization, can prove convergence to correct distribution.

– However, often we only care about the expected reward of each arm
⇒ only need to track sample means

! How much reward is obtained during this process?

– The expected reward is
∑k

i=1
1
kRi per step

– This can be far less than maxi Ri per step



Maximizing reward / minimizing regret

COMP 652 - Lecture 17 18 / 28

! Rather than explicitly requiring the distributions or expected rewards of
each arm to be estimated, we could simply ask for high reward.

! Suppose the game runs for T ∈ {1, 2, 3, . . . , +∞} turns.
! Let rt be the reward obtained ons tep t.
! We can ask for a strategy that:

– Maximizes the mean reward: 1
T

∑T
t=1 rt

– Or minimizes the regret: 1
T

∑T
t=1(maxi Ri − rt)

! How can we do that? Or how can we do that approximately / nearly?



Some possible strategies
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! Choosing arms randomly doesn’t work.
! Choose arm with highest estimated expected reward
! Choose arm with highest estimated expected reward most of the time,

and occasionally choose something else
! Choose arms with probabilities related to their estimated expected reward
! Choose arm with highest 95% confidence interval
! Choose arm with lowest 95% confidence interval

⇒ Try it out in MATLAB!



Remark: The exploration-exploitation trade-off/dilemma
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! In reinforcement learning in general, “exploration” refers to trying new
things—or things that we haven’t yet learned much about

! “Exploitation” refers to acting as seems best based on our current
knowledge

! In many situations, there is a tension between the two – exploration
means we end up spending time doing things that may have low reward,
but exploitation means we may end up never discovering a better way.



Markov Decision Processes (MDPs)
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! More general, we assume the agent’s environment has some state which
changes over time

! The environment is Markovian:

– The rewards obtained depends (stochastically) on the most recent
state and action

– The next state depends (stochastically) on the most rec



Markov Decision Processes (MDPs) (II)
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More formally, an MDP is defined by:

! Set of states S
! Set of actions A(s) available in each state s
! Rewards:

ra
ss′ = E

{
rt+1|st = s, at = a, st+1 = s′

}

! Transition probabilities

pa
ss′ = P

(
st+1 = s′|st = s, at = a

)



Agent’s Learning Task
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Execute actions in environment, observe results, and learn policy (strategy,
way of behaving) π : S × A → [0, 1],

π(s, a) = P (at = a|st = s)

If the policy is deterministic, we will write it more simply as π : S → A, with
π(s) = a giving the action chosen in state s.

! Note that the target function is π : S → A but we have
no training examples of form 〈s, a〉
Training examples are of form 〈〈s, a〉, r, s′, . . .〉

! Reinforcement learning methods specify how the agent should change the
policy as a function of experience



The objective: Maximize long-term return
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Suppose the sequence of rewards received after time step t is rt+1, rt+2 . . ..
We want to maximize the expected return E{Rt} for every time step t

! Episodic tasks: the interaction with the environment takes place in
episodes (e.g. games, trips through a maze etc)

Rt = rt+1 + rt+2 + · · · + rT

where T is the time when a terminal state is reached



The objective: Maximize long-term return
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Suppose the sequence of rewards received after time step t is rt+1, rt+2 . . ..
We want to maximize the expected return E{Rt} for every time step t

! Discounted continuing tasks :

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞X

k=1

γt+k−1rt+k

where γ = discount factor for later rewards (between 0 and 1, usually
close to 1)
Sometimes viewed as an ”inflation rate” or ”probability of dying”



The objective: Maximize long-term return
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Suppose the sequence of rewards received after time step t is rt+1, rt+2 . . ..
We want to maximize the expected return E{Rt} for every time step t

! Average-reward tasks:

Rt = lim
T→∞

1
T

(rt+1 + rt+2 + · · · + rT )

This represents the reward per time step.



Example: Mountain-Car
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! States: position and velocity
! Actions: accelerate forward, accelerate backward, coast

(It is assumed the engine is weak!)
! We want the car to get to the top of the hill as quickly as possible
! What are the rewards and the return?



Example: Mountain-Car
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! States: position and velocity
! Actions: accelerate forward, accelerate backward, coast

(It is assumed the engine is weak!)
! Two reward formulations:

– reward = −1 for every time step, until car reaches the top
– reward = 1 at the top, 0 otherwise γ < 1

! In both cases, the return is maximized by minimizing the number of steps
to the top of the hill


