COMP 652: Machine Learning

Lecture 17

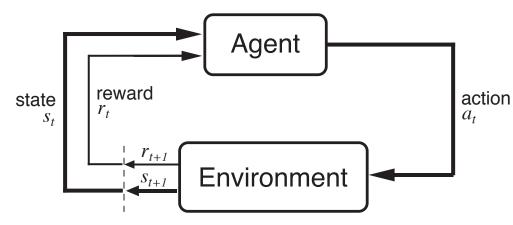
Today

- □ Control learning / the reinforcement learning problem
- □ Multi-armed bandit problems
- □ Markov decision processes
- □ Alternative definitions of return (long-term reward)

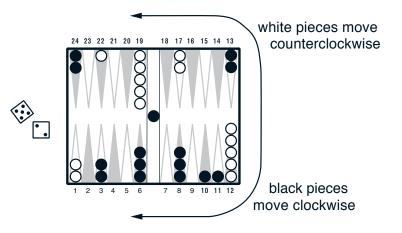
Consider learning to choose actions, e.g.,

- Robot learning to dock on battery charger
- □ Choose actions to optimize factory output
- □ Playing Backgammon, Go, Poker, ...
- □ Choosing medical tests and treatments
- □ Conversation
- Portofolio management
- □ Flying a helicopter
- □ Queue / router control

 \Rightarrow All of these are sequential decision making problems



- At each discrete time t, the agent (learning system) observes state $s_t \in S$ and chooses action $a_t \in A$
- \Box Then it receives an immediate reward r_{t+1} and the state changes to s_{t+1}
- □ Goal is to maximize the total reward over time



- □ The states are board positions in which the agent can move
- \Box The actions are the possible moves
- \square Reward is 0 until the end of the game, when it is ± 1 depending on whether the agent wins or loses
- Maximizing total reward thus equates to maximizing the chance of winning (regardless of how long it takes)

A simpler case: The multi-armed bandit

- \Box There are k arms.
- \Box Each "pull" of an arm *i*, gives a random reward with distribution $P_i(r)$ and expectation R_i , both unknown
- Each reward in an independent r.v.; the machine/arms have no internal state
- \Box At each turn you choose one arm to pull.
- \Box The game never ends.

A simpler case: The multi-armed bandit

Various problem can be considered:

- □ Identify the reward distributions of every arm
- □ Identify the expected reward of every arm
- □ Identify the arm with greatest expected reward
- □ Earn as much reward as possible

- \Box Actual gambling, of course
- □ Adaptive routing (on the internet)
- □ Experimental drug evaluation (sort of)
- □ Choosing a restaurant

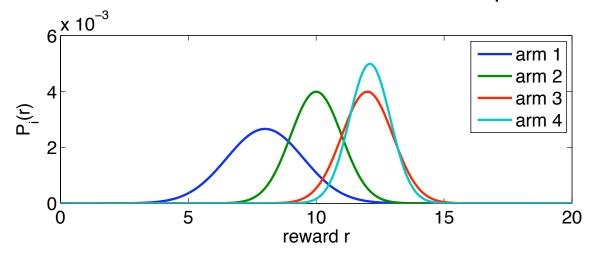
How can we do it?

Identifying reward distributions of every arm?

- Keep looping through all arms, pulling each once
 ... or, just keep choosing arms randomly
- □ Keep track of every reward obtained
- □ Use some kind of density estimator

Example 1

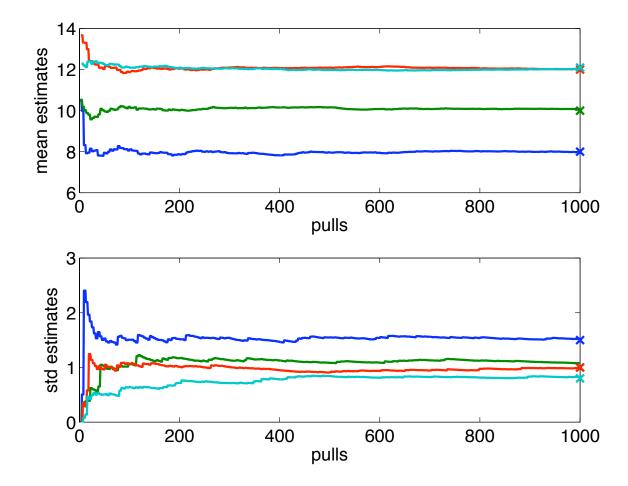
Consider a 4-armed bandit with reward distributions depicted below:



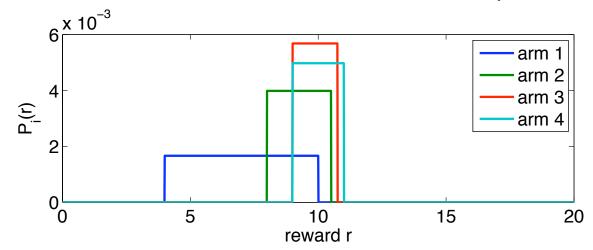
 \Box Suppose we:

- Keep playing each arm in turn, for 1000 pulls
- Assume each arm's reward distribution, P_i , is Gaussian with mean μ_i and standard deviation σ_i
- Keep track of sample mean and sample standard deviation of rewards for each arm

□ Parameter estimates converge toward correct values (indicated by X's):



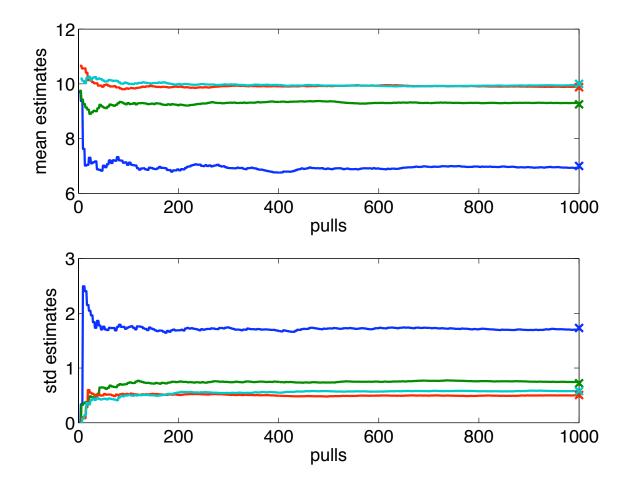
Consider a 4-armed bandit with reward distributions depicted below:



 \Box Suppose we:

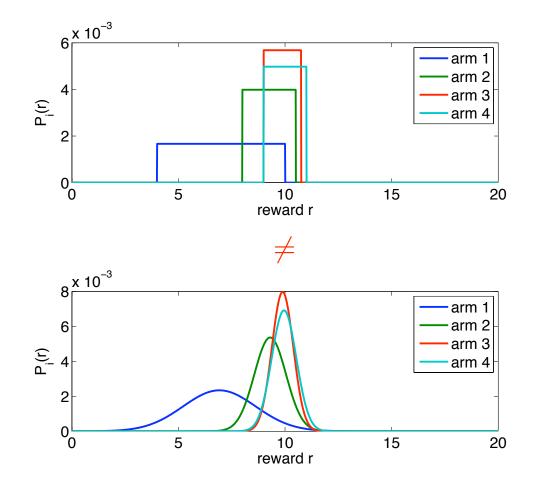
- Keep playing each arm in turn, for 1000 pulls
- Assume each arm's reward distribution, P_i , is Gaussian with mean μ_i and standard deviation σ_i
- Keep track of sample mean and sample standard deviation of rewards for each arm

Parameter estimates converge actual correct values mean and standard deviations of reward distributions: (indicated by X's):



Example 2: Results (II)

Of course, the estimate reward distributions do not converge to the correct thing:



Questions

What can we do if we don't know the correct form of the distribution?
 How much reward is obtained during this process?

- What can we do if we don't know the correct form of the distribution?
 - Non-parametric density estimators may be a good choice. With proper parameterization, can prove convergence to correct distribution.
 - However, often we only care about the expected reward of each arm \Rightarrow only need to track sample means
- □ How much reward is obtained during this process?
 - The expected reward is $\sum_{i=1}^{k} \frac{1}{k} R_i$ per step
 - This can be far less than $\max_i R_i$ per step

Maximizing reward / minimizing regret

- Rather than explicitly requiring the distributions or expected rewards of each arm to be estimated, we could simply ask for high reward.
- \Box Suppose the game runs for $T \in \{1, 2, 3, \dots, +\infty\}$ turns.
- \Box Let r_t be the reward obtained ons tep t.
- \Box We can ask for a strategy that:
 - Maximizes the mean reward: $\frac{1}{T}\sum_{t=1}^{T} r_t$
 - Or minimizes the regret: $\frac{1}{T} \sum_{t=1}^{T} (\max_i R_i r_t)$
- □ How can we do that? Or how can we do that approximately / nearly?

- \Box Choosing arms randomly doesn't work.
- □ Choose arm with highest estimated expected reward
- Choose arm with highest estimated expected reward most of the time, and occasionally choose something else
- Choose arms with probabilities related to their estimated expected reward
- Choose arm with highest 95% confidence interval
- Choose arm with lowest 95% confidence interval

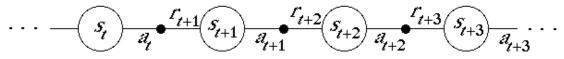
 \Rightarrow Try it out in MATLAB!

Remark: The exploration-exploitation trade-off/dilemma

- In reinforcement learning in general, "exploration" refers to trying new things—or things that we haven't yet learned much about
- "Exploitation" refers to acting as seems best based on our current knowledge
- In many situations, there is a tension between the two exploration means we end up spending time doing things that may have low reward, but exploitation means we may end up never discovering a better way.

Markov Decision Processes (MDPs)

More general, we assume the agent's environment has some <u>state</u> which changes over time



- □ The environment is *Markovian*:
 - The rewards obtained depends (stochastically) on the most recent state and action
 - The next state depends (stochastically) on the most rec

More formally, an MDP is defined by:

- \Box Set of <u>states</u> S
- \Box Set of <u>actions</u> A(s) available in each state s
- □ <u>*Rewards*</u>:

$$r_{ss'}^a = E\left\{r_{t+1}|s_t = s, a_t = a, s_{t+1} = s'\right\}$$

□ Transition probabilities

$$p_{ss'}^a = P\left(s_{t+1} = s' | s_t = s, a_t = a\right)$$

Execute actions in environment, observe results, and learn <u>policy</u> (strategy, way of behaving) $\pi: S \times A \rightarrow [0, 1]$,

$$\pi(s,a) = P\left(a_t = a | s_t = s\right)$$

If the policy is deterministic, we will write it more simply as $\pi : S \to A$, with $\pi(s) = a$ giving the action chosen in state s.

- □ Note that the target function is $\pi : S \to A$ but we have <u>no training examples</u> of form $\langle s, a \rangle$ Training examples are of form $\langle \langle s, a \rangle, r, s', \ldots \rangle$
- Reinforcement learning methods specify how the agent should change the policy as a function of experience

Suppose the sequence of rewards received after time step t is $r_{t+1}, r_{t+2} \dots$ We want to maximize the **expected return** $E\{R_t\}$ for every time step t

 \Box <u>Episodic tasks</u>: the interaction with the environment takes place in episodes (e.g. games, trips through a maze etc)

$$R_t = r_{t+1} + r_{t+2} + \dots + r_T$$

where ${\boldsymbol{T}}$ is the time when a terminal state is reached

Suppose the sequence of rewards received after time step t is $r_{t+1}, r_{t+2} \dots$ We want to maximize the **expected return** $E\{R_t\}$ for every time step t

Discounted continuing tasks :

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \ldots = \sum_{k=1}^{\infty} \gamma^{t+k-1} r_{t+k}$$

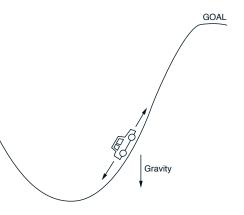
where $\gamma =$ discount factor for later rewards (between 0 and 1, usually close to 1) Sometimes viewed as an "inflation rate" or "probability of dying" Suppose the sequence of rewards received after time step t is $r_{t+1}, r_{t+2} \dots$ We want to maximize the **expected return** $E\{R_t\}$ for every time step t

Average-reward tasks:

$$R_{t} = \lim_{T \to \infty} \frac{1}{T} \left(r_{t+1} + r_{t+2} + \dots + r_{T} \right)$$

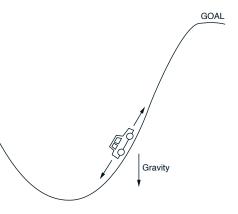
This represents the reward per time step.

Example: Mountain-Car



- □ States: position and velocity
- Actions: accelerate forward, accelerate backward, coast (It is assumed the engine is weak!)
- □ We want the car to get to the top of the hill as quickly as possible
- □ What are the rewards and the return?

Example: Mountain-Car



- □ States: position and velocity
- Actions: accelerate forward, accelerate backward, coast (It is assumed the engine is weak!)
- □ Two reward formulations:
 - reward = -1 for every time step, until car reaches the top
 - reward = 1 at the top, 0 otherwise $\gamma < 1$
- In both cases, the return is maximized by minimizing the number of steps to the top of the hill