COMP 652: Machine Learning
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Today

Control learning / the reinforcement learning problem
Multi-armed bandit problems

Markov decision processes

Alternative definitions of return (long-term reward)

O O O O
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The general problem: Control Learning

Consider learning to choose actions, e.g.,

Robot learning to dock on battery charger
Choose actions to optimize factory output
Playing Backgammon, Go, Poker, ...
Choosing medical tests and treatments
Conversation

Portofolio management

Flying a helicopter

Queue / router control

O O00ddododd

= All of these are sequential decision making problems
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Reinforcement Learning Problem
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O At each discrete time t, the agent (learning system) observes state s; € S
and chooses action a; € A

Then it receives an immediate reward ;11 and the state changes to s;4+1
Goal is to maximize the total reward over time

1 O
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Example: Backgammon (Tesauro, 1992-1995)
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move clockwise

0 The states are board positions in which the agent can move
0 The actions are the possible moves
O Reward is 0 until the end of the game, when it is =1 depending on

whether the agent wins or loses
O Maximizing total reward thus equates to maximizing the chance of
winning (regardless of how long it takes)
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A simpler case: The multi-armed bandit

There are k arms.

Each “pull” of an arm 4, gives a random reward with distribution P;(r)
and expectation R;, both unknown

0 Each reward in an independent r.v.; the machine/arms have no internal
state

At each turn you choose one arm to pull.

The game never ends.

L1 O

L1 O
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A simpler case: The multi-armed bandit

Various problem can be considered:

O ldentify the reward distributions of every arm
|dentify the expected reward of every arm
|dentify the arm with greatest expected reward
Earn as much reward as possible

O O
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Some real-life motivations

Actual gambling, of course

Adaptive routing (on the internet)
Experimental drug evaluation (sort of)
Choosing a restaurant

O O O
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Identifying reward distributions of every arm?

How can we do it?

COMP 652 - Lecture 17 9 /28



Identifying reward distributions of every arm?

0 Keep looping through all arms, pulling each once
...or, just keep choosing arms randomly

O Keep track of every reward obtained

O Use some kind of density estimator
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Example 1

O Consider a 4-armed bandit with reward distributions depicted below:
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O Suppose we:

— Keep playing each arm in turn, for 1000 pulls
— Assume each arm’s reward distribution, P;, is Gaussian with mean p;

and standard deviation o;
— Keep track of sample mean and sample standard deviation of rewards

for each arm
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Example 1: Results

0 Parameter estimates converge toward correct values (indicated by X's):
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Example 2

O Consider a 4-armed bandit with reward distributions depicted below:
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O Suppose we:

— Keep playing each arm in turn, for 1000 pulls
— Assume each arm’s reward distribution, P;, is Gaussian with mean p;

and standard deviation o;
— Keep track of sample mean and sample standard deviation of rewards

for each arm
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Example 2: Results

0 Parameter estimates converge actual correct values mean and standard
deviations of reward distributions: (indicated by X's):
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Example 2: Results (I1)

O Of course, the estimate reward distributions do not converge to the

correct thing:
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Questions

O What can we do if we don't know the correct form of the distribution?
O How much reward is obtained during this process?
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Questions and Answers

0 What can we do if we don’'t know the correct form of the distribution?

— Non-parametric density estimators may be a good choice. With proper
parameterization, can prove convergence to correct distribution.

— However, often we only care about the expected reward of each arm
= only need to track sample means

O How much reward is obtained during this process?

—  The expected reward is Zle %Ri per step

— This can be far less than max; R; per step
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Maximizing reward / minimizing regret

O Rather than explicitly requiring the distributions or expected rewards of
each arm to be estimated, we could simply ask for high reward.

O Suppose the game runs for T' € {1,2,3,..., 400} turns.
00 Let r; be the reward obtained ons tep t.
0 We can ask for a strategy that:

_ L 1T
— Maximizes the mean reward: ?thzl T
—  Or minimizes the regret: = >, (max; R; — ry)

O How can we do that? Or how can we do that approximately / nearly?
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Some possible strategies

O Choosing arms randomly doesn't work.

O Choose arm with highest estimated expected reward

O Choose arm with highest estimated expected reward most of the time,
and occasionally choose something else

O Choose arms with probabilities related to their estimated expected reward

0 Choose arm with highest 95% confidence interval

0 Choose arm with lowest 95% confidence interval

= Try it out in MATLAB!
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Remark: The exploration-exploitation trade-off/dilemma

O In reinforcement learning in general, “exploration” refers to trying new
things—or things that we haven't yet learned much about

O “Exploitation” refers to acting as seems best based on our current
knowledge

0 In many situations, there is a tension between the two — exploration
means we end up spending time doing things that may have low reward,
but exploitation means we may end up never discovering a better way.
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Markov Decision Processes (MDPs)

0 More general, we assume the agent’s environment has some state which
changes over time

O The environment i1s Markovian:

— The rewards obtained depends (stochastically) on the most recent

state and action
— The next state depends (stochastically) on the most rec
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Markov Decision Processes (MDPs) (11)

More formally, an MDP is defined by:

O Set of states S
O Set of actions A(s) available in each state s
0 Rewards:

rog = F {Tt_|_1‘8t = 5,4t = A, S¢11 = S’}

0  Transition probabilities

a /
Doy = P (st+1 S'|st = 8,a¢ = a)
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Agent’s Learning Task

Execute actions in environment, observe results, and learn policy (strategy,
way of behaving) 7: 5 x A — [0, 1],

mw(s,a) = P (a; = alsy = s)

If the policy is deterministic, we will write it more simply as 7 : S — A, with
7(s) = a giving the action chosen in state s.

O Note that the target function is 7 : S — A but we have
no training examples of form (s, a)
Training examples are of form ((s,a),r,s,...)

O Reinforcement learning methods specify how the agent should change the
policy as a function of experience
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The objective: Maximize long-term return

Suppose the sequence of rewards received after time step ¢t is ri11, 742 ...
We want to maximize the expected return E{R;} for every time step ¢

0 Episodic tasks: the interaction with the environment takes place in
episodes (e.g. games, trips through a maze etc)

Rt =7ri41 + 12+ -+ 11

where T' is the time when a terminal state is reached
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The objective: Maximize long-term return

Suppose the sequence of rewards received after time step ¢t is ri11, 742 ...
We want to maximize the expected return E{R;} for every time step ¢

0 Discounted continuing tasks :

0
2 t+k—1
Ri =rep1 +yriq2 + 9 re4s +..0 = g Y
k=1

where v = discount factor for later rewards (between 0 and 1, usually
close to 1)
Sometimes viewed as an "inflation rate” or " probability of dying”
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The objective: Maximize long-term return

Suppose the sequence of rewards received after time step ¢t is ri11, 742 ...
We want to maximize the expected return E{R;} for every time step ¢

0 Average-reward tasks:

1

Ry = :FILmOO - (re41 + reqg2 + - +1r7)

This represents the reward per time step.

COMP 652 - Lecture 17 26 / 28



Example: Mountain-Car

GOAL

0 States: position and velocity
0 Actions: accelerate forward, accelerate backward, coast
(It is assumed the engine is weak!)
O We want the car to get to the top of the hill as quickly as possible
0 What are the rewards and the return?
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Example: Mountain-Car

GOAL

[

States: position and velocity

Actions: accelerate forward, accelerate backward, coast
(It is assumed the engine is weak!)

0 Two reward formulations:

[

— reward = —1 for every time step, until car reaches the top
— reward = 1 at the top, 0 otherwise v < 1

O In both cases, the return is maximized by minimizing the number of steps
to the top of the hill
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