
COMP 652 - Lecture 15 1 / 55

COMP 652: Machine Learning

Lecture 15

Today

COMP 652 - Lecture 15 2 / 55

Hierarchical clustering

COMP 652 - Lecture 15 3 / 55

! Organizes data instances into trees.

! For visualization, exploratory data analysis.

! Agglomerative methods build the tree bottom-up, successively grouping
together the clusters deemed most similar.

! Divisive methods build the tree top-down, recursively partitioning the
data.

What is a hierarchical clustering?

COMP 652 - Lecture 15 4 / 55

! Given instances D = {x1, . . . ,xm}.
! A hierarchical clustering is a set of subsets (clusters) of D,

C = {C1, . . . , CK}, where

– Every element in D is in at least one set of C (the root)
– The Cj can be assigned to the nodes of a tree such that the cluster at

any node is precisely the union of the clusters at the node’s children (if
any).

Example of a hierarchical clustering

COMP 652 - Lecture 15 5 / 55

! Suppose D = {1, 2, 3, 4, 5, 6, 7}.
! One hierarchical clustering is

C = {{1}, {2, 3}, {4, 5}, {1, 2, 3, 4, 5}, {6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

1,2,3,4,5,6,7

1 2,3 4,5

1,2,3,4,5 6,7

! In this example:

– Leaves of the tree need not correspond to single instances.
– The branching factor of the tree is not limited.

! However, most hierarchical clustering algorithms produce binary trees, and
take single instances as the smallest clusters.

Agglomerative clustering

COMP 652 - Lecture 15 6 / 55

! Input: Pairwise distances d(x,x′) between a set of data objects {xi}.
! Output: A hierarchical clustering
! Algorithm:

– Assign each instance as its own cluster on a working list W .
– Repeat

! Find the two clusters in W that are most “similar”.
! Remove them from W .
! Add their union to W .

Until W contains a single cluster with all the data objects.
– The hierarchical clustering contains all clusters appearing in W at any

stage of the algorithm.

How do we measure dissimilarity between clusters?

COMP 652 - Lecture 15 7 / 55

! Distance between nearest objects (“Single-linkage” agglomerative
clustering, or “nearest neighbor”):

min
x∈C,x′∈C′

d(x,x′)

! Distance between farthest objects (“Complete-linkage” agglomerative
clustering, or “furthest neighbor”):

max
x∈C,x′∈C′

d(x,x′)

! Average distance between objects (“Group-average” agglomerative
clustering):

1
|C||C ′|

∑

x∈C,x′∈C′

d(x,x′)

Examples

COMP 652 - Lecture 15 8 / 55

Show examples!

Intuitions about cluster similarity

COMP 652 - Lecture 15 9 / 55

! Single-linkage

– Favors spatially-extended / filamentous clusters
– Often leaves singleton clusters until near the end

! Complete-linkage favors compact clusters
! Average-linkage is somewhere in between

Monotonicity

COMP 652 - Lecture 15 10 / 55

! Single-linkage, complete-linkage and group-average dissimilarity measure
all share a monotonicity property:

– Let A, B, C be clusters.
– Let d be one of the dissimilarity measures.
– If d(A, B) ≤ d(A, C) and d(A, B) ≤ d(B, C), then

d(A, B) ≤ d(A ∪ B, C).

Monotonicity of Single-linkage criterion

COMP 652 - Lecture 15 11 / 55

Proof by picture:

Monotonicity of Single-linkage criterion

COMP 652 - Lecture 15 12 / 55

More formal proof:

! We are given that d(A, B) ≤ d(A, C) and d(A, B) ≤ d(B, C)
! Then:

d(A ∪ B, C) = min
x∈A∪B,x′∈C

d(x, x′)

= min
(

min
xa∈A,x′∈C

d(xa, x
′), min

xb∈B,x′∈C
d(xa, x

′)
)

= min (d(A, C), d(B, C))
≥ min (d(A, B), d(A, B))
= d(A, B)

! Proofs for group-average and complete-linkage are similar.

Dendrograms

COMP 652 - Lecture 15 13 / 55

! The monotonicity property implies that every time agglomerative
clustering merges two clusters, the dissimilarity of those clusters is ≥ the
dissimilarity of all previous merges.

! Why?

Dendrograms

COMP 652 - Lecture 15 14 / 55

! The monotonicity property implies that every time agglomerative
clustering merges two clusters, the dissimilarity of those clusters is ≥ the
dissimilarity of all previous merges.

! Why?
! Dendrograms (trees depicting hierarchical clusterings) are often drawn so

that the height of a node corresponds to the dissimilarity of the merged
clusters.

Dendrograms for Example 1 data

COMP 652 - Lecture 15 15 / 55

6976617062737879716572756367806877667464 8 1 560 91342444150495643464555524748575459185320 658511217 314 233312336243726344025392829353021382732 71019221615 411
0

0.1

0.2

69766170627378796471 863687767806572756674 233243726344028293035152231 71019213827321623362539 1 560 411 658 94555515213424944461853415056434754594857 314122017
0

0.2

0.4

0.6

0.8

1

1.2

69766170627378796471 863687767806572756674 233312437263440282930351522 71019213827321623362539 411 1 560 658 9134244464150564943185320455552514759485754 3141217
0

0.1

0.2

0.3

0.4

0.5

0.6

Dendrograms for Example 2 data

COMP 652 - Lecture 15 16 / 55

 64 91 58 75 63 67 85 78 87 51 57 69 97100 60 82 94 98 53 59 66 93 73 52 71 55 86 62 99 65 79 89 80 54 72 83 56 81 92 96 61 88 68 70 74 95 76 77 84 90 1 17 18 5 20 13 34 37 45 41 3 11 28 40 43 6 14 32 9 23 12 47 4 46 7 10 33 48 19 35 16 22 44 36 38 49 2 15 26 27 30 39 50 29 25 8 31 24 21 42
0

0.05

0.1

 64 91 85 60 82 94 98 51 57 69 97100 53 59 66 1 17 18 5 20 13 34 37 45 41 6 14 32 9 23 12 58 75 63 67 78 87 73 93 76 77 84 90 2 26 27 30 15 39 50 29 22 44 49 8 31 24 21 42 25 68 70 74 95 3 11 28 40 43 47 4 46 38 7 35 10 33 48 16 19 36 52 71 55 86 62 99 65 79 89 80 54 72 83 56 61 81 92 96 88
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 64 91 85 60 82 94 98 51 57 69 97100 53 59 66 58 75 63 67 78 87 73 93 76 77 84 90 1 17 18 5 20 13 34 37 45 41 6 14 32 9 23 12 3 11 28 40 43 47 2 26 27 30 15 39 50 29 25 8 31 24 21 42 68 70 74 95 4 46 38 7 10 33 48 19 35 16 36 22 44 49 52 71 55 86 62 99 65 79 89 80 54 72 83 56 81 92 96 61 88
0

0.2

0.4

Remarks

COMP 652 - Lecture 15 17 / 55

! We can form a flat clustering by cutting the tree at any height.
! Jumps in the height of the dendrogram can suggest natural cutoffs.

How many clusters?

COMP 652 - Lecture 15 18 / 55

! How many clusters are generated by the agglomerative clustering
algorithm?

How many clusters?

COMP 652 - Lecture 15 19 / 55

! How many clusters are generated by the agglomerative clustering
algorithm?

! Answer: 2m − 1, where m is the number of data objects.
! Why? A binary tree with m leaves has m − 1 internal nodes, thus 2m − 1

nodes total.
! More explicitly:

– The working list W starts with m singleton clusters
– Each iteration removes two clusters from W and adds one new one
– The algorithm stops when W has one cluster, which is after m − 1

iterations

Divisive clustering

COMP 652 - Lecture 15 20 / 55

! Works by recursively partitioning the instances.
! How might you do that?

Divisive clustering

COMP 652 - Lecture 15 21 / 55

! Works by recursively partitioning the instances.
! How might you do that?

– K-means?
– Max weighted cut on graph where edges are weighted by pairwise

distances?
– Maximum margin?

! Many heuristics for partitioning the instances have been proposed . . . but
many are computationally hard and/or violate monotonicity, making it
hard to draw dendrograms.

Hierarchical clustering summary

COMP 652 - Lecture 15 22 / 55

! Hierarchical clustering organizes data objects into a tree based on
similarity.

! Agglomerative (bottom-up) tree construction is most popular.
! There are several choices of linkage criterion.
! Monotonicity allows us to draw dendrograms in which the height of a

node corresponds to the dissimilarity of the clusters merged.
! Trees can be cut off at some level, to generate a flat partitioning of the

data.

COMP 652 - Lecture 15 23 / 55

Dimensionality reduction

What is dimensionality reduction?

COMP 652 - Lecture 15 24 / 55

! Mapping data objects to (short) real vectors
! For visualization, comparison, outlier detection
! For further machine learning
! Some techniques:

– Principal components analysis (linear)
– Kernel PCA (nonlinear)
– Independent components analysis (linear or nonlinear)
– Self-organizing maps (nonlinear)
– Multi-dimensional scaling (nonlinear, allows non-numeric data objects)

When is dimensionality reduction possible? (I)

COMP 652 - Lecture 15 25 / 55

Good case

When is dimensionality reduction possible? (II)

COMP 652 - Lecture 15 26 / 55

Not too bad

When is dimensionality reduction possible? (III)

COMP 652 - Lecture 15 27 / 55

Hard case

When is dimensionality reduction possible? (IV)

COMP 652 - Lecture 15 28 / 55

Forget it!

Remarks

COMP 652 - Lecture 15 29 / 55

! All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some low-dimensional manifold

! This is the case for the first three examples, which pretty much lie along a
1-dimensional manifold despite being plotted in 2D

! In the last example, the data has been generated randomly in 2D, so no
dimensionality reduction is possible without losing information

! The first three cases are in increasing order of difficulty, from the point of
view of existing techniques.

Simple Principal Component Analysis (PCA)

COMP 652 - Lecture 15 30 / 55

! Given: m data objects, each a length-n real vector.
! Suppose we want a 1-dimensional representation of that data, instead of

n-dimensional.
! Specifically, we will:

– Choose a line in %n that “best represents” the data.
– Assign each data object to a point along that line.

Which line is best?

COMP 652 - Lecture 15 31 / 55

?
?
?

How do we assign points to lines?

COMP 652 - Lecture 15 32 / 55

?

Reconstruction error

COMP 652 - Lecture 15 33 / 55

! Let our line be represented as b + αv for b,v ∈ %n, α ∈ %.
For later convenience, assume ‖v‖ = 1.

! Each instance xi is assigned a point on the line x̂i = b + αiv.
! We want to choose b, v, and the αi to minimize the total reconstruction

error over all data points, measured using Euclidean distance:

R =
m∑

i=1

‖xi − x̂i‖2

=
m∑

i=1

‖xi − (b + αiv)‖2

A constrained optimization problem!

COMP 652 - Lecture 15 34 / 55

min
∑m

i=1 ‖xi − (b + αiv)‖2

w.r.t. b,v, αi, i = 1, . . .m
s.t. ‖v‖2 = 1

We write down the Lagrangian:

L(b,v, λ, α1, . . . αm) =
m∑

i=1

‖xi − (b + αiv)‖2 + λ(‖v‖2 − 1)

=
m∑

i=1

‖xi‖2 + m‖b‖2 + ‖v‖2
m∑

i=1

α2
i

− 2bT
m∑

i=1

xi − 2vT
m∑

i=1

αixi + 2bTv
m∑

i=1

αi

− λ‖v‖2 + λ

Solving the optimization problem

COMP 652 - Lecture 15 35 / 55

! The most straightforward approach would be to write the KKT conditions
and solve the resulting equations

! Unfortunately, we get equations which have multiple variables in them,
and the resulting system is not linear (you can check this)

! Instead, we will fix v.
! For a given v, finding the best b and αi is now an unconstrained

optimization problem:

minR = min
m∑

i=1

‖xi − (b + αiv)‖2

Solving the optimization problem (II)

COMP 652 - Lecture 15 36 / 55

! We write the gradient of R wrt to αi and set it to 0:

∂R

∂αi
= 2‖v‖2αi − 2vTxi + 2bTv = 0 ⇒ αi = vT (xi − b)

where we take into account that ‖v‖2 = 1.
! We write the gradient of R wrt b and set it to 0:

∇bR = 2mb− 2
m∑

i=1

xi + 2

(
m∑

i=1

αi

)
v = 0 (1)

! From above:

m∑

i=1

αi =
m∑

i=1

vT (xi − b) = vT

(
m∑

i=1

xi − mb

)
(2)

Solving the optimization problem (III)

COMP 652 - Lecture 15 37 / 55

! By plugging (2) into (1) we get:

vT

mX

i=1

xi − mb

!
v =

mX

i=1

xi − mb

!

! This is satisfied when:
mX

i=1

xi − mb = 0 ⇒ b =
1
m

mX

i=1

xi

! This means that the line goes through the mean of the data
! By substituting αi, we get:

x̂i = b + (vT (xi − b))v

! This means that instances are projected orthogonally on the line to get
the associated point.

Example data

COMP 652 - Lecture 15 38 / 55

Example with v ∝ (1, 0.3)

COMP 652 - Lecture 15 39 / 55

Example with v ∝ (1,−0.3)

COMP 652 - Lecture 15 40 / 55

Finding the direction of the line

COMP 652 - Lecture 15 41 / 55

! Recall the formulation:

min
∑m

i=1 ‖xi − (b + αiv)‖2

w.r.t. b,v, αi, i = 1, . . .m
s.t. ‖v‖2 = 1

! Substituting αi = vT (xi − b) = (xi − b)Tv into our optimization
problem we obtain a new optimization problem:

minv
∑m

i=1 ‖xi − b − (vT (xi − b))v‖2

s.t. ‖v‖2 = 1

! Expanding the norm squared, we can simplify further . . .

Finding the direction of the line

COMP 652 - Lecture 15 42 / 55

! Optimization problem re-written:
maxv

∑m
i=1 vT (xi − b)(xi − b)Tv

s.t. ‖v‖2 = 1

! The Lagrangian is:

L(v, λ)=
m∑

i=1

vT (xi − b)(xi − b)Tv + λ − λ‖v‖2

! Let S =
∑m

i=1(xi − b)(xi − b)T be an n-by-n matrix, which we will call
the scatter matrix

! The solution to the problem, obtained by setting ∇vL = 0, is: Sv = λv.

Optimal choice of v

COMP 652 - Lecture 15 43 / 55

! Recall: an eigenvector u of a matrix A satisfies Au = λu, where λ ∈ %
is the eigenvalue.

! Fact: the scatter matrix, S, has n non-negative eigenvalues (except in
certain degenerate cases) and n orthogonal eigenvectors.

! The equation obtained for v tells us that it should be an eigenvector of S.

! The v that maximizes vT Sv is the eigenvector of S with the largest
eigenvalue

What is the scatter matrix?

COMP 652 - Lecture 15 44 / 55

! S is an n × n matrix with

S(k, l) =
m∑

i=1

(xi(k) − b(k))(xi(l) − b(l))

! Hence, S(k, l) is proportional to the estimated covariance between the
kth and lth dimension in the data.

Example with optimal line: b = (0.54, 0.52), v ∝ (1, 0.45)

COMP 652 - Lecture 15 45 / 55

Remarks

COMP 652 - Lecture 15 46 / 55

! The line b + αv is the first principal component.
! The variance of the data along the line b + αv is as large as along any

other line.
! b, v, and the αi can be computed easily in polynomial time.

Reduction to d dimensions

COMP 652 - Lecture 15 47 / 55

! More generally, we can create a d-dimensional representation of our data
by projecting the instances onto a hyperplane b + α1v1 + . . . + αdvd.

! If we assume the vj are of unit length and orthogonal, then the optimal
choices are:

– b is the mean of the data (as before)
– The vj are orthogonal eigenvectors of S corresponding to its d largest

eigenvalues.
– Each instance is projected orthogonally on the hyperplane.

Remarks

COMP 652 - Lecture 15 48 / 55

! b, the eigenvalues, the vj , and the projections of the instances can all be
computed in polynomial time.

! The magnitude of the jth-largest eigenvalue, λj , tells you how much
variability in the data is captured by the jth principal component

! So you have feedback on how to choose d!
! When the eigenvalues are sorted in decreasing order, the proportion of the

variance captured by the first d components is:

λ1 + . . . + λd

λ1 + . . . + λd + λd+1 + . . . + λn

! So if a “big” drop occurs in the eigenvalues at some point, that suggests
a good dimension cutoff

Example: λ1 = 0.0938, λ2 = 0.0007

COMP 652 - Lecture 15 49 / 55

Example: λ1 = 0.1260, λ2 = 0.0054

COMP 652 - Lecture 15 50 / 55

Example: λ1 = 0.0884, λ2 = 0.0725

COMP 652 - Lecture 15 51 / 55

Example: λ1 = 0.0881, λ2 = 0.0769

COMP 652 - Lecture 15 52 / 55

Remarks

COMP 652 - Lecture 15 53 / 55

! Outliers have a big effect on the covariance matrix, so they can affect the
eignevectors quite a bit

! A simple examination of the pairwise distances between instances can help
discard points that are very far away (for the purpose of PCA)

! If the variances in the original dimensions vary considerably, they can
“muddle” the true correlations. There are two solutions:

– work with the correlation of the original data, instead of covariance
matrix

– normalize the input dimensions individually before PCA

Remarks (II)

COMP 652 - Lecture 15 54 / 55

! In certain cases, the eigenvectors are meaningful; e.g. in vision, they can
be displayed as images (“eigenfaces”)

Uses of PCA

COMP 652 - Lecture 15 55 / 55

! Pre-processing for a supervised learning algorithm, e.g. for image data,
robotic sensor data

! Used with great success in image and speech processing
! Visualization
! Exploratory data analysis
! Removing the linear component of a signal (before fancier non-linear

models are applied)

