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Today
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Hierarchical clustering

Organizes data instances into trees.
For visualization, exploratory data analysis.

Agglomerative methods build the tree bottom-up, successively grouping
together the clusters deemed most similar.

0 Divisive methods build the tree top-down, recursively partitioning the
data.

COMP 652 - Lecture 15 3 /55



What is a hierarchical clustering?

0 Given instances D = {x1,...,Xn}.
O A hierarchical clustering is a set of subsets (clusters) of D,

C ={C1,...,Ck}, where

— Every element in D is in at least one set of C' (the root)
— The C; can be assigned to the nodes of a tree such that the cluster at
any node is precisely the union of the clusters at the node's children (if

any).
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Example of a hierarchical clustering

O Suppose D =1{1,2,3,4,5,6,7}.
O One hierarchical clustering is
C'={{1},{2,3},{4,5},{1,2,3,4,5},{6,7},{1,2,3,4,5,6,7}}.

G D)
OIDID

— Leaves of the tree need not correspond to single instances.
— The branching factor of the tree is not limited.

O In this example:

0 However, most hierarchical clustering algorithms produce binary trees, and
take single instances as the smallest clusters.
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Agglomerative clustering

O Input: Pairwise distances d(x,x’) between a set of data objects {x;}.
O Output: A hierarchical clustering
O Algorithm:

— Assign each instance as its own cluster on a working list .
— Repeat

> Find the two clusters in W that are most “similar’ .

> Remove them from W.
> Add their union to W.

Until W contains a single cluster with all the data objects.
— The hierarchical clustering contains all clusters appearing in W at any
stage of the algorithm.
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How do we measure dissimilarity between clusters?

0 Distance between nearest objects ( “Single-linkage” agglomerative
clustering, or “nearest neighbor”):

min _ d(x,x’)
xeC,x'eC’

0 Distance between farthest objects ( “Complete-linkage” agglomerative
clustering, or “furthest neighbor"):

max  d(x,x’)
xeC,x'eC’

O Average distance between objects ( “Group-average” agglomerative
clustering):

1

xeC.x'eC’
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Examples

Show examples!
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Intuitions about cluster similarity

O Single-linkage

— Favors spatially-extended / filamentous clusters
— Often leaves singleton clusters until near the end

O Complete-linkage favors compact clusters
0 Average-linkage is somewhere in between
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Monotonicity

O Single-linkage, complete-linkage and group-average dissimilarity measure
all share a monotonicity property:

— Let A, B, C be clusters.

— Let d be one of the dissimilarity measures.

- Ifd(A,B) < d(A,C) and d(A, B) < d(B, (), then
d(A,B) <d(AU B, ().
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Monotonicity of Single-linkage criterion

Proof by picture:
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Monotonicity of Single-linkage criterion

More formal proof:

0  We are given that d(A, B) < d(A,C) and d(A, B) < d(B,C)
O Then:

d(AU B, C)

min  d(z,x")
rcAUB,x'€C

min min d(zg,7'), min d(zg,x")
rqo€A,x'eC rpeB,x'eC

min (d(A,C),d(B,(C))
min (d(A, B),d(A, B))
d(A, B)

IV

O Proofs for group-average and complete-linkage are similar.
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Dendrograms

0 The monotonicity property implies that every time agglomerative
clustering merges two clusters, the dissimilarity of those clusters is > the

dissimilarity of all previous merges.
O Why?
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Dendrograms

0 The monotonicity property implies that every time agglomerative
clustering merges two clusters, the dissimilarity of those clusters is > the
dissimilarity of all previous merges.

Why?

Dendrograms (trees depicting hierarchical clusterings) are often drawn so
that the height of a node corresponds to the dissimilarity of the merged
clusters.

L1 O
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Dendrograms for Example 1 data
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Dendrograms for Example 2 data
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Remarks

O We can form a flat clustering by cutting the tree at any height.
O Jumps in the height of the dendrogram can suggest natural cutoffs.
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How many clusters?

0 How many clusters are generated by the agglomerative clustering
algorithm?
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How many clusters?

0 How many clusters are generated by the agglomerative clustering
algorithm?

Answer: 2m — 1, where m is the number of data objects.

Why? A binary tree with m leaves has m — 1 internal nodes, thus 2m — 1
nodes total.

00 More explicitly:

L1 O

— The working list W starts with m singleton clusters

— Each iteration removes two clusters from W and adds one new one

— The algorithm stops when W has one cluster, which is after m — 1
iterations
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Divisive clustering

00  Works by recursively partitioning the instances.
O How might you do that?
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Divisive clustering

00  Works by recursively partitioning the instances.
O How might you do that?
— K-means?
— Max weighted cut on graph where edges are weighted by pairwise
distances?

—  Maximum margin?

O Many heuristics for partitioning the instances have been proposed ... but
many are computationally hard and/or violate monotonicity, making it
hard to draw dendrograms.
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Hierarchical clustering summary

0 Hierarchical clustering organizes data objects into a tree based on
similarity.

O Agglomerative (bottom-up) tree construction is most popular.
O There are several choices of linkage criterion.
O Monotonicity allows us to draw dendrograms in which the height of a

node corresponds to the dissimilarity of the clusters merged.
0 Trees can be cut off at some level, to generate a flat partitioning of the

data.
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Dimensionality reduction
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What is dimensionality reduction?

O O O O

Mapping data objects to (short) real vectors
For visualization, comparison, outlier detection
For further machine learning

Some techniques:

Principal components analysis (linear)

Kernel PCA (nonlinear)

Independent components analysis (linear or nonlinear)
Self-organizing maps (nonlinear)

Multi-dimensional scaling (nonlinear, allows non-numeric data objects)
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When is dimensionality reduction possible? (I)

Good case
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When is dimensionality reduction possible? (II)

Not too bad
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When is dimensionality reduction possible? (ll1)

Hard case
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When is dimensionality reduction possible? (V)

Forget it!
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Remarks

O All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some low-dimensional manifold

O This is the case for the first three examples, which pretty much lie along a
1-dimensional manifold despite being plotted in 2D

00 In the last example, the data has been generated randomly in 2D, so no
dimensionality reduction is possible without losing information

O The first three cases are in increasing order of difficulty, from the point of
view of existing techniques.
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Simple Principal Component Analysis (PCA)

Given: m data objects, each a length-n real vector.
Suppose we want a 1-dimensional representation of that data, instead of

L1 O

n-dimensional.
O Specifically, we will:

— Choose a line in k™ that “best represents’ the data.
— Assign each data object to a point along that line.
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Which line is best?
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How do we assign points to lines?
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Reconstruction error

O Let our line be represented as b + av for b,v € ", o € R.

For later convenience, assume ||v|| = 1.

Each instance x; is assigned a point on the line x; = b + o;Vv.

We want to choose b, v, and the «; to minimize the total reconstruction
error over all data points, measured using Euclidean distance:

L1 O

R = > |xi— %
1=1
= ) lxi— (b+av)|?
1=1
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A constrained optimization problem!

min 37" [[xi — (b + a;v)|f?
w.rt. b,v,a;,t=1,...m
s.t. ||v[[?P=1
We write down the Lagrangian:

Lb,v, A a1, ...am) = > |xi—(b+av)|>+A(|v]* - 1)
1=1
= > IxllP+mlb|*+vI*D ef
1=1 1=1

m™m m ™m
— 2bt Z x; — 2v! Z a;x; + 2blv Z QO
i=1 i=1 i=1

— )\||V||2 + A
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Solving the optimization problem

O The most straightforward approach would be to write the KK'T conditions
and solve the resulting equations

O Unfortunately, we get equations which have multiple variables in them,

and the resulting system is not linear (you can check this)

Instead, we will fix v.

For a given v, finding the best b and «; is now an unconstrained

optimization problem:

L1 O

m
min R = minz |x; — (b + Oéz'V)Hz
i=1
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Solving the optimization problem (Il)

O We write the gradient of R wrt to «; and set it to O:

OR
8047;

= 2||v||?a; — 2vix; + 2bTv =0= o; = v (x; — b)

where we take into account that ||v]|* = 1.
O We write the gradient of R wrt b and set it to O:

vaZQWLb—QiXi—I—Q(i&Z‘)V:O (1)

1=1 1=1

O From above:

;Oéi = ;VT(Xz‘ —b) = vl (2} X; — mb) (2)
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Solving the optimization problem (l11)

[

L1 O

By plugging (2) into (1) we get:
v’ (sz — mb) vV = (sz — mb)
1=1 1=1

This is satisfied when:

m 1 m
in—mb:Oib:E;Xz-

=1

This means that the line goes through the mean of the data
By substituting o;, we get:

%Xi=b+ (vl(x; —b))v

This means that instances are projected orthogonally on the line to get

the associated point.
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Example data
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Example with v « (1,0.3)
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Example with v « (1,—-0.3)
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Finding the direction of the line

0 Recall the formulation:
min >0 |Ix — (b4 av)])?
w.rt. b,v,a;,1=1,...m
s.t. ||v||2 =1

O Substituting a; = v (x; — b) = (x; — b)? v into our optimization
problem we obtain a new optimization problem:

miny Y0y [|x; —b — (VI (x; — b))v]?
s.t. ||v]|* =

O Expanding the norm squared, we can simplify further ...
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Finding the direction of the line

maxy Y. 4 vl(x; —b)(x; — b)lv

O  Optimization problem re-written: st [v[2=1

0 The Lagrangian is:

L(v,\)= ) v (x;—b)(x; —b)"v+ A= A|v|?
1=1

0 Let S=>" (x; — b)(x; —b)! be an n-by-n matrix, which we will call
the scatter matrix
O The solution to the problem, obtained by setting VL =0, is: Sv = \v.
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Optimal choice of v

O Recall: an eigenvector u of a matrix A satisfies Au = A\u, where A € R
is the eigenvalue.

O Fact: the scatter matrix, .S, has n non-negative eigenvalues (except in
certain degenerate cases) and n orthogonal eigenvectors.

O The equation obtained for v tells us that it should be an eigenvector of §.

O The v that maximizes v Sv is the eigenvector of S with the largest
eigenvalue
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What is the scatter matrix?

O S is an n X n matrix with

m

S(k,1) = (xi(k) = b(k))(xi(l) — b(1))

1=1

O Hence, S(k,!l) is proportional to the estimated covariance between the
kth and [th dimension in the data.
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Example with optimal line: b = (0.54,0.52), v (1, 0.45)
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Remarks

The line b + av is the first principal component.

The variance of the data along the line b 4+ av is as large as along any
other line.

0 b, v, and the a; can be computed easily in polynomial time.

[

[
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Reduction to d dimensions

O More generally, we can create a d-dimensional representation of our data
by projecting the instances onto a hyperplane b + alv; + ... + a%vy.
O If we assume the v; are of unit length and orthogonal, then the optimal

choices are:
— b is the mean of the data (as before)
— The v; are orthogonal eigenvectors of S corresponding to its d largest

eigenvalues.
— Each instance is projected orthogonally on the hyperplane.
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Remarks

O b, the eigenvalues, the v;, and the projections of the instances can all be
computed in polynomial time.

0 The magnitude of the jt"-largest eigenvalue, A;, tells you how much

variability in the data is captured by the j* principal component

So you have feedback on how to choose d!

When the eigenvalues are sorted in decreasing order, the proportion of the

variance captured by the first d components is:

L1 O

)\1—1—...—1—)\d
)\1—|—...—|—)\d—|—)\d+1—|—...—|—)\n

O So if a “big” drop occurs in the eigenvalues at some point, that suggests
a good dimension cutoff
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Example: )\ = 0.0938, Ay = 0.0007
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Example: \; = 0.1260, Ao = 0.0054
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Example: \; = 0.0884, A\, = 0.0725
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Example: \; = 0.0881, A\, = 0.0769

COMP 652 - Lecture 15 52 / 55



Remarks

O Outliers have a big effect on the covariance matrix, so they can affect the
eignevectors quite a bit

O A simple examination of the pairwise distances between instances can help
discard points that are very far away (for the purpose of PCA)

O If the variances in the original dimensions vary considerably, they can
“muddle” the true correlations. There are two solutions:

— work with the correlation of the original data, instead of covariance

matrix
— normalize the input dimensions individually before PCA
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Remarks (I1)

O In certain cases, the eigenvectors are meaningful; e.g. in vision, they can
be displayed as images ( “eigenfaces”)
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Uses of PCA

O Pre-processing for a supervised learning algorithm, e.g. for image data,
robotic sensor data

0 Used with great success in image and speech processing

O Visualization

0 Exploratory data analysis

0 Removing the linear component of a signal (before fancier non-linear

models are applied)
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