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COMP 652: Machine Learning

Lecture 15



Today
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Hierarchical clustering
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! Organizes data instances into trees.

! For visualization, exploratory data analysis.

! Agglomerative methods build the tree bottom-up, successively grouping
together the clusters deemed most similar.

! Divisive methods build the tree top-down, recursively partitioning the
data.



What is a hierarchical clustering?
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! Given instances D = {x1, . . . ,xm}.
! A hierarchical clustering is a set of subsets (clusters) of D,

C = {C1, . . . , CK}, where

– Every element in D is in at least one set of C (the root)
– The Cj can be assigned to the nodes of a tree such that the cluster at

any node is precisely the union of the clusters at the node’s children (if
any).



Example of a hierarchical clustering
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! Suppose D = {1, 2, 3, 4, 5, 6, 7}.
! One hierarchical clustering is

C = {{1}, {2, 3}, {4, 5}, {1, 2, 3, 4, 5}, {6, 7}, {1, 2, 3, 4, 5, 6, 7}}.

1,2,3,4,5,6,7

1 2,3 4,5

1,2,3,4,5 6,7

! In this example:

– Leaves of the tree need not correspond to single instances.
– The branching factor of the tree is not limited.

! However, most hierarchical clustering algorithms produce binary trees, and
take single instances as the smallest clusters.



Agglomerative clustering
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! Input: Pairwise distances d(x,x′) between a set of data objects {xi}.
! Output: A hierarchical clustering
! Algorithm:

– Assign each instance as its own cluster on a working list W .
– Repeat

! Find the two clusters in W that are most “similar”.
! Remove them from W .
! Add their union to W .

Until W contains a single cluster with all the data objects.
– The hierarchical clustering contains all clusters appearing in W at any

stage of the algorithm.



How do we measure dissimilarity between clusters?
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! Distance between nearest objects (“Single-linkage” agglomerative
clustering, or “nearest neighbor”):

min
x∈C,x′∈C′

d(x,x′)

! Distance between farthest objects (“Complete-linkage” agglomerative
clustering, or “furthest neighbor”):

max
x∈C,x′∈C′

d(x,x′)

! Average distance between objects (“Group-average” agglomerative
clustering):

1
|C||C ′|

∑

x∈C,x′∈C′

d(x,x′)



Examples
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Show examples!



Intuitions about cluster similarity
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! Single-linkage

– Favors spatially-extended / filamentous clusters
– Often leaves singleton clusters until near the end

! Complete-linkage favors compact clusters
! Average-linkage is somewhere in between



Monotonicity
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! Single-linkage, complete-linkage and group-average dissimilarity measure
all share a monotonicity property:

– Let A, B, C be clusters.
– Let d be one of the dissimilarity measures.
– If d(A, B) ≤ d(A, C) and d(A, B) ≤ d(B, C), then

d(A, B) ≤ d(A ∪ B, C).



Monotonicity of Single-linkage criterion
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Proof by picture:



Monotonicity of Single-linkage criterion
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More formal proof:

! We are given that d(A, B) ≤ d(A, C) and d(A, B) ≤ d(B, C)
! Then:

d(A ∪ B, C) = min
x∈A∪B,x′∈C

d(x, x′)

= min
(

min
xa∈A,x′∈C

d(xa, x
′), min

xb∈B,x′∈C
d(xa, x

′)
)

= min (d(A, C), d(B, C))
≥ min (d(A, B), d(A, B))
= d(A, B)

! Proofs for group-average and complete-linkage are similar.



Dendrograms
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! The monotonicity property implies that every time agglomerative
clustering merges two clusters, the dissimilarity of those clusters is ≥ the
dissimilarity of all previous merges.

! Why?



Dendrograms
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! The monotonicity property implies that every time agglomerative
clustering merges two clusters, the dissimilarity of those clusters is ≥ the
dissimilarity of all previous merges.

! Why?
! Dendrograms (trees depicting hierarchical clusterings) are often drawn so

that the height of a node corresponds to the dissimilarity of the merged
clusters.



Dendrograms for Example 1 data
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Dendrograms for Example 2 data
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Remarks
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! We can form a flat clustering by cutting the tree at any height.
! Jumps in the height of the dendrogram can suggest natural cutoffs.



How many clusters?
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! How many clusters are generated by the agglomerative clustering
algorithm?



How many clusters?
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! How many clusters are generated by the agglomerative clustering
algorithm?

! Answer: 2m − 1, where m is the number of data objects.
! Why? A binary tree with m leaves has m − 1 internal nodes, thus 2m − 1

nodes total.
! More explicitly:

– The working list W starts with m singleton clusters
– Each iteration removes two clusters from W and adds one new one
– The algorithm stops when W has one cluster, which is after m − 1

iterations



Divisive clustering
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! Works by recursively partitioning the instances.
! How might you do that?



Divisive clustering
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! Works by recursively partitioning the instances.
! How might you do that?

– K-means?
– Max weighted cut on graph where edges are weighted by pairwise

distances?
– Maximum margin?

! Many heuristics for partitioning the instances have been proposed . . . but
many are computationally hard and/or violate monotonicity, making it
hard to draw dendrograms.



Hierarchical clustering summary
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! Hierarchical clustering organizes data objects into a tree based on
similarity.

! Agglomerative (bottom-up) tree construction is most popular.
! There are several choices of linkage criterion.
! Monotonicity allows us to draw dendrograms in which the height of a

node corresponds to the dissimilarity of the clusters merged.
! Trees can be cut off at some level, to generate a flat partitioning of the

data.
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Dimensionality reduction



What is dimensionality reduction?
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! Mapping data objects to (short) real vectors
! For visualization, comparison, outlier detection
! For further machine learning
! Some techniques:

– Principal components analysis (linear)
– Kernel PCA (nonlinear)
– Independent components analysis (linear or nonlinear)
– Self-organizing maps (nonlinear)
– Multi-dimensional scaling (nonlinear, allows non-numeric data objects)



When is dimensionality reduction possible? (I)
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Good case



When is dimensionality reduction possible? (II)
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Not too bad



When is dimensionality reduction possible? (III)
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Hard case



When is dimensionality reduction possible? (IV)
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Forget it!



Remarks
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! All dimensionality reduction techniques are based on an implicit
assumption that the data lies along some low-dimensional manifold

! This is the case for the first three examples, which pretty much lie along a
1-dimensional manifold despite being plotted in 2D

! In the last example, the data has been generated randomly in 2D, so no
dimensionality reduction is possible without losing information

! The first three cases are in increasing order of difficulty, from the point of
view of existing techniques.



Simple Principal Component Analysis (PCA)
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! Given: m data objects, each a length-n real vector.
! Suppose we want a 1-dimensional representation of that data, instead of

n-dimensional.
! Specifically, we will:

– Choose a line in %n that “best represents” the data.
– Assign each data object to a point along that line.



Which line is best?
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?
?
?



How do we assign points to lines?
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?



Reconstruction error

COMP 652 - Lecture 15 33 / 55

! Let our line be represented as b + αv for b,v ∈ %n, α ∈ %.
For later convenience, assume ‖v‖ = 1.

! Each instance xi is assigned a point on the line x̂i = b + αiv.
! We want to choose b, v, and the αi to minimize the total reconstruction

error over all data points, measured using Euclidean distance:

R =
m∑

i=1

‖xi − x̂i‖2

=
m∑

i=1

‖xi − (b + αiv)‖2



A constrained optimization problem!
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min
∑m

i=1 ‖xi − (b + αiv)‖2

w.r.t. b,v, αi, i = 1, . . .m
s.t. ‖v‖2 = 1

We write down the Lagrangian:

L(b,v, λ, α1, . . . αm) =
m∑

i=1

‖xi − (b + αiv)‖2 + λ(‖v‖2 − 1)

=
m∑

i=1

‖xi‖2 + m‖b‖2 + ‖v‖2
m∑

i=1

α2
i

− 2bT
m∑

i=1

xi − 2vT
m∑

i=1

αixi + 2bTv
m∑

i=1

αi

− λ‖v‖2 + λ



Solving the optimization problem
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! The most straightforward approach would be to write the KKT conditions
and solve the resulting equations

! Unfortunately, we get equations which have multiple variables in them,
and the resulting system is not linear (you can check this)

! Instead, we will fix v.
! For a given v, finding the best b and αi is now an unconstrained

optimization problem:

minR = min
m∑

i=1

‖xi − (b + αiv)‖2



Solving the optimization problem (II)
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! We write the gradient of R wrt to αi and set it to 0:

∂R

∂αi
= 2‖v‖2αi − 2vTxi + 2bTv = 0 ⇒ αi = vT (xi − b)

where we take into account that ‖v‖2 = 1.
! We write the gradient of R wrt b and set it to 0:

∇bR = 2mb− 2
m∑

i=1

xi + 2

(
m∑

i=1

αi

)
v = 0 (1)

! From above:

m∑

i=1

αi =
m∑

i=1

vT (xi − b) = vT

(
m∑

i=1

xi − mb

)
(2)



Solving the optimization problem (III)
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! By plugging (2) into (1) we get:

vT

 
mX

i=1

xi − mb

!
v =

 
mX

i=1

xi − mb

!

! This is satisfied when:
mX

i=1

xi − mb = 0 ⇒ b =
1
m

mX

i=1

xi

! This means that the line goes through the mean of the data
! By substituting αi, we get:

x̂i = b + (vT (xi − b))v

! This means that instances are projected orthogonally on the line to get
the associated point.



Example data
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Example with v ∝ (1, 0.3)
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Example with v ∝ (1,−0.3)
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Finding the direction of the line
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! Recall the formulation:

min
∑m

i=1 ‖xi − (b + αiv)‖2

w.r.t. b,v, αi, i = 1, . . .m
s.t. ‖v‖2 = 1

! Substituting αi = vT (xi − b) = (xi − b)Tv into our optimization
problem we obtain a new optimization problem:

minv
∑m

i=1 ‖xi − b − (vT (xi − b))v‖2

s.t. ‖v‖2 = 1

! Expanding the norm squared, we can simplify further . . .



Finding the direction of the line
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! Optimization problem re-written:
maxv

∑m
i=1 vT (xi − b)(xi − b)Tv

s.t. ‖v‖2 = 1

! The Lagrangian is:

L(v, λ)=
m∑

i=1

vT (xi − b)(xi − b)Tv + λ − λ‖v‖2

! Let S =
∑m

i=1(xi − b)(xi − b)T be an n-by-n matrix, which we will call
the scatter matrix

! The solution to the problem, obtained by setting ∇vL = 0, is: Sv = λv.



Optimal choice of v
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! Recall: an eigenvector u of a matrix A satisfies Au = λu, where λ ∈ %
is the eigenvalue.

! Fact: the scatter matrix, S, has n non-negative eigenvalues (except in
certain degenerate cases) and n orthogonal eigenvectors.

! The equation obtained for v tells us that it should be an eigenvector of S.

! The v that maximizes vT Sv is the eigenvector of S with the largest
eigenvalue



What is the scatter matrix?

COMP 652 - Lecture 15 44 / 55

! S is an n × n matrix with

S(k, l) =
m∑

i=1

(xi(k) − b(k))(xi(l) − b(l))

! Hence, S(k, l) is proportional to the estimated covariance between the
kth and lth dimension in the data.



Example with optimal line: b = (0.54, 0.52), v ∝ (1, 0.45)
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Remarks
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! The line b + αv is the first principal component.
! The variance of the data along the line b + αv is as large as along any

other line.
! b, v, and the αi can be computed easily in polynomial time.



Reduction to d dimensions
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! More generally, we can create a d-dimensional representation of our data
by projecting the instances onto a hyperplane b + α1v1 + . . . + αdvd.

! If we assume the vj are of unit length and orthogonal, then the optimal
choices are:

– b is the mean of the data (as before)
– The vj are orthogonal eigenvectors of S corresponding to its d largest

eigenvalues.
– Each instance is projected orthogonally on the hyperplane.



Remarks
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! b, the eigenvalues, the vj , and the projections of the instances can all be
computed in polynomial time.

! The magnitude of the jth-largest eigenvalue, λj , tells you how much
variability in the data is captured by the jth principal component

! So you have feedback on how to choose d!
! When the eigenvalues are sorted in decreasing order, the proportion of the

variance captured by the first d components is:

λ1 + . . . + λd

λ1 + . . . + λd + λd+1 + . . . + λn

! So if a “big” drop occurs in the eigenvalues at some point, that suggests
a good dimension cutoff



Example: λ1 = 0.0938, λ2 = 0.0007
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Example: λ1 = 0.1260, λ2 = 0.0054
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Example: λ1 = 0.0884, λ2 = 0.0725
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Example: λ1 = 0.0881, λ2 = 0.0769
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Remarks
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! Outliers have a big effect on the covariance matrix, so they can affect the
eignevectors quite a bit

! A simple examination of the pairwise distances between instances can help
discard points that are very far away (for the purpose of PCA)

! If the variances in the original dimensions vary considerably, they can
“muddle” the true correlations. There are two solutions:

– work with the correlation of the original data, instead of covariance
matrix

– normalize the input dimensions individually before PCA



Remarks (II)
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! In certain cases, the eigenvectors are meaningful; e.g. in vision, they can
be displayed as images (“eigenfaces”)



Uses of PCA
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! Pre-processing for a supervised learning algorithm, e.g. for image data,
robotic sensor data

! Used with great success in image and speech processing
! Visualization
! Exploratory data analysis
! Removing the linear component of a signal (before fancier non-linear

models are applied)


