
COMP 652 - Lecture 13 1 / 34

COMP 652: Machine Learning

Lecture 13

Today

COMP 652 - Lecture 13 2 / 34

! Nonseparable data
! Feature expansions and the kernel trick

Recall one version of the linear SVM problem

COMP 652 - Lecture 13 3 / 34

! Recall, we formulated the quadratic program (QP) for finding the
maximum-margin perceptron (a.k.a. linear SVM) as:

min ‖w‖2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

! The margin is 2M where M = 1/‖w‖.

! The constraints, yi(w · xi + w0) ≥ 1, ensure that each example is on the
right side of the decision boundary at distance at least M .

! What if the data is not linearly separable?

Non-linearly separable data

COMP 652 - Lecture 13 4 / 34

! For example, consider this data set:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

! If we try to use the previous formulation of the problem, the optimization
package will tell us something like “no feasible solution”. That is, the
constraint cannot all be satisfied.

Recall one version of the linear SVM problem

COMP 652 - Lecture 13 5 / 34

! Recall, we formulated the quadratic program (QP) for finding the
maximum-margin perceptron (a.k.a. linear SVM) as:

min ‖w‖2

w.r.t. w, w0

s.t. yi(w · xi + w0) ≥ 1

! The margin is 2M where M = 1/‖w‖.

! The constraints, yi(w · xi + w0) ≥ 1, ensure that each example is on the
right side of the decision boundary at distance at least M .

! What if the data is not linearly separable?

– Relax the constraints somehow
– Try a different feature space, in which the data may be separable.

(Maybe better for generalization too.)

Relaxing the constraints

COMP 652 - Lecture 13 6 / 34

! Given w, w0, an example (xi, yi) as at least distance M = 1/‖w‖ on the
right side of the margin if:

yi(w · xi + w0) ≥ 1

! If we can’t achieve that, suppose we require:

yi(w · xi + w0) ≥ 1 − ζi

where ζi ≥ 0.

! How can we interpret ζi?

– If ζi = 0, then the original distance constraint is satisfied.
– If ζi ∈ (0, 1), then the point is on the correct side of the decision

boundary, but not as far as it should be.
– If ζi = 1, then the point is on the decision boundary.
– If ζi > 1 then the point is on the wrong side of the decision boundary.

Reformulating the problem

COMP 652 - Lecture 13 7 / 34

! Such constraints can always be satisfied – but we must penalize the ζi in
order to encourage satisfaction of the original constraints.

! This suggests the optimization problem:

min ‖w‖2 + C
∑

i ζi

w.r.t. w, w0, ζi

s.t. yi(w · xi + w0) ≥ (1 − ζi)
ζi ≥ 0

where C > 0 is a user-chosen cost associated with constraint violation.

! Intuitively, this formulation tries to maximize the margin without violating
the constraints too much.

! This formulation can also be solved by quadratic programming.

Solution

COMP 652 - Lecture 13 8 / 34

! As in the separable case, the solution for w is of the form

w =
m∑

i=1

αiyixi

where the αi are non-negative weighting factors. Thus,

hw,w0(x) = sgn

(
m∑

i=1

αiyixi · x + w0

)

! αi is positive if and only if xi lies on the edge of the margin or on the
wrong side of the margin. That is, if yi(w · xi + w0) ≤ 1.

! Such an xi is a support vector .

Example

COMP 652 - Lecture 13 9 / 34

Feature expansions and nonlinear decision boundaries

COMP 652 - Lecture 13 10 / 34

! Linear SVMs always produce a decision boundary that is a hyperplane.
For some data this is not appropriate.

! One way of getting a nonlinear decision boundary in the input space is to
find a linear decision boundary in an expanded space.
(As we’ve seen, e.g., for polynomial regression.)

! Thus, xi is replaced by φ(xi), where φ is called a “feature mapping”

! What’s the big deal?

Feature-expanded optimization problem

COMP 652 - Lecture 13 11 / 34

Replacing xi with φ(xi), the optimization problem to find w and w0 becomes:

min ‖w‖2 + C
∑

i ζi

w.r.t. w, w0, ζi

s.t. yi(w · φ(xi) + w0) ≥ (1 − ζi)
ζi ≥ 0

or in dual form:

max
∑m

i=1 αi − 1
2

∑m
i,j=1 yiyjαiαjφ(xi) · φ(xj)

w.r.t. αi

s.t. 0 ≤ αi ≤ C∑m
i=1 αiyi = 0

Feature-expanded solution

COMP 652 - Lecture 13 12 / 34

! The optimal weights, in the expanded feature space, are
w =

∑m
i=1 αiyiφ(xi).

! Classification is by the rule:

hw,w0(x) = sgn

(
m∑

i=1

αiyiφ(xi) · φ(x) + w0

)

⇒ Observation: to solve the fitting problem in dual form and to make a
classification prediction, we only ever need to computed dot-products of
feature-expanded vectors.

Kernel functions

COMP 652 - Lecture 13 13 / 34

! Whenever a learning algorithm (such as SVMs) can be written in terms of
dot-products, it can be generalized to kernels.

! A kernel is any function K : 'n ×'n)→ ' which corresponds to a dot
product for some feature mapping φ. That is, K(x1,x2) = φ(x1) · φ(x2)
for some φ.

! Conversely, by choosing feature mapping φ, we are implicitly choosing a
Kernel function

! Recalling that φ(x1) · φ(x2) = cos A‖x1‖‖x2‖ where A is the angle
between the vectors, a Kernel function can be thought of as a notion of
similarity.

⇒ We can substitute other notions of similarity (as long as they are Kernel
functions)

Example: Quadratic kernel

COMP 652 - Lecture 13 14 / 34

! Let K(x, z) = (x · z)2.
! Is this a Kernel? Yes:

K(x, z) =

nX

i=1

xizi

!
nX

j=1

xjzj

!
=

X

i,j∈{1...n}

xizixjzj =
X

i,j∈{1...n}

(xixj) (zizj)

! Hence, it is a kernel, with feature mapping:

φ(x) = 〈x2
1, x1x2, . . . , x1xn, x2x1, x2

2, . . . , x2
n〉

! The feature vector includes all squares of elements and all cross terms.
! Note some redundancy among the features – that’s OK.
! Fitting the SVM puts a weight on each of these features.

Polynomial kernels

COMP 652 - Lecture 13 15 / 34

! More generally, K(x, z) = (x · z)d is a Kernel, for any positive integer d.

K(x, z) =

(
n∑

i=1

xizi

)d

! If we expanded the sum above in the obvious way, we get nd terms.
! Thus, this K is a kernel with a length nd feature expansion.
! Terms are monomials (products of xi) with total power equal to d.
! E.g., if n = 2 and d = 3, the (most direct) feature mapping is

φ(x) = 〈x3
1, x

2
1x2, x

2
1x2, x1x

2
2, x

2
1x2, x1x

2
2, x1x

2
2, x

3
2〉

A “curse of dimensionality”

COMP 652 - Lecture 13 16 / 34

! Suppose we want to use a polynomial Kernel
K(x, z) = (x · z)d = φ(x) · φ(z) to fit an SVM.

! If we try to solve the SVM in primal form, we have to work with some
very big feature vectors:

min ‖w‖2 + C
∑

i ζi

w.r.t. w, w0, ζi

s.t. yi(w · φ(xi) + w0) ≥ (1 − ζi)
ζi ≥ 0

! Even making a prediction is computationally intensive:

hw,w0(x) = sgn(w · φ(x) + w0)

The “kernel trick”

COMP 652 - Lecture 13 17 / 34

! If we work with the dual, we don’t actually have to ever compute the
feature mapping φ. We just have to compute the similarity K.

! That is, we can solve the dual for the αi:

max
∑m

i=1 αi − 1
2

∑m
i,j=1 yiyjαiαjK(xi,xj)

w.r.t. αi

s.t. 0 ≤ αi ≤ C∑m
i=1 αiyi = 0

! Keeping in mind that the optimal weights are of the form
w =

∑m
i=1 αiyiφ(xi), we can make predictions as:

hw,w0(x) = sgn

((
m∑

i=1

αiyiφ(xi)

)
· φ(x) + w0

)

= sgn

(
m∑

i=1

αiyiK(xi,x) + w0

)

! Often, K(·, ·) can be evaluated in O(n) time—a big savings!

Some other (fairly generic) Kernel functions

COMP 652 - Lecture 13 18 / 34

! K(x, z) = (1 + x · z)d – feature expansion has all monomial terms of ≤ d
total power.

! Radial basis/Gaussian K(x, z) = exp(−‖x − z‖2/s) – has
infinite-dimensional feature expansion!

! Sigmoidal K(x, z) = tanh(c1x · z + c2)

Example: Gaussian kernel

COMP 652 - Lecture 13 19 / 34

Application: Text classification

COMP 652 - Lecture 13 20 / 34

(Joachims, 1998)

! Evaluated several methods, including SVMs, on a suite of text
classification problems

! Words were stemmed (e.g. learn, learning, learned → learn)

! Nondiscriminative stopwords and words occurring < 3 times ignored

! Of remaining words, considered a binary presence-absence feature

! 1000 features with greatest information gain retained, others discarded

! Each feature scaled by “inverse document frequency”:

log
docs

docs with word i

Results

COMP 652 - Lecture 13 21 / 34

Kernels for everyone!

COMP 652 - Lecture 13 22 / 34

A lot of SVM research has to do with defining new kernels functions, suitable
to particular tasks / kinds of input objects, plus proving that they are indeed
kernels.

! Information diffusion kernels (Lafferty and Lebanon, 2002)
! Diffusion kernels on graphs (Kondor and Jebara 2003)
! String kernels for text classification (Lodhi et al, 2002)
! String kernels for protein classification (e.g., Leslie et al, 2002)
! ... and others!

String kernels

COMP 652 - Lecture 13 23 / 34

! Very important for DNA matching, text classification, ...
! Example: in DNA matching, we use a sliding window of length k over the

two strings that we want to compare
! The window is of a given size, and inside we can do various things:

– Count exact matches
– Weigh mismatches based on how bad they are
– Count certain markers, e.g. AGT

! The kernel is the sum of these similarities over the two sequences
! How do we prove this is a kernel?

Establishing “kernelhood”

COMP 652 - Lecture 13 24 / 34

! Suppose someone hands you a function K. How do you know that it is a
kernel?

! More precisely, given a function K : 'n ×'n → ', under what conditions
can K(x, z) be written as a dot product φ(x) · φ(z) for some feature
mapping φ?

Kernel matrix

COMP 652 - Lecture 13 25 / 34

! Suppose we have an arbitrary set of input vectors x1,x2, . . .xm

! The kernel matrix K corresponding to kernel function K is an m × m
matrix such that Kij = K(xi,xj) (notation is overloaded on purpose).

! What properties does the kernel matrix K have?
! Claims:

1. K is symmetric
2. K is positive semidefinite

! Note that these claims are consistent with the intuition that K is a
“similarity” measure (and will be true regardless of the data)

Proving the first claim

COMP 652 - Lecture 13 26 / 34

If K is a valid kernel, then the kernel matrix is symmetric

Kij = φ(xi) · φ(xj) = φ(xj) · φ(xi) = Kji

Proving the second claim

COMP 652 - Lecture 13 27 / 34

If K is a valid kernel, then the kernel matrix is positive semidefinite
Proof: Consider an arbitrary vector z

zT Kz =
X

i

X

j

ziKijzj =
X

i

X

j

zi (φ(xi) · φ(xj)) zj

=
X

i

X

j

zi

X

k

φk(xi)φk(xj)

!
zj

=
X

k

X

i

X

j

ziφk(xi)φk(xj)zj

=
X

k

X

i

ziφk(xi)

!2

≥ 0

Mercer’s theorem

COMP 652 - Lecture 13 28 / 34

! We have shown that if K is a kernel function, then for any data set, the
corresponding kernel matrix K defined such that Kij = K(xi,xj) is
symmetric and positive semidefinite

! Mercer’s theorem states that the reverse is also true!
Given a function K : 'n ×'n → ', K is a kernel if and only if, for any
data set, the corresponding kernel matrix is positive and semidefinite

! The reverse direction of the proof is much harder
! This result gives us a way to check is a given function is a kernel, by

checking these two properties of its kernel matrix.

Symptoms of overfitting in SVMs

COMP 652 - Lecture 13 29 / 34

! Low margin
! Large number of support vectors
! If you look at the kernel matrix (also called Gram matrix) it is almost

diagonal

– This means each point is only similar to itself
– So the kernel used is not really adequate (it does not generalize over

the data

Getting this to work in practice

COMP 652 - Lecture 13 30 / 34

! Choice of kernel
! Choice of regularization parameter
! These control the overfitting: always check the margin/number of support

vectors or do cross-validation

Interpretability

COMP 652 - Lecture 13 31 / 34

! More interpretable than neural nets if you look at the machine and the
misclassifications

! E.g. Ovarian cancer data (Haussler) - 31 tissue samples of 3 classes,
misclassified examples wronlgy labelled

! No biological plausibility

Complexity

COMP 652 - Lecture 13 32 / 34

! Quadratic programming is expensive in the number of training examples
! Platt’s algorithm is quite fast though
! Best packages can handle 10,000-20,000 instances, not more
! On the other hand, number of attributes can be very high (strength

compared to neural nets)
! Evaluating a SVM requires taking the dot product of an instance with the

support vectors, which is slow if there are a lot of support vectors.
! Dictionary methods attempt to select data points and/or support vectors

Applications of SVMs

COMP 652 - Lecture 13 33 / 34

! The biggest strength of SVMs is dealing with large numbers of features
(which relies on the kernel trick and the control of overfitting)

! Many successful applications in:

– Text classification (e.g. Joachims, 1998)
– Object detection (e.g. Osuna, Freund and Girosi, 1997)
– Object recognition (e.g. Pontil and Verri, 1998)
– Bioinformatics (e.g. lee et al, 2002)

! SVMs are considered by many the state-of-the art approach to
classification

! Experimentally, SVMs and neural nets are roughly tied based on evidence
to date, each has its own preferred applications

Summary of Perceptrons & Support vector machines

COMP 652 - Lecture 13 34 / 34

! A perceptron is basically just a linear decision boundary
! For linearly separable data, the gradient-like perceptron training rule can

find weights that separate the data
! A linear support vector machine maximizes the margin of the decision

boundary
! We can modify the SVM optimization to allow for misclassified examples
! We can define other notions of similarity — Kernels — the allow nonlinear

decision boundaries (in the original space)
! The kernel trick allows us to work efficiently with Kernels even if they

have large feature expansions — because we only ever need to compute
the Kernel, not the actual features

