COMP 652: Machine Learning

Lecture 13

COMP 652 - Lecture 13 1/ 34

Today

0 Nonseparable data
0 Feature expansions and the kernel trick

COMP 652 - Lecture 13 2/ 34

Recall one version of the linear SVM problem

O Recall, we formulated the quadratic program (QP) for finding the
maximum-margin perceptron (a.k.a. linear SVM) as:
min [|w||’
w.r.t. w,wq
S.1. yZ(W - Xi + w()) > 1

0 The margin is 2M where M = 1/||w]].

O The constraints, y;(w - x; + wg) > 1, ensure that each example is on the
right side of the decision boundary at distance at least M.

O What if the data is not linearly separable?

COMP 652 - Lecture 13 3/ 34

Non-linearly separable data

O For example, consider this data set:

0.9

o
o
0.8 .
07F ® ®
o o
0.6 o
o
0.5
o ©
0.4
o
0.3} ° ®
o® ® o
0.2
o
01
o
or |

O If we try to use the previous formulation of the problem, the optimization
package will tell us something like “no feasible solution”. That is, the
constraint cannot all be satisfied.

COMP 652 - Lecture 13 4 | 34

Recall one version of the linear SVM problem

O Recall, we formulated the quadratic program (QP) for finding the
maximum-margin perceptron (a.k.a. linear SVM) as:
min [|w||’
w.r.t. w,wq
S.1. yZ(W - Xi + w()) > 1

0 The margin is 2M where M = 1/||w]].

O The constraints, y;(w - x; + wg) > 1, ensure that each example is on the
right side of the decision boundary at distance at least M.

O What if the data is not linearly separable?

— Relax the constraints somehow
— Try a different feature space, in which the data may be separable.
(Maybe better for generalization too.)

COMP 652 - Lecture 13 5/ 34

Relaxing the constraints

O Given w,wq, an example (xj, ;) as at least distance M = 1/||w|| on the
right side of the margin if:

Y (W - X3 + wp) > 1

O If we can't achieve that, suppose we require:

yi (W - X; +wp) > 1 —

where ¢; > 0.

O How can we interpret (;?

If (; = 0, then the original distance constraint is satisfied.

If (; € (0,1), then the point is on the correct side of the decision
boundary, but not as far as it should be.

If (; = 1, then the point is on the decision boundary.

If (; > 1 then the point is on the wrong side of the decision boundary.

COMP 652 - Lecture 13 6/ 34

Reformulating the problem

O Such constraints can always be satisfied — but we must penalize the (; in
order to encourage satisfaction of the original constraints.

0 This suggests the optimization problem:
min [[w|*+C32,; G

w.r.t. W, Wy, C’L
s.t. yi(w-xi+wo) > (1 —¢)
¢G>0

where (' > 0 i1s a user-chosen cost associated with constraint violation.

O Intuitively, this formulation tries to maximize the margin without violating
the constraints too much.

O This formulation can also be solved by quadratic programming.

COMP 652 - Lecture 13 7/ 34

Solution

O As in the separable case, the solution for w is of the form

m
W = E QY Xi
i=1

where the «; are non-negative weighting factors. Thus,

m
P wo (x) = sgn Z QY Xj - X 4 W
i=1

O «y is positive if and only if x; lies on the edge of the margin or on the
wrong side of the margin. That is, if y;(w - x; + wg) < 1.
O Such an x; is a support vector.

COMP 652 - Lecture 13 8/ 34

Example

COMP 652 - Lecture 13

Feature expansions and nonlinear decision boundaries

O Linear SVMs always produce a decision boundary that is a hyperplane.
For some data this is not appropriate.

O One way of getting a nonlinear decision boundary in the input space is to
find a linear decision boundary in an expanded space.
(As we've seen, e.g., for polynomial regression.)

O Thus, xj is replaced by ¢(x;), where ¢ is called a “feature mapping”

O What's the big deal?

COMP 652 - Lecture 13 10 / 34

Feature-expanded optimization problem

Replacing x; with ¢(x;), the optimization problem to find w and wy becomes:

min |l + €5, ¢
w.r.t. w,wo,(;

s.t. yi(w-o(xq) +wo) > (1 —G)
G >0

or in dual form:

max Y o — 5 3 Yy d(xi) - o(x5)

w.r.t. o
st. 0< oy <(C
m
Zi:l o;y; = 0

COMP 652 - Lecture 13 11 / 34

Feature-expanded solution

O The optimal weights, in the expanded feature space, are

W = 221 ;Y d(Xi).

O Classification is by the rule:

how o (X) = sgn Z oy p(Xi) - P(x) + wo
i=1

= QObservation: to solve the fitting problem in dual form and to make a
classification prediction, we only ever need to computed dot-products of
feature-expanded vectors.

COMP 652 - Lecture 13 12 / 34

Kernel functions

0 Whenever a learning algorithm (such as SVMs) can be written in terms of
dot-products, it can be generalized to kernels.

O A kernel is any function K : ®" x R" — R which corresponds to a dot
product for some feature mapping ¢. That is, K(x1,x2) = ¢(x1) - ¢(X2)
for some ¢.

O Conversely, by choosing feature mapping ¢, we are implicitly choosing a
Kernel function

0 Recalling that ¢(x1) - ¢(x2) = cos A||x1||||x2|| where A is the angle
between the vectors, a Kernel function can be thought of as a notion of
similarity.

= We can substitute other notions of similarity (as long as they are Kernel
functions)

COMP 652 - Lecture 13 13 / 34

Example: Quadratic kernel

Let K(x,2) = (x -2)*.
Is this a Kernel? Yes:

K(X, Z) = (Z xzzz> (Z $j2j> = Z LiRiXjrj = Z (xzxj) (zzzj)

i,j€{1...n} i,5€{1...n}

L1 O

O Hence, it is a kernel, with feature mapping:

2 2 2
d(x) = (x], 12, ..., T1Tp, TAT1, T, ..., X))
0 The feature vector includes all squares of elements and all cross terms.
O Note some redundancy among the features — that's OK.
O Fitting the SVM puts a weight on each of these features.

COMP 652 - Lecture 13 14 / 34

Polynomial kernels

0 More generally, K(x,z) = (x-z)?% is a Kernel, for any positive integer d.

d

K(x,z) = i X;Zi
1=1

If we expanded the sum above in the obvious way, we get n® terms.
Thus, this K is a kernel with a length n¢ feature expansion.

Terms are monomials (products of x;) with total power equal to d.
E.g.,if n =2 and d = 3, the (most direct) feature mapping is

O O O

9 9
d(x) = <:1::f,:U%a:g,:1:%:1:2,xlx%,x%xg,:clxz,xlxz,:1:3}

COMP 652 - Lecture 13 15 / 34

A “curse of dimensionality”

O Suppose we want to use a polynomial Kernel
K(x,z) = (x-2)% = ¢(x) - ¢(2z) to fit an SVM.

O If we try to solve the SVM in primal form, we have to work with some
very big feature vectors:

min ||w]||* + CY.. G
w.r.t. w,wp,(

s.t. yi(w-o(xi) +wo) > (1 —¢)
¢G>0

[0 Even making a prediction is computationally intensive:

R o (X) = sgn(w - ¢(x) + wp)

COMP 652 - Lecture 13 16 / 34

The “kernel trick”

O If we work with the dual, we don't actually have to ever compute the
feature mapping ¢. We just have to compute the similarity K.
O That is, we can solve the dual for the «;:

max » ., 0y — % 22321 yiyjouog K (Xq, ;)

w.r.t. o
st. 0< o < C
™m
Z¢:1 o;y; = 0

O Keeping in mind that the optimal weights are of the form
w = > " a;y;$(Xi), we can make predictions as:

hwauwo(X) = sgn <<Z @iyi¢(xi)> - P(x) + wo)
= sgn (Z a;y; K (x4, X) + w())

O Often, K(-,-) can be evaluated in O(n) time—a big savings!

COMP 652 - Lecture 13 17 / 34

Some other (fairly generic) Kernel functions

0 K(x,z) = (1+x-2)% - feature expansion has all monomial terms of < d
total power.

0 Radial basis/Gaussian K (x,z) = exp(—||x — z|*/s) — has
infinite-dimensional feature expansion!

O Sigmoidal K(x,z) = tanh(c1x -z + ¢2)

COMP 652 - Lecture 13 18 / 34

Example: Gaussian kernel

COMP 652 - Lecture 13 19 / 34

Application: Text classification

(Joachims, 1998)

[

Evaluated several methods, including SVMs, on a suite of text
classification problems

Words were stemmed (e.g. learn, learning, learned — learn)
Nondiscriminative stopwords and words occurring < 3 times ignored
Of remaining words, considered a binary presence-absence feature

1000 features with greatest information gain retained, others discarded

O O o 0o O

Each feature scaled by “inverse document frequency”:

docs
docs with word 1

log

COMP 652 - Lecture 13 20 / 34

Results

SVM (poly) SVM (rbf)
d = =

Bayes | Rocchio | C4.5 | k-NN 1 | 2 | 3 | 4 | 5 06 | 08 | 1.0 | 1.2
earn 95.9 96.1 96.1 | 97.3 98.2 [984 | 98.5 [984 | 983 [[98.5 | 985 [98.4 [98.3
acq 91.5 92.1 85.3 | 92.0 92.6 | 946 | 95.2 | 95.2 | 95.3 95.0 | 95.3 | 95.3 | 95.4
money-fx 62.9 67.6 69.4 | 78.2 669 | 725 | 754 | 749 | 76.2 740 | 75.4 | 76.3 | 75.9
grain 72.5 79.5 89.1 | 82.2 91.3 [93.1 | 92.4 | 91.3 | 89.9 [[93.1 [919 | 919 | 90.6
crude 81.0 81.5 75.5 | 85.7 || 86.0 | 87.3 | 886 | 88.9 | 87.8 || 88.9 | 89.0 | 83.9 | 88.2
trade 50.0 77.4 59.2 | 77.4 69.2 | 755 | 766 | 773 | 77.1 76.9 | 780 | 77.8 | 76.8
interest 58.0 72.5 49.1 74.0 69.8 | 63.3 | 67.9 | 73.1 | 76.2 744 | 75.0 | 76.2 | 76.1
ship 78.7 83.1 80.9 | 79.2 82.0 | 85.4 | 86.0 | 86.5 | 86.0 || 85.4 | 86.5 | 87.6 | 87.1
wheat 60.6 79.4 85.5 | 76.6 83.1 | 845 | 85.2 | 85.9 | 838 || 85.2 | 85.9 | 85.9 | 85.9
corn 47.3 62.2 87.7 | 77.9 86.0 | 86.5 | 85.3 | 85.7 | 83.9 || 85.1 | 85.7 | 85.7 | 84.5
microave. || 72.0 79.9 70.4 | g2.3 || 842 [85.1] 8.9 [862 [85.9 || 86.4 | 86.5 | 86.3 | 86.2

combined: 86.0 combined: 86.4

Figure 4: Precision /recall-breakeven point on the ten most frequent Reuters categories and
microaveraged performance over all Reuters categories. k-NN, Rocchio, and C4.5 achieve

highest performance at 1000 features (with £ = 30 for k-NN and 3 = 1.0 for Rocchio).

Naive Bayes performs best using all features.

COMP 652 - Lecture 13 21 / 34

Kernels for everyone!

A lot of SVM research has to do with defining new kernels functions, suitable
to particular tasks / kinds of input objects, plus proving that they are indeed
kernels.

0 Information diffusion kernels (Lafferty and Lebanon, 2002)

0 Diffusion kernels on graphs (Kondor and Jebara 2003)

0 String kernels for text classification (Lodhi et al, 2002)

00 String kernels for protein classification (e.g., Leslie et al, 2002)
O ... and others!

COMP 652 - Lecture 13 22 / 34

String kernels

[

Very important for DNA matching, text classification, ...

Example: in DNA matching, we use a sliding window of length k£ over the
two strings that we want to compare

0 The window is of a given size, and inside we can do various things:

[

— Count exact matches
— Weigh mismatches based on how bad they are
— Count certain markers, e.g. AGT

[

The kernel is the sum of these similarities over the two sequences
How do we prove this is a kernel?

[

COMP 652 - Lecture 13 23 / 34

Establishing “kernelhood”

O Suppose someone hands you a function K. How do you know that it is a
kernel?

O More precisely, given a function K : R" x " — R, under what conditions
can K (x,z) be written as a dot product ¢(x) - ¢(z) for some feature

mapping ¢?

COMP 652 - Lecture 13 24 / 34

Kernel matrix

O Suppose we have an arbitrary set of input vectors x1,X2,...Xm

O The kernel matrix K corresponding to kernel function K is an m X m
matrix such that K;; = K(x;,x;) (notation is overloaded on purpose).

O What properties does the kernel matrix K have?

O Claims:

1. K Is symmetric
2. K is positive semidefinite

[0 Note that these claims are consistent with the intuition that K is a
“similarity” measure (and will be true regardless of the data)

COMP 652 - Lecture 13 25 / 34

Proving the first claim

If K is a valid kernel, then the kernel matrix is symmetric

Kij = ¢(xi) - 9(x5) = o(x5) - o(x1) = Kj;

COMP 652 - Lecture 13 26 / 34

Proving the second claim

If K is a valid kernel, then the kernel matrix is positive semidefinite
Proof: Consider an arbitrary vector z

7z ' Kz = ZZZiKiij = Zzzz (d(x1) - D(x5)) z;

— ZZzz (Z ¢k(xi)¢k(xj)> Z;
_ S:S:S:Zi¢k(xi)¢k(xj)zj

=y (Z zigbk(xi))Q >0

k 7

COMP 652 - Lecture 13 27 / 34

Mercer’s theorem

O We have shown that if K is a kernel function, then for any data set, the
corresponding kernel matrix K defined such that K;; = K(xj,x;) is
symmetric and positive semidefinite

[0 Mercer's theorem states that the reverse is also true!

Given a function K : R" x R — R, K is a kernel if and only if, for any

data set, the corresponding kernel matrix is positive and semidefinite

The reverse direction of the proof is much harder

This result gives us a way to check is a given function is a kernel, by

checking these two properties of its kernel matrix.

L1 O

COMP 652 - Lecture 13 28 / 34

Symptoms of overfitting in SVMs

0 Low margin
O Large number of support vectors
O If you look at the kernel matrix (also called Gram matrix) it is almost

diagonal

— This means each point is only similar to itself
— So the kernel used is not really adequate (it does not generalize over

the data

COMP 652 - Lecture 13 29 / 34

Getting this to work in practice

O Choice of kernel
O Choice of regularization parameter
O These control the overfitting: always check the margin/number of support

vectors or do cross-validation

COMP 652 - Lecture 13 30 / 34

Interpretability

O More interpretable than neural nets if you look at the machine and the
misclassifications

O E.g. Ovarian cancer data (Haussler) - 31 tissue samples of 3 classes,
misclassified examples wronlgy labelled

0 No biological plausibility

COMP 652 - Lecture 13 31/ 34

Complexity

Quadratic programming is expensive in the number of training examples
Platt’s algorithm is quite fast though

Best packages can handle 10,000-20,000 instances, not more

On the other hand, number of attributes can be very high (strength
compared to neural nets)

Evaluating a SVM requires taking the dot product of an instance with the
support vectors, which is slow if there are a lot of support vectors.

O Dictionary methods attempt to select data points and/or support vectors

O O O

[

COMP 652 - Lecture 13 32 / 34

Applications of SVMs

O The biggest strength of SVMs is dealing with large numbers of features
(which relies on the kernel trick and the control of overfitting)
O Many successful applications in:

Text classification (e.g. Joachims, 1998)

Object detection (e.g. Osuna, Freund and Girosi, 1997)
Object recognition (e.g. Pontil and Verri, 1998)
Bioinformatics (e.g. lee et al, 2002)

O SVMs are considered by many the state-of-the art approach to
classification

O Experimentally, SVMs and neural nets are roughly tied based on evidence
to date, each has its own preferred applications

COMP 652 - Lecture 13 33/ 34

Summary of Perceptrons & Support vector machines

[

A perceptron is basically just a linear decision boundary

For linearly separable data, the gradient-like perceptron training rule can
find weights that separate the data

O A linear support vector machine maximizes the margin of the decision
boundary

We can modify the SVM optimization to allow for misclassified examples
We can define other notions of similarity — Kernels — the allow nonlinear
decision boundaries (in the original space)

O The kernel trick allows us to work efficiently with Kernels even if they
have large feature expansions — because we only ever need to compute
the Kernel, not the actual features

[

L1 O

COMP 652 - Lecture 13 34 / 34

