
COMP 652 - Lecture 11 1 / 45

COMP 652: Machine Learning

Lecture 11

Today

COMP 652 - Lecture 11 2 / 45

! Decision trees - what are they?
! Decision tree construction
! Brief interlude on information theory
! Overfitting avoidance
! Variations on the standard algorithm
! Regression trees

Parametric, nonparametric, and non-metric learning

COMP 652 - Lecture 11 3 / 45

! Parametric methods summarize the existing data set into a set of
parameters

! Nonparametric methods “memorize” the data, then use a distance metric
to measure the similarity of new query points to existing examples

! Today: non-metric methods
We do not get a set of parameters, but at the same time there is no
distance metric to assess similarity of different instances

! Typical examples:

– Decision trees
– Rule-based systems

! (We’ll return to non-parametric, but metric, supervised learning next
week, with support vector machines.)

Example: decision tree for predicting cancer recurrence

COMP 652 - Lecture 11 4 / 45

radius > 17.5

texture > 21.5

t f

t f

33R 5N 12R 31N

25R 64N

! Internal nodes are tests on the values of different attributes
(Need not be binary tests.)

! Each training example (xi, yi) falls in precisely one leaf.

Using decision trees for classification

COMP 652 - Lecture 11 5 / 45

Suppose we get a new instance: radius=18, texture=12, . . .
How do we classify it?

radius > 17.5

texture > 21.5

t f

t f

33R 5N 12R 31N

25R 64N

! At every node, test the corresponding attribute
! Follow the appropriate branch of the tree
! At a leaf, one can predict the class of the majority of the examples for the

corresponding leaf, or the probabilities of the two classes.

Decision trees as logical representations

COMP 652 - Lecture 11 6 / 45

We can convert a decision tree into an equivalent set of if-then rules.

radius > 17.5

texture > 21.5

t f

t f

33R 5N 12R 31N

25R 64N

IF THEN most likely class is
radius>17.5 AND texture>21.5 R
radius>17.5 AND texture≤21.5 N
radius≤17.5 N

Decision trees as logical representations

COMP 652 - Lecture 11 7 / 45

We can convert a decision tree into an equivalent set of if-then rules.

radius > 17.5

texture > 21.5

t f

t f

33R 5N 12R 31N

25R 64N

IF THEN P(R) is
radius>17.5 AND texture>21.5 33

33+5
radius>17.5 AND texture≤21.5 12

12+31
radius≤17.5 25

25+64

Decision trees, more formally: tests

COMP 652 - Lecture 11 8 / 45

! Each internal node contains a test
! Depends on the value of one (typically) or more feature values
! Test produces discrete outcome. E.g.,

– radius > 17.5
– radius ∈ [12, 18]
– grade is {A, B, C, D, F}
– grade is ≥ B
– color is RED
– 2∗radius−3∗texture > 16

! For discrete features, we typically branch on all possibilities
! For real features, we typically branch on a threshold value
⇒ A finite set of possible tests is usually decided before learning the tree;

learning thus comprises choosing the shape of the tree and the tests at
every node.

More on tests for real-valued features

COMP 652 - Lecture 11 9 / 45

! Suppose feature j is real-valued
! How do we choose a finite set of possible thresholds, for tests of the form

xj > τ?

More on tests for real-valued features

COMP 652 - Lecture 11 10 / 45

! Suppose feature j is real-valued,
! How do we choose a finite set of possible thresholds, for tests of the form

xj > τ?

! Choose some discrete (e.g., evenly space thresholds) to cover the range of
the variable

! Choose midpoints of the observed data values, x1,j , x2,j , . . . , xm,j

! Choose midpoints of data values with different y values

N RR RN N

Representational power and efficiency of decision trees

COMP 652 - Lecture 11 11 / 45

! Suppose x comprises N binary features
! Can / how can a decision tree represent:

– y = x1 AND x2 AND . . . AND xN

– y = x1 OR x2 OR . . . OR xN

– y = x1 XOR x2 XOR . . . XOR xN

Representational power and efficiency of decision trees

COMP 652 - Lecture 11 12 / 45

! Suppose x comprises N binary features
! Can / how can a decision tree represent:

– y = x1 AND x2 AND . . . AND xN

– y = x1 OR x2 OR . . . OR xN

– y = x1 XOR x2 XOR . . . XOR xN

⇒ With typical univariate tests, AND and OR are easy, taking O(M) tests,
whereas XOR takes O(2M) tests

Representational power and efficiency of decision trees (II)

COMP 652 - Lecture 11 13 / 45

! Suppose x comprises 2 real-valued features
! Can / how can a decision tree represent:

– y = (x1 > 10 OR x2 < 3)
– y = (x1 + x2 > 1)

Representational power and efficiency of decision trees (II)

COMP 652 - Lecture 11 14 / 45

! Suppose x comprises 2 real-valued features
! Can / how can a decision tree represent:

– y = (x1 > 10 OR x2 < 3)
– y = (x1 + x2 > 1)

⇒ Again, with typical tests, decision trees are good a classifications
comprising large, connected, axis-orthogonal regions of inputs space.

How do we learn decision trees?

COMP 652 - Lecture 11 15 / 45

! We could enumerate all possible trees (assuming number of possible tests
is finite),

– Each tree could be evaluated using the training set or, better yet, a
validation set

– But there are many possible trees!
– We’d probably overfit the data anyway

! Usually, decision trees are constructed in two phases:

1. An recursive, top-down procedure “grows” a tree
(possibly until the training data is completely fit)

2. The tree is “pruned” back to avoid overfitting

Top-down (recursive) induction of decision trees

COMP 652 - Lecture 11 16 / 45

Given a set of labeled training instances:

1. If all the training instances have the same class, create a leaf with that
class label and exit.

2. Pick the best test to split the data on
3. Split the training set according to the value of the outcome of the test
4. Recurse on each subset of the training data

Which test is best?

COMP 652 - Lecture 11 17 / 45

The test should provide information about the class label.
Suppose we have 30 positive examples, 10 negative ones, and we are
considering two tests that would give the following splits of instances:

t f

[20+,10-] [10+,0-]

t f

[15+,7-] [15+,3-]

Intuitively, we would like an attribute that separates the training instances as
well as possible
We need a mathematical measure for the purity of a set of instances

Which test is best?

COMP 652 - Lecture 11 18 / 45

The test should provide information about the class label.
Suppose we have 30 positive examples, 10 negative ones, and we are
considering two tests that would give the following splits of instances:

t f

[20+,10-] [10+,0-]

t f

[15+,7-] [15+,3-]

Intuitively, we would like an attribute that separates the training instances as
well as possible
We need a mathematical measure for the purity of a set of instances

What is information?

COMP 652 - Lecture 11 19 / 45

Imagine:

1. You are about to observe the outcome of a dice roll
2. You are about to observe the outcome of a coin flip
3. You are bout to observe the outcome of a biased coin flip
4. Someone is about to tell you your own name

Intuitively, in each situation you have a different amount of uncertainty as to
what outcome / message you will observe.

Information=Reduction in uncertainty

COMP 652 - Lecture 11 20 / 45

Let E be an event that occurs with probability P (E). If we are
told that E has occurred with certainty, then we received

I(E) = log2
1

P (E)

bits of information.

! You can also think of information as the amount of “surprise” in the
outcome (e.g., consider P (E) = 1, P (E) ≈ 0)

! Example: result of a fair coin flip provides log2 2 = 1 bit of information
! Example: result of a fair dice roll provides log2 6 ≈ 2.58 bits of

information.

Information is additive

COMP 652 - Lecture 11 21 / 45

Suppose you have k independent fair coin tosses. How much information do
they give?

I(k fair coin tosses) = log2
1

1/2k
= k bits

A cute example:

! Consider a random word drawn from a vocabulary of 100,000 words:
I(word) = log2 100, 000 ≈ 16.61 bits

! Now consider a 1000 word document drawn from the same source:
I(document) ≈ 16610 bits

! Now consider a 480 × 640 gray-scale image with 16 grey levels:
I(picture) = 307, 200 · log2 16 = 1, 228, 800 bits!

=⇒ A picture is worth (more than) a thousand words!

Average information

COMP 652 - Lecture 11 22 / 45

Suppose we have an information source S which emits symbols from an
alphabet {s1, . . . sk} with probabilities {p1, . . . pk}. Each emission is
independent of the others.
What is the average amount of information when observing the output of
S?

H(S) =
∑

i

piI(si) =
∑

i

pi log
1
pi

= −
∑

i

pi log pi

Call this entropy of S.
Note that this depends only on the probability distribution and not on the
actual alphabet (so we can really write H(P)).

Entropy

COMP 652 - Lecture 11 23 / 45

Suppose we have an information source S which emits symbols from an
alphabet {s1, . . . sk} with probabilities {p1, . . . pk}. Each emission is
independent of the others.
What is the average amount of information when observing the output of
S?

H(S) =
∑

i

piI(si) =
∑

i

pi log
1
pi

= −
∑

i

pi log pi

Call this entropy of S.
Note that this depends only on the probability distribution and not on the
actual alphabet (so we can really write H(P)).

Interpretations of entropy

COMP 652 - Lecture 11 24 / 45

H(P) =
∑

i

pi log
1
pi

! Average amount of information per symbol
! Average amount of surprise when observing the symbol
! Uncertainty the observer has before seeing the symbol
! Average number of bits needed to communicate the symbol

Entropy and coding theory

COMP 652 - Lecture 11 25 / 45

! Suppose I will get data from a 4-value alphabet zj and I want to send it
over a channel. I know that the probability of item zj is pj .

! Suppose all values are equally likely. Then I can encode them in two bits
each, so on every transmission I need 2 bits

! Suppose now p0 = 0.5, p1 = 0.25, p2 = p3 = 0.125. What is the best
encoding?
z0 = 0, z1 = 10, z2 = 110, z3 = 111.

What is the expected length of the message over time?

Entropy and coding theory

COMP 652 - Lecture 11 26 / 45

! Suppose I will get data from a 4-value alphabet zj and I want to send it
over a channel. I know that the probability of item zj is pj .

! Suppose all values are equally likely. Then I can encode them in two bits
each, so on every transmission I need 2 bits

! Suppose now p0 = 0.5, p1 = 0.25, p2 = p3 = 0.125. What is the best
encoding?
z0 = 0, z1 = 10, z2 = 110, z3 = 111.

What is the expected length of the message over time?

Shannon: there are codes that will communicate the symbols with efficiency
arbitrarily close to H(P) bits/symbol. There are no codes that will do it with
efficiency greater than H(P) bits/symbol.

Properties of entropy

COMP 652 - Lecture 11 27 / 45

H(P) =
k∑

i=1

pi log
1
pi

! Non-negative: H(P) ≥ 0, with equality if and only if any pi = 1.
! H(P) ≤ log k with equality if and only if pi = 1

k , ∀i
! The further P is from uniform, the lower the entropy

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

p1

en
tro
py

0

0.5

1

0

0.5

1
0

0.5

1

1.5

p1
p2

en
tro
py

Entropy applied to binary classfication

COMP 652 - Lecture 11 28 / 45

Consider our data set D and let

! p⊕ is the proportion of positive examples in D
! p" is the proportion of negative examples in D

Entropy measures the impurity of D, based on empirical probabilities of the
two classes:

H(D) ≡ p⊕ log2
1
p⊕

+ p" log2
1
p"

So we can use it to measure purity!

Conditional entropy

COMP 652 - Lecture 11 29 / 45

Suppose I am trying to predict output y and I have input x, e.g.:

x =HasKids y =OwnsDumboVideo
Yes Yes
Yes Yes
Yes Yes
Yes Yes
No No
No No
Yes No
Yes No

! From the table, we can estimate P (y = Y ES) = 0.5 = P (y = NO).
! Thus, we estimate H(y) = 0.5 log 1

0.5 + 0.5 log 1
0.5 = 1.

! Specific conditional entropy is our uncertainty in y given a particular x
value. E.g.,

– P (y = Y ES|x = Y ES) = 2
3 , P (y = NO|x = Y ES) = 1

3
– H(y|x = Y ES) = 2

3 log 1
(2
3)

+ 1
3 log 1

(1
3)

≈ 0.9183.

Conditional entropy

COMP 652 - Lecture 11 30 / 45

! Conditional entropy , H(y|x), is the average conditional entropy of y
given specific values for x:

H(y|x) =
∑

v

P (x = v)H(y|x = v)

! E.g. (from previous slide),

– H(y|x = Y ES) = 2
3 log 1

(2
3)

+ 1
3 log 1

(1
3)

≈ 0.6365

– H(y|x = NO) = 0 log 1
0 + 1 log 1

1 = 0.
– H(y|x) = H(y|x = Y ES)P (x = Y ES) + H(y|x = NO)P (x =

NO) = 0.6365 ∗ 3
4 + 0 ∗ 1

4 ≈ 0.4774

! Interpretation: the expected number of bits needed to transmit y if both
the emitter and the receiver know the value of x (but before they are told
x’s value).

Information gain

COMP 652 - Lecture 11 31 / 45

Suppose I have to transmit y. How many bits on the average would it save
me if both me and the receiver knew x?

IG(Y |X) = H(Y) − H(Y |X)

This is called information gain
Alternative interpretation: how much reduction in entropy do I get if I know
X.

Information gain

COMP 652 - Lecture 11 32 / 45

Suppose I have to transmit y. How many bits on the average would it save
me if both me and the receiver knew x?

IG(y|x) = H(y) − H(y|x)

This is called information gain
Alternative interpretation: how much reduction in entropy do I get if I know x.

Information gain to determine best test

COMP 652 - Lecture 11 33 / 45

! Returning to decision tree construction, how do we use information
theory?

! We choose, recursively at each interior node, the test that has highest
information gain. (Equivalently, results in lowest conditional entropy.)

! If tests are binary:

IG(D, Test) = H(D) − H(D|Test)

= H(D) −
|DTest|
|D| H(DTest) −

|D¬Test|
|D| H(D¬Test)

t f

[20+,10-] [10+,0-]

t f

[15+,7-] [15+,3-]

Check that in this case, Test1 wins.

Caveats on tests with multiple values

COMP 652 - Lecture 11 34 / 45

! If the outcome of a test is not binary, the number of possible values
influences the information gain

! The more possible values, the higher the gain! (the more likely it is to
form small, but pure partitions)

! C4.5 (the most popular decision tree construction algorithm in ML
community) uses only binary tests:

– Attribute=Value for discrete attributes
– Attribute < or > Value for continuous attributes

! Other approaches consider smarter metrics (e.g. gain ratio), which
account for the number of possible outcomes

A complete (artificial) example

COMP 652 - Lecture 11 35 / 45

An artificial binary classification problem with two real-valued input features:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

A complete (artificial) example (II)

COMP 652 - Lecture 11 36 / 45

The decision tree, graphically:

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x2

Overfitting in decision trees

COMP 652 - Lecture 11 37 / 45

! Remember, decision tree construction proceeds until all leaves are pure –
all examples having the same y value.

! As the tree grows, the generalization perform can start to degrade,
because the algorithm is finding irrelevant attributes / tests / outliers.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes)

On training data
On test data

(Example from . . . ?)

Avoiding overfitting

COMP 652 - Lecture 11 38 / 45

1. Stop growing the tree when further splitting the data does not yield a
statistically significant improvement

2. Grow a full tree, then prune the tree, by eliminating nodes

The second approach has been more successful in practice
We will select the best tree, for now, by measuring performance on a separate
validation data set.

Example: Reduced-error pruning

COMP 652 - Lecture 11 39 / 45

1. Split the “training data” into a training set and a validation set
2. Grow a large tree (e.g. until each leaf is pure)
3. For each node:

(a) Evaluate the validation set accuracy of pruning the subtree rooted
at the node

(b) Greedily remove the node that most improves validation set
accuracy, with its corresponding subtree

(c) Replace the removed node by a leaf with the majority class of the
corresponding examples.

4. Stop when pruning starts hurting the accuracy on the validation set.

Example: Effect of reduced-error pruning

COMP 652 - Lecture 11 40 / 45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

A
cc

ur
ac

y

Size of tree (number of nodes)

On training data
On test data

On test data (during pruning)

Example: Rule post-pruning in C4.5

COMP 652 - Lecture 11 41 / 45

1. Convert the decision tree to rules
2. Prune each rule independently of the others, by removing preconditions

such that the accuracy is improved
3. Sort final rules in order of estimated accuracy

Advantages:

! Can prune attributes higher up in the tree differently on different paths
! There is no need to reorganize the tree if pruning an attribute that is

higher up
! Most of the time people want rules anyway, for readability

Variations: Gini impurity index

COMP 652 - Lecture 11 42 / 45

! An alternative to entropy for measuring impurity is the Gini index.
! For a distribution P (y),

Gini(P) = 1 −
∑

y

P (y)2

! This criterion is used by the CART program (for Classification And
Regression Trees) – the other major decision tree algorithm, besides C4.5

Variations: Constructing tests on the fly

COMP 652 - Lecture 11 43 / 45

! Suppose we are interested in more sophisticated tests at nodes, such a
linear combinations of features:

3.1 × radius − 1.9 × texture ≥ 1.3

! We can use a fast, simple classifier (such as LDA, Logistic classification)
to determine a decision boundary, and us it as a test

Regression trees

COMP 652 - Lecture 11 44 / 45

! Like classification trees but for regression problems
! Tests can be the same as before
! At the leaves, instead of predicting the majority of the examples, we can

predict the mean. . . or do something more complicated like a linear
regression fit of the examples that get to the leaf. (It must be fast
though!)

! Question: What is the equivalent of the class entropy for choosing the
best test?

Decision (and regression) tree summary

COMP 652 - Lecture 11 45 / 45

! Fast learning algorithms (e.g. C4.5, CART)
! Standard learning algorithm is to:

1. Construct the tree top down by greedily choosing the test which
minimizes the conditional entropy of y

2. Prune the tree, or corresponding rule set, based on a validation set to
avoid overfitting

! Attributes may be discrete or continuous
! Scaling / normalization not needed, as we use no notion of “distance”

between examples
! Provide a general representation of classification rules
! Easy to understand! Though. . .

– Exact tree output may be sensitive to small changes in data
– With many features, tests may not be meaningful

! In standard form, good for (nonlinear) piecewise axis-orthogonal decision
boundaries – not good with smooth, curvilinear boundaries

! Good accuracy in practice – many applications!

