COMP 652: Machine Learning

Lecture 7
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Today

O “Constructive” methods for determining ANN architecture
O Other types of networks and structures
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Constructive methods

O How many hidden layers should my network have?
O How many hidden units in each layer?
0 Too few hidden units = cannot approximate the desired input-output

function well

0 Too many hidden units = danger of overfitting; difficult to optimize
weights

O Constructive methods attempt to find the right answers to these
questions, by:

1. Starting with a network that is almost certainly too small.
2. "“Growing" it somehow, adding hidden nodes as needed

COMP 652 - Lecture 7 3/29



Dynamic node creation (Ash, 1989)

O Start with one hidden unit
O Train using backprop
O If at any time, the learning curve is “flattening out too much”, add
another hidden unit and keep training
4l
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Dynamic node creation (Ash, 1989)

O Start with one hidden unit

O Train using backprop

O If at any time, the learning curve is “flattening out too much”, add
another hidden unit and keep training
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O Criteria: =—=% < Ap (??) and t — w > tg, where t; is time at which

w

last node was added, w is time “window" size, At is slope-trigger
threshold, and a, is SSQ at time x.

COMP 652 - Lecture 7 5/ 29



Dynamic node creation (Ash, 1989)

O Start with one hidden unit
O Train using backprop
O If at any time, the learning curve is “flattening out too much”, add

another hidden unit and keep training

0 Criteria: === < Ap (7?) and t —w > to, where g is time at which
last node was added, w is time “window" size, At is slope-trigger
threshold, and a, is SSQ at time x.

00 Node addition stops when SSQ less than a user-defined threshold, or the
squared error on every instance is below a user-defined threshold.

O Found minimum or near-minimum size networks for a variety of problems:
autoencoding, binary addition, parity.
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Cascade correlation (Fahlman & Lebiere, 1991)

O Start with no hidden units, just the inputs connected to the outputs
Outputs
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O Train using backpropagation until the error is stable. (This is just logistic
regression, really.)

O If the error is small enough, stop, otherwise consider adding a new hidden
unit. (User choice? XVal?)
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Cascade correlation (11)

O If adding a hidden unit, it will take input from all input units.

O Before connecting it to the output layer, train its incoming weights to
maximize the correlation to the error of the previous network (using
gradient descent):

> (Ji— Ji)(0i = 0)
1
where o; is the output of the neuron for pattern ¢ and J; is the error on
pattern i, 0 and J are averages over all patterns.
0 Freeze the weights coming into the unit and train only the weights going
into the output neuron
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Network after adding one hidden unit
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Cascade correlation (111)

O |f you want to continue adding hidden units:

O Create a new unit taking input from whole input layer as well as all
previous hidden units

0 Train weights to maximize correlation with output errors

[0 Freeze weights and add to network

O Train weight going into output layer
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Network after adding two hidden units
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Cascade correlation (1V)

0 The algorithm alternates between two phases:

— Input phase: Training hidden units
— QOutput phase: Training the weights that connect the units to the

output
until the error is below a desired threshold
0 Because only a small set of weights is trained at one time, training is very

fast despite the depth of the network (Logistic regression)
O Variations allow for the new neurons to go either in the same layer or in a

new layer.
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Some special ANN architectures
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Auto-encoders

0 Autoencoder ANNs are trained to reproduce the input at the output layer.
(l.e., training data is of the form .{(xj,xj)}).
[0 The hidden layer is smaller than the input and output layers.

Inputs Outputs

O Why would you do that?
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Auto-encoders

0 Autoencoder ANNs are trained to reproduce the input at the output layer.

(l.e., training data is of the form .{(xj,xj)}).

[0 The hidden layer is smaller than the input and output layers.

Inputs Outputs
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O Why would you do that?

O Answers: Dimensionality reduction (which has various benefits), error

correction, pattern completion . ..
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Example: Face reconstruction (Hinton, 2006)

Unrolling
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Neural networks for temporal data

O In temporal data, we have a one or succession of inputs at different times
x(t) — or possibly a set of such time series.
[0 There can be several tasks:

— Predicting a class label
E.g., Speech recognition — what phoneme is being spoken at the

moment?
E.g., Prognosis — will / is the patient responding to therapy? Is

therapy warranted?
— Time series predictions E.g., What will be the next state, x(t +1)7

E.g., Endpoint prediction — where is this trajectory leading?
(Relevant in medicine, finance, user modeling, etc.)

O Prediction may need to be performed as the data is received
O Exactly what to use as input no longer clear! Past as well as current

information may be relevant.
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Prediction based on the whole trajectory

0 When predicting an outcome based on the whole trajectory, can simply
input the whole thing!

(This assume you have multiple time series, each with its own associated
target value y.)

O Could have many weights to fit, depending on length of time series and
length of x(%).

O Problematic if different time series have different lengths.
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Time-delay neural networks (Waibel)

0 Suppose we have a single time series x(t) with targets y(¢) associated to
each time point.

O Fix a time window T’
O Collect the inputs x(t),...x(t — 1) and feed them together to the
network.
O Shift the window and repeat
0 Train using standard backpropagation. Data set is:
x(1) x(2) x(T) — y(T)
x(2) x(3) x(T+1) — y(T+1)
x(3) x(4) x(T+2) — y(T+2)

COMP 652 - Lecture 7 19 / 29



Time series modeling

O Given one or more time series x(t), we may want to model the dynamics
of the system generating the time series

0 One obvious approach is to solve the prediction problem: x(t) — x(t 4 1).
(Or more generally, we may include the time delay approach from the
previous slide.)

0 Suppose we minimize the sum squared error:

Jow =Y (x(t+1) = hw(x(t)))?

t

0 This corresponds to a maximum likelihood hypothesis under what noise
model?
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Time series modeling

[

[

Given one or more time series x(t), we may want to model the dynamics
of the system generating the time series

One obvious approach is to solve the prediction problem: x(t) — x(t +1).
(Or more generally, we may include the time delay approach from the
previous slide.)

Suppose we minimize the sum squared error:

Jow =Y (x(t+1) = hw(x(t)))?

t

This corresponds to a maximum likelihood hypothesis under what noise
model?
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Time series modeling

[

[

Given one or more time series x(t), we may want to model the dynamics
of the system generating the time series

One obvious approach is to solve the prediction problem: x(t) — x(t +1).
(Or more generally, we may include the time delay approach from the
previous slide.)

Suppose we minimize the sum squared error:

Jo =Y (x(t +1) — hw(x(1)))’
t
This corresponds to a maximum likelihood hypothesis under what noise
model?
x(t+ 1) = hw(x(t)) + €

where the ¢; are vectors of i.i.d. Gaussian with common standard
deviation o.

Interpretation: Actual next state, x(t + 1) is noisy version of expected
next state hw (x(%)).
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An alternative, trajectory-based, error criterion

O For hypothesis hy,, suppose we generate a trajectory as follows:

z(1) = x(1)
z(t+1) = hw(z(t))

O Suppose we minimize the sum squared error:

T = 3 (x(t) — 2(1))?

t

0 This corresponds to a maximum likelihood hypothesis under what noise
model?
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An alternative, trajectory-based, error criterion

O For hypothesis hy,, suppose we generate a trajectory as follows:

z(1) = x(1)
z(t+1) = hw(z(t))

O Suppose we minimize the sum squared error:

T = 3 (x(t) — 2(1))?

0 This corresponds to a maximum likelihood hypothesis under what noise
model?

x(t) = z(t) + €(t)

where the ¢; are vectors of i.i.d. Gaussian with common standard
deviation o.

O Interpretation: The actual trajectory was the deterministic z(¢), and we
observed a noisy version of that.
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How to minimize trajectory-based error?
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How to minimize trajectory-based error?

Backpropagation through time (Rumelhart, Hinton and Williams)

O Consider the contribution to Jy, at one time point:
Jult) = (x(t) — 2(t))*

0 z(t) = hw(hw(...hw(z(0))...)). It is computed by chaining together, or
“unrolling”, t — 1 copies of the ANN:

O

SoBoEoEgES

O
z(1) z(2)  z(3) z(4)  z(5)  z(6)

O Can apply standard backprop to this network, except every weight occurs
t — 1 times.

Just sum up error partials for every weight occurrence.

Results in very deep nets that are hard to train, but it can work.

L1 O
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Recurrent neural networks

0 More generally, we can allow some
of the network’'s hidden or output
units to feed back into the next it-
eration

xt—1)  ct-1)

O Training by backpropagation
through time

O Intuition: Hidden feedback units
can form a “memory” the persists
through time.

x(t-2) ct-2)
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Artificial Neural Networks Summary

0 ANNSs are justified by the inability of single-layer approximators (e.g.,
linear, logistic) to capture non-monotone functions.

O ANN weights can be trained for classification or regression by the error
backpropagation algorithm ( “backprop”)

O A variety of tricks are used to make optimization more efficient

— Initialization of weights to small random values

— Good choice of input-output coding (including normalization)

— Momentum, delta-bar-delta, or second-order methods to speed
convergence
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Artificial Neural Networks Summary (Il)

O ANN structure is often chosen by the designer, but can be part of the
fitting process.

— One must watch out for overtraining (a special kind of overfitting)

— Destructive methods (weight decay, optimal brain damage) try to
simplify the network during or after learning

— Constructive methods (dynamic node creation, cascade correlation)
create new units during learning

0 Special cases for special tasks

— Autoencoders for dimensionality reduction

— Time-delay neural nets for prediction based on recent history of a
time-series

—  “Unrolled” networks and backprop through time for trajectory
matching
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