
COMP 652 - Lecture 7 1 / 29

COMP 652: Machine Learning

Lecture 7



Today

COMP 652 - Lecture 7 2 / 29

! “Constructive” methods for determining ANN architecture
! Other types of networks and structures



Constructive methods

COMP 652 - Lecture 7 3 / 29

! How many hidden layers should my network have?
! How many hidden units in each layer?
! Too few hidden units ⇒ cannot approximate the desired input-output

function well
! Too many hidden units ⇒ danger of overfitting; difficult to optimize

weights
! Constructive methods attempt to find the right answers to these

questions, by:

1. Starting with a network that is almost certainly too small.
2. “Growing” it somehow, adding hidden nodes as needed



Dynamic node creation (Ash, 1989)

COMP 652 - Lecture 7 4 / 29

! Start with one hidden unit
! Train using backprop
! If at any time, the learning curve is “flattening out too much”, add

another hidden unit and keep training



Dynamic node creation (Ash, 1989)

COMP 652 - Lecture 7 5 / 29

! Start with one hidden unit
! Train using backprop
! If at any time, the learning curve is “flattening out too much”, add

another hidden unit and keep training

! Criteria: at−at−w

aw
< ∆T (??) and t − w ≥ t0, where t0 is time at which

last node was added, w is time “window” size, ∆T is slope-trigger
threshold, and ax is SSQ at time x.



Dynamic node creation (Ash, 1989)

COMP 652 - Lecture 7 6 / 29

! Start with one hidden unit
! Train using backprop
! If at any time, the learning curve is “flattening out too much”, add

another hidden unit and keep training
! Criteria: at−at−w

aw
< ∆T (??) and t − w ≥ t0, where t0 is time at which

last node was added, w is time “window” size, ∆T is slope-trigger
threshold, and ax is SSQ at time x.

! Node addition stops when SSQ less than a user-defined threshold, or the
squared error on every instance is below a user-defined threshold.

! Found minimum or near-minimum size networks for a variety of problems:
autoencoding, binary addition, parity.



Cascade correlation (Fahlman & Lebiere, 1991)

COMP 652 - Lecture 7 7 / 29

! Start with no hidden units, just the inputs connected to the outputs

! Train using backpropagation until the error is stable. (This is just logistic
regression, really.)

! If the error is small enough, stop, otherwise consider adding a new hidden
unit. (User choice? XVal?)



Cascade correlation (II)

COMP 652 - Lecture 7 8 / 29

! If adding a hidden unit, it will take input from all input units.
! Before connecting it to the output layer, train its incoming weights to

maximize the correlation to the error of the previous network (using
gradient descent): ∑

i

(Ji − J̄i)(oi − ō)

where oi is the output of the neuron for pattern i and Ji is the error on
pattern i, ō and J̄ are averages over all patterns.

! Freeze the weights coming into the unit and train only the weights going
into the output neuron



Network after adding one hidden unit

COMP 652 - Lecture 7 9 / 29



Cascade correlation (III)

COMP 652 - Lecture 7 10 / 29

! If you want to continue adding hidden units:
! Create a new unit taking input from whole input layer as well as all

previous hidden units
! Train weights to maximize correlation with output errors
! Freeze weights and add to network
! Train weight going into output layer



Network after adding two hidden units

COMP 652 - Lecture 7 11 / 29



Cascade correlation (IV)

COMP 652 - Lecture 7 12 / 29

! The algorithm alternates between two phases:

– Input phase: Training hidden units
– Output phase: Training the weights that connect the units to the

output

until the error is below a desired threshold
! Because only a small set of weights is trained at one time, training is very

fast despite the depth of the network (Logistic regression)
! Variations allow for the new neurons to go either in the same layer or in a

new layer.



COMP 652 - Lecture 7 13 / 29

Some special ANN architectures



Auto-encoders

COMP 652 - Lecture 7 14 / 29

! Autoencoder ANNs are trained to reproduce the input at the output layer.
(I.e., training data is of the form .{〈xi,xi〉}).

! The hidden layer is smaller than the input and output layers.
Inputs Outputs

! Why would you do that?



Auto-encoders

COMP 652 - Lecture 7 15 / 29

! Autoencoder ANNs are trained to reproduce the input at the output layer.
(I.e., training data is of the form .{〈xi,xi〉}).

! The hidden layer is smaller than the input and output layers.
Inputs Outputs

! Why would you do that?
! Answers: Dimensionality reduction (which has various benefits), error

correction, pattern completion . . .



Example: Face reconstruction (Hinton, 2006)

COMP 652 - Lecture 7 16 / 29

W

W

W

W

W

W

W

W

500

1000

1000

2000

500

2000

T

4
T

Unrolling
Encoder

1

2

3

30

4

3

2
T

1
T

Code layer

Decoder



Neural networks for temporal data

COMP 652 - Lecture 7 17 / 29

! In temporal data, we have a one or succession of inputs at different times
x(t) – or possibly a set of such time series.

! There can be several tasks:

– Predicting a class label
E.g., Speech recognition – what phoneme is being spoken at the
moment?
E.g., Prognosis – will / is the patient responding to therapy? Is
therapy warranted?

– Time series predictions E.g., What will be the next state, x(t + 1)?
E.g., Endpoint prediction – where is this trajectory leading?
(Relevant in medicine, finance, user modeling, etc.)

! Prediction may need to be performed as the data is received
! Exactly what to use as input no longer clear! Past as well as current

information may be relevant.



Prediction based on the whole trajectory

COMP 652 - Lecture 7 18 / 29

! When predicting an outcome based on the whole trajectory, can simply
input the whole thing!
(This assume you have multiple time series, each with its own associated
target value y.)

!"#$ !"#$ !"#$ !"#$

! Could have many weights to fit, depending on length of time series and
length of x(t).

! Problematic if different time series have different lengths.



Time-delay neural networks (Waibel)

COMP 652 - Lecture 7 19 / 29

! Suppose we have a single time series x(t) with targets y(t) associated to
each time point.

! Fix a time window T
! Collect the inputs x(t), . . .x(t − T ) and feed them together to the

network.
! Shift the window and repeat
! Train using standard backpropagation. Data set is:

x(1) x(2) . . . x(T ) → y(T )
x(2) x(3) . . . x(T + 1) → y(T + 1)
x(3) x(4) . . . x(T + 2) → y(T + 2)



Time series modeling

COMP 652 - Lecture 7 20 / 29

! Given one or more time series x(t), we may want to model the dynamics
of the system generating the time series

! One obvious approach is to solve the prediction problem: x(t) → x(t + 1).
(Or more generally, we may include the time delay approach from the
previous slide.)

! Suppose we minimize the sum squared error:

Jw =
∑

t

(x(t + 1) − hw(x(t)))2

! This corresponds to a maximum likelihood hypothesis under what noise
model?



Time series modeling

COMP 652 - Lecture 7 21 / 29

! Given one or more time series x(t), we may want to model the dynamics
of the system generating the time series

! One obvious approach is to solve the prediction problem: x(t) → x(t + 1).
(Or more generally, we may include the time delay approach from the
previous slide.)

! Suppose we minimize the sum squared error:

Jw =
∑

t

(x(t + 1) − hw(x(t)))2

! This corresponds to a maximum likelihood hypothesis under what noise
model?



Time series modeling

COMP 652 - Lecture 7 22 / 29

! Given one or more time series x(t), we may want to model the dynamics
of the system generating the time series

! One obvious approach is to solve the prediction problem: x(t) → x(t + 1).
(Or more generally, we may include the time delay approach from the
previous slide.)

! Suppose we minimize the sum squared error:

Jw =
∑

t

(x(t + 1) − hw(x(t)))2

! This corresponds to a maximum likelihood hypothesis under what noise
model?

x(t + 1) = hw(x(t)) + εt

where the εt are vectors of i.i.d. Gaussian with common standard
deviation σ.

! Interpretation: Actual next state, x(t + 1) is noisy version of expected
next state hw(x(t)).



An alternative, trajectory-based, error criterion

COMP 652 - Lecture 7 23 / 29

! For hypothesis hw, suppose we generate a trajectory as follows:

z(1) = x(1)
z(t + 1) = hw(z(t))

! Suppose we minimize the sum squared error:

Jw =
∑

t

(x(t) − z(t))2

! This corresponds to a maximum likelihood hypothesis under what noise
model?



An alternative, trajectory-based, error criterion

COMP 652 - Lecture 7 24 / 29

! For hypothesis hw, suppose we generate a trajectory as follows:

z(1) = x(1)
z(t + 1) = hw(z(t))

! Suppose we minimize the sum squared error:

Jw =
∑

t

(x(t) − z(t))2

! This corresponds to a maximum likelihood hypothesis under what noise
model?

x(t) = z(t) + ε(t)

where the εt are vectors of i.i.d. Gaussian with common standard
deviation σ.

! Interpretation: The actual trajectory was the deterministic z(t), and we
observed a noisy version of that.



How to minimize trajectory-based error?

COMP 652 - Lecture 7 25 / 29



How to minimize trajectory-based error?

COMP 652 - Lecture 7 26 / 29

Backpropagation through time (Rumelhart, Hinton and Williams)

! Consider the contribution to Jw at one time point:
Jw(t) = (x(t) − z(t))2.

! z(t) = hw(hw(. . . hw(z(0)) . . .)). It is computed by chaining together, or
“unrolling”, t − 1 copies of the ANN:

z(1) z(2) z(3) z(4) z(5) z(6)

! Can apply standard backprop to this network, except every weight occurs
t − 1 times.

! Just sum up error partials for every weight occurrence.
! Results in very deep nets that are hard to train, but it can work.



Recurrent neural networks

COMP 652 - Lecture 7 27 / 29

! More generally, we can allow some
of the network’s hidden or output
units to feed back into the next it-
eration

! Training by backpropagation
through time

! Intuition: Hidden feedback units
can form a “memory” the persists
through time.



Artificial Neural Networks Summary

COMP 652 - Lecture 7 28 / 29

! ANNs are justified by the inability of single-layer approximators (e.g.,
linear, logistic) to capture non-monotone functions.

! ANN weights can be trained for classification or regression by the error
backpropagation algorithm (“backprop”)

! A variety of tricks are used to make optimization more efficient

– Initialization of weights to small random values
– Good choice of input-output coding (including normalization)
– Momentum, delta-bar-delta, or second-order methods to speed

convergence



Artificial Neural Networks Summary (II)

COMP 652 - Lecture 7 29 / 29

! ANN structure is often chosen by the designer, but can be part of the
fitting process.

– One must watch out for overtraining (a special kind of overfitting)
– Destructive methods (weight decay, optimal brain damage) try to

simplify the network during or after learning
– Constructive methods (dynamic node creation, cascade correlation)

create new units during learning

! Special cases for special tasks

– Autoencoders for dimensionality reduction
– Time-delay neural nets for prediction based on recent history of a

time-series
– “Unrolled” networks and backprop through time for trajectory

matching


