
COMP 652 - Lecture 6 1 / 28

COMP 652: Machine Learning

Lecture 6



Today

COMP 652 - Lecture 6 2 / 28

! Recall: Backprop algorithm
! Various tricks and tips about backprop & ANN training

– Weight initialization
– Input/output representations
– Momentum
– Learning rates; delta-bar-delta
– Second order methods

! Network architecture

– Overfitting & overtraining issues
– “Desctructive” methods for avoiding overfitting



Recall: Backprop (for 3 layer nets, in particular)

COMP 652 - Lecture 6 3 / 28

! Consider a three-layer network with N inputs, H sigmoidal hidden units,
and 1 sigmoidal output unit.

! For a single training instance 〈xi, yi〉, the sum-squared error is
Ji = 1

2(yi − oN+H+1)2, where oN+H+1 is the output of the network upon
input xi.

! To compute ∇wJi:

1. Use a feedforward pass to compute the outputs of all units.
2. Compute the δ’s at every unit:

δN+H+1 = (yi − oN+H+1)oN+H+1(1 − oN+H+1)
δl = δN+H+1wN+H+1,lol(1 − ol) for hidden unit l

3. Update the weights: wi,j ← wi,j + αi,jδioj , where αi,j is a learning
rate (or step-size).

! For multiple output units or hidden layers, see previous lecture slides for
more general treatment.



Backpropagation variations

COMP 652 - Lecture 6 4 / 28

! The previous slide tells us how to compute ∇wJi.
! This can be used in an to incremental (or stochastic) gradient descent

– We could loop through all training instances, taking a single gradient
descent step on each. Such a loop is called an epoch.

– We could repeatedly chose a training instance at random, and take a
step on that instance.

! We can also do a true gradient descent. How?



Backpropagation variations

COMP 652 - Lecture 6 5 / 28

! The previous slide tells us how to compute ∇wJi.
! This can be used in an to incremental (or stochastic) gradient descent

– We could loop through all training instances, taking a single gradient
descent step on each. Such a loop is called an epoch.

– We could repeatedly chose a training instance at random, and take a
step on that instance.

! We can also do a true gradient descent.

J =
m∑

i=1

Ji ⇒ ∇wJ =
m∑

i=1

∇wJi

! Algorithm can be easily generalized to predict probabilities, instead of
minimizing sum-squared error.

! For other feedforward architectures, gradient can be computed similarly.



Convergence of backpropagation

COMP 652 - Lecture 6 6 / 28

! Backpropagation performs gradient descent over all the parameters in the
network

! Hence, if the learning rate is appropriate, the algorithm is guaranteed to
converge to a local minimum of the cost function

– NOT the global minimum
– Can be much worse than global minimum
– There can be MANY local minima (Auer et al, 1997)

! Partial solution: restarting = train multiple nets with different initial
weights.

! In practice, quite often the solution found is very good
! . . . but other tricks and tips can help a lot, too.



Initializing the weights

COMP 652 - Lecture 6 7 / 28

! As with any local search method, the starting point of the search can
have a large impact on the outcome of the search.

! DO NOT initialize all the weights to zero! Why?



Initializing the weights

COMP 652 - Lecture 6 8 / 28

! As with any local search method, the starting point of the search can
have a large impact on the outcome of the search.

! DO NOT initialize all the weights to zero! Why?
⇒ All hidden units, for example, will behave identically, and the ANN will
be as if it had only one hidden unit. You need to break symmetry
somehow.

! If initial weights are too large, unit outputs will likely be saturated —
outputting near zero or near one. The SSQ error surface is very flat in
such cases.

! Typically, weights are initialized to small, random numbers.
(E.g., normal with standad deviation 0.1, or uniform in the interval
[−0.1, +0.1].)



Choosing a good input encoding: Discrete inputs

COMP 652 - Lecture 6 9 / 28

! Discrete inputs with k possible values are often encoded using a “1 hot”
or “1-of-k” encoding:

– k input bits are associated with the variable (one for each possible
value)

– For any instance, all bits are 0 except the one corresponding to the
value found in the data, which is set to 1

– If the value is missing, all inputs are set to 0

! This particularly makes sense of the values are unrelated. (E.g., schools
McGill, UdeM, Toronto, . . . )

! What if the values are ordered? (E.g., grades A, B, C, . . . )



Choosing a good input encoding: Discrete inputs

COMP 652 - Lecture 6 10 / 28

! Discrete inputs with k possible values are often encoded using a “1 hot”
or “1-of-k” encoding:

– k input bits are associated with the variable (one for each possible
value)

– For any instance, all bits are 0 except the one corresponding to the
value found in the data, which is set to 1

– If the value is missing, all inputs are set to 0

! This particularly makes sense of the values are unrelated. (E.g., schools
McGill, UdeM, Toronto, . . . )

! What if the values are ordered? (E.g., grades A, B, C, . . . )

– 1-hot encoded loses the order information
– Thermometer encoding – turning on all bits ≤ the input value –

retains it.



Choosing a good input encoding: Real-valued inputs

COMP 652 - Lecture 6 11 / 28

! For continuous (numeric) inputs, it is important to scale the inputs so
they are all in a common, reasonable range

! One standard transformation is to “normalize” the data, i.e., make it such
that it has mean 0, unit variance, by subtracting the mean and dividing by
the standard deviation

! When is this good? When is this bad? Good if the data is roughly
normal, but bad if we have outliers

! Alternative representations:

– 1-hot encoding - what is the disadvantage? Potentially lots of values!
Also, the ordering of values is lost

– Thermometer encoding



Choosing a good input encoding: Real-valued inputs

COMP 652 - Lecture 6 12 / 28

! For continuous (numeric) inputs, it is important to scale the inputs so
they are all in a common, reasonable range

! One standard transformation is to “normalize” the data, i.e., make it such
that it has mean 0, unit variance, by subtracting the mean and dividing by
the standard deviation.

! When is this good? When is this bad? Good if the data is roughly
normal, but bad if we have outliers

! Alternative representations:

– 1-hot encoding - what is the disadvantage? Potentially lots of values!
Also, the ordering of values is lost

– Thermometer encoding



Output

COMP 652 - Lecture 6 13 / 28

! A network can have several output units
! This can be useful when we want to predict a real-valued variable, and it

has several ranges
(E.g., Dean Pomerleau’s autonomous driving car)

! Also useful when predicting the probabilities of more than two possible
classes/outcomes
(E.g., TD-gammon)

! Alternatively, we can allow one output unit, without a sigmoid function
! Normalization can be used if the output data is roughly normal



Adding momentum

COMP 652 - Lecture 6 14 / 28

On the t-th training sample, instead of the update:

∆wij ← αijδjxij

we do:
∆wij(t) ← αijδjxij + β∆wij(t − 1) where β ∈ (0, 1)

The second term is called momentum.



Adding momentum

COMP 652 - Lecture 6 15 / 28

On the t-th training sample, instead of the update:

∆wij ← αijδjxij

we do:
∆wij(t) ← αijδjxij + β∆wij(t − 1) where β ∈ (0, 1)

The second term is called momentum.

Advantages:

! Easy to pass small local minima
! Keeps the weights moving in areas where the error is flat
! Increases the speed where the gradient stays unchanged

Disadvantages:

! With too much momentum, it can get out of a global maximum!
! One more parameter to tune, and more chances of divergence

⇒ There are many variants!



Choosing the learning rate

COMP 652 - Lecture 6 16 / 28

! Backprop is VERY sensitive to the choice of learning rate

– Too large ⇒ divergence
– Too small ⇒ VERY slow learning
– The learning rate also influences the ability to escape local optima

! Sometimes, different learning rates are used for units inn different layers

– Particularly early in training, the partial derivs for the input-to-hidden
layer weights are much smaller than the hidden-to-output layer
weights.



Adjusting the learning rate: Delta-bar-delta

COMP 652 - Lecture 6 17 / 28

! Heuristic method, works best in batch mode (though there have been
attempts to make it incremental)

! The intuition:

– If the gradient direction is stable, the learning rate should be increased
– If the gradient flips to the opposite direction the learning rate should

be decreased

! A running average of the gradient and a separate learning rate is kept for
each weight

! If the new gradient and the old average have the same sign, increase the
learning rate by a constant amount

! If they have opposite sign, decay the learning rate exponentially



Delta-bar-delta more formally

COMP 652 - Lecture 6 18 / 28

! After t training epochs, let gi,j(t) = ∂
∂wi,j

J .

! For some 0 < β < 1, consider the recency-weighted average of the partial
derivatives:

ḡi,j(0) = 0
ḡi,j(t) = (1 − β)gi,j(t − 1) + βḡi,j(t − 1) for t > 0

! The learning rate for weight wi,j at epoch t + 1 is then:

αi,j(t + 1) =






αi,j(t) + κ if ḡi,j(t) and gi,j(t) of same sign
(1 − γ)αi,j(t) if ḡi,j(t) and gi,j(t) of opposite signs
αi,j(t) otherwise



A brief taste of second-order methods

COMP 652 - Lecture 6 19 / 28

! Recall Newton’s method for finding the zero of a function g : ) → )
! At point ui, approximate the function by a straight line (its tangent)
! Solve the linear equation for where the tangent equals 0, and move the

parameter to this point:

ui+1 = ui −
g(ui)
g′(ui)



Application to machine learning

COMP 652 - Lecture 6 20 / 28

! We want to optimize an error function f , so we can apply Newton’s
method to find the zeros of f ′

! We obtain the iteration:

ui+1 = ui −
f ′(ui)
f ′′(ui)

! Note that there is no step size parameter here!
! This is a second-order method, because it requires computing the second

derivative
! But, if our error function is quadratic, this will find the global optimum in

one step!



Second-order methods: Multivariate setting

COMP 652 - Lecture 6 21 / 28

! If we have an error function J that depends on many variables, we can
compute the Hessian matrix, which contains the second-order derivatives
of J :

Hij =
∂2J

∂wi∂wj

! The inverse of the Hessian gives the “optimal” learning rates
! The weights are updated as:

w ← w − H−1∇wJw

! This is also called Newton-Raphson method



Gradient versus second-order methods

COMP 652 - Lecture 6 22 / 28

! Newton’s method:

– Usually requires significantly fewer iterations than gradient descent;
especially good when already close to minimum.

– But each iteration more computationally expensive, since it requires
computing and inverting the Hessian (though their are cheaper
approximations)

– Used only in batch mode, not incremental.
– Can diverge!

! Gradient descent (backprop):

– Is computationally cheaper (per epoch)
– Convergence to local minimum can be guaranteed (for standard

backprop)
– Training slows as approaches minimum
– Momentum and Delta-bar-delta are computationally cheap, and

commonly used to speed learning.



How large should the network be?

COMP 652 - Lecture 6 23 / 28

! Overfitting occurs if there are too many parameters compared to the
amount of data available

! Choosing the number of hidden units:

– Too few hidden units do not allow the concept to be learned
– Too many lead to slow learning and overfitting
– If the n inputs are binary, log n is a good heuristic choice

! Choosing the number of layers

– Always start with one hidden layer
– Never go beyond 2 hidden layers, unless the task structure suggests

something different



Overtraining in feed-forward networks

COMP 652 - Lecture 6 24 / 28

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0 5000 10000 15000 20000

Er
ro

r

Number of weight updates

Error versus weight updates (example 1)

Training set error
Validation set error

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000 5000 6000

Er
ro

r

Number of weight updates

Error versus weight updates (example 2)

Training set error
Validation set error

! This is a different form of overfitting, which occurs when weights take on
large magnitudes, pushing the sigmoids into saturation.

! Effectively, as learning progresses, the network has more parameters.
! Use a validation set to decide when to stop training!



k-fold cross-validation

COMP 652 - Lecture 6 25 / 28

1. Split the training data into k partitions (folds)
2. Repeat k times:

(a) Take one fold to be the test set
(b) Take one fold to be the validation set
(c) Take the remaining k − 2 folds to form the training set
(d) We train the parameters on the training set, using the validation set

to decide when to stop, then measure Jtrain(i) and Jtest(i) on fold i

3. Report the average of Jtrain(i) and the average of Jtest(i), i = 1, . . . k.

Magic number: k = 10.



More on cross-validation

COMP 652 - Lecture 6 26 / 28

! It is good to ensure the same distribution of examples in each fold
! If two algorithms are compared, it should be on the same folds
! We get an idea not only of the average performance, but also of the

variability in the algorithm
! If there is too little data, or you want a better idea of what the “hard”

examples are, use leave-one-out cross-validation



Finding the right network structure

COMP 652 - Lecture 6 27 / 28

! Destructive methods start with a large network and then remove (prune)
connections

! Constructive methods start with a small network (e.g. 1 hidden unit) and
add units as required to reduce error



Some destructive methods

COMP 652 - Lecture 6 28 / 28

! Simple solution: consider removing each weight in turn (by setting it to
0), and examine the effect on the error

! Weight decay: give each weight a chance to go to 0, unless it is needed to
decrease error:

∆wj = −αj
∂J

∂wj
− λwj

where λ is a decay rate
! Optimal brain damage:

– Train the network to a local optimum
– Approximate the saliency of each link or unit (i.e., its impact on the

performance of the network), using the Hessian matrix
– Greedily prune the element with the lowest saliency

This loop is repeated until the error starts to deteriorate


