COMP 652: Machine Learning

Instructor: Prof. Ted Perkins

E-mail: perkins@mcb.mcgill.ca

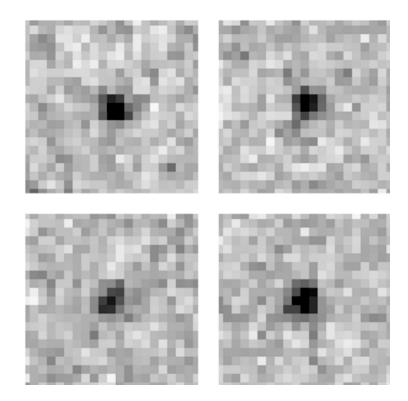
Web: http://www.mcb.mcgill.ca/~perkins/COMP652_Fall2008/index.html

Today

- 1. Machine learning: Examples and motivation
- 2. Administrative: syllabus
- 3. Types of machine learning: supervised, unsupervised, reinforcement
- 4. Supervised learning intro (with examples)

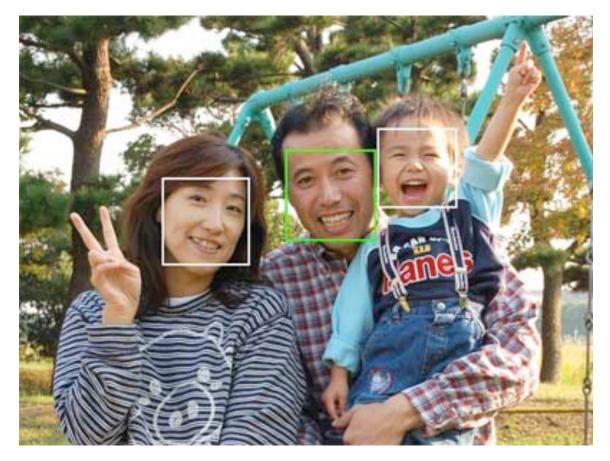
Categorizing faint objects in a Sky Survey (Usama Fayyad)

- □ B&W digital images of virtually entire sky taken at high resolution
- Astronomers could not examine each image in detail, and catalogue the objects observed
- $\hfill\square$ Machine learning was used to automate the categorization and cataloguing of $\ge 10^9$ faint objects



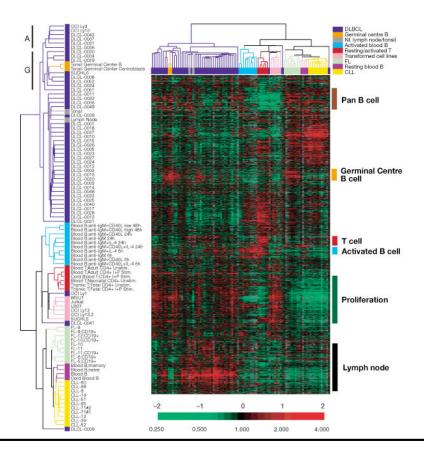
How would you write a computer program to:

- □ Detect faces in a scene?
- □ Recognize the face of a particular person?



Oncology (Alizadeh et al.)

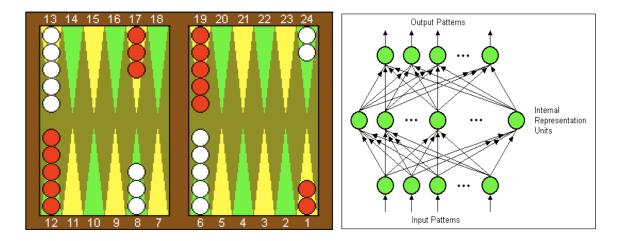
- □ Activity levels of all (\approx 25,000) genes were measured in lymphoma patients
- Cluster analysis determined three different subtypes (where only two were known before), having different clinical outcomes



COMP 652 - Lecture 1

Backgammon (Tesauro)

- □ Starting with expert knowledge, the TD-gammon program learned to play backgammon by playing millions of games against itself . . .
- \Box And became (arguably) the best player in the world!



- Bioinformatics: sequence alignment, analyzing microarray data, information integration, ...
- Computer vision: object recognition, tracking, segmentation, active vision,
 ...
- □ Robotics: state estimation, map building, decision making
- □ Graphics: building realistic simulations
- □ Speech: recognition, speaker identification
- □ Financial analysis: option pricing, portfolio allocation
- □ E-commerce: automated trading agents, data mining, spam, ...
- □ Medicine: diagnosis, treatment, drug design,...
- □ Computer games: building adaptive opponents
- □ Multimedia: retrieval across diverse databases

- □ Problems involving very large datasets
- □ Problems involving complex relationships between variables
- □ Problems involving numerical reasoning
- Problems for which expert opinions are not readily available / cost effective / rapid enough

□ ...

Basically, anything that could be done by computer (in principle), but which is hard to program directly.

We'll discuss three major types of problems:

- 1. Supervised learning
 - □ Given data comprising input-output pairs
 - $\hfill\square$ Create an output-predictor for new inputs
- 2. Unsupervised learning
 - □ Given data objects, look for "patterns": clusters, variable relationships, ...
 - $\hfill\square$ Or, "compress" data in some sense
- 3. Reinforcement learning
 - □ An AI interacts with environment, receiving rewards and punishment
 - $\hfill \square$ Must learn to behave optimally

- □ Linear, polynomial and logistic regression and/or classification
- □ Artificial neural networks
- □ Decision and regression trees
- □ "Nonparameteric" or instance-based methods
- □ Computational learning theory
- Ensemble methods
- □ Value function approximation
- □ Flat and hierarchical clustering
- \Box Dimensionality reduction (PCA, ICA, ...)

Syllabus!

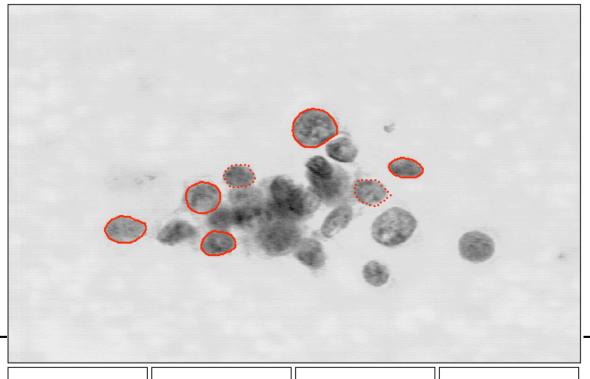
Supervised learning

Supervised learning

- □ An example: Wisconsin Breast Cancer
- □ Formalization
- □ Supervised learning flowchart
- □ Univariate linear regression

Wisconsin Breast Cancer Data from UC Irvine ML Repository

- Cell samples were taken from tumors in breast cancer patients before surgery, and imaged
- □ Tumors were excised
- Patients were followed to determine whether or not the cancer recurred, and how long until recurrence or disease free



Cell Nuclei of Fine Needle Aspirate

COMP 652 - Lecture

- 1. Collect data
- 2. Decide on inputs and output(s), including encoding
- 3. ...

- □ Researchers computed 30 different features of the cells' nuclei in the image.
 - Features relate to radius, "texture", area, smoothness, concavity, etc. of the nuclei
 - For each image, mean, standard error, and max of these properties across nuclei
- \Box The result is a data table:

tumor size	texture	perimeter	 outcome	time
18.02	27.6	117.5	Ν	31
17.99	10.38	122.8	Ν	61
20.29	14.34	135.1	R	27

tumor size	texture	perimeter	 outcome	time
18.02	27.6	117.5	N	31
17.99	10.38	122.8	Ν	61
20.29	14.34	135.1	R	27

The columns are called <u>inputs</u> or <u>input variables</u> or <u>features</u> or <u>attributes</u>
 "outcome" and "time" are called <u>outputs</u> or <u>output variables</u> or <u>targets</u>
 A row in the table is called a <u>training example</u> or <u>sample</u> or <u>instance</u>
 The whole table is called the training/data set

- Usually, features are chosen based on some combination of expert knowledge, guesswork, and experimentation
- Sometimes, their choice/definition is also part of the learning problem, called a <u>feature selection</u> or <u>construction</u> problem

More generally

- Typically, a training example *i* has the form: $(x_{i,1} \dots x_{i,n}, y_i)$ where *n* is the number of attributes (32 in our case).
- We will use the notation $\mathbf{x_i}$ to denote the column vector with elements $x_{i,1}, \ldots x_{i,n}$.

(These are all the input feature values for one training example.)

- \Box The training set D consists of m training examples
- \Box Let \mathcal{X} denote the space of input values (e.g., \Re^{32})
- \Box Let \mathcal{Y} denote the space of output values (e.g. $\{N, R\}$, or \Re)

Given a data set $D \subset \mathcal{X} \times \mathcal{Y}$, find a function:

 $h: \mathcal{X} \to \mathcal{Y}$

such that $h(\mathbf{x})$ is a "good predictor" for the value of y. h is called a <u>hypothesis</u>

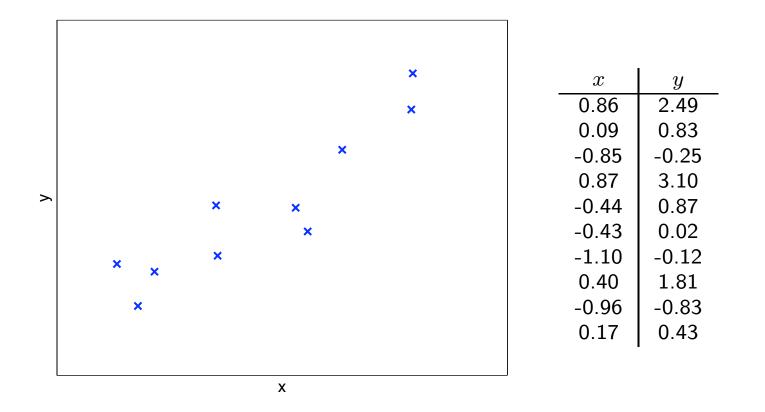
- \Box If $\mathcal{Y} = \mathbb{R}$, this problem is called *regression*
- \Box If \mathcal{Y} is a finite discrete set, the problem is called <u>*classification*</u>
- □ If \mathcal{Y} has 2 elements, the problem is called <u>binary classification</u> or concept learning
- The hypothesis h comes from a hypothesis class (or space) \mathcal{H} of possible solutions.

(Note: Sometimes for classification problems we output the probability of each of the possible outputs.)

- 1. Collect data
- 2. Decide on inputs and output(s), including encoding. This determines \mathcal{X} and \mathcal{Y} .
- 3. Choose a hypothesis class. This determines \mathcal{H} .

4. ...

An abstract example



What hypothesis class do we choose to model the how y depends on x?

Suppose y was a linear function of \mathbf{x} :

$$h_{\mathbf{w}}(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$$

- \Box w_i are called *parameters* or *weights*
- To simplify notation, we always add an attribute $x_0 = 1$ to the other n attributes (also called <u>bias term</u> or intercept term):

$$h_{\mathbf{w}}(\mathbf{x}) = \sum_{i=0}^{n} w_i x_i = \mathbf{w}^{\mathbf{T}} \mathbf{x}$$

where \mathbf{w} and \mathbf{x} are vectors of length n + 1.

How should we pick w? No w exactly fits data...

Error minimization!

- $\hfill \hfill \hfill$
- □ Hence, we will define an *error function* or *cost function* to measure how much our prediction differs from the "true" answer
- $\hfill\square$ We will pick w such that the error function is minimized

What error function should we choose?

- $\hfill\square$ Main idea: try to make $h_{\mathbf{w}}(x)$ close to y on the examples in the training set
- □ We define a *sum-of-squares* error function

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (h_{\mathbf{w}}(\mathbf{x}_i) - y_i)^2$$

 \Box We will choose w such as to minimize $J(\mathbf{w})$

- 1. Collect data
- 2. Decide on inputs and output(s), including encoding. This determines \mathcal{X} and \mathcal{Y} .
- 3. Choose a hypothesis class. This determines \mathcal{H} .
- 4. Choose an error function (cost function) to define the best hypothesis
- 5. Choose an algorithm for searching efficiently through the space of hypotheses.

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} (h_{\mathbf{w}}(\mathbf{x}_{i}) - y_{i})^{2}$$
$$= \frac{1}{2} \sum_{i=1}^{m} \left(\left(\sum_{j=0}^{n} w_{j} x_{i,j} \right) - y_{i} \right)^{2}$$

How do we do it?

We had some discussion on the board, but this is pretty much where we ended...