
COMP 652 - Homework 2
Assigned: Sep 22, 2008

Due: Sep 29, 2008
Late: Oct 1, 2008

1. Gradient of cross-entropy for logistic function. (10 pts.)

Recall from class that the cross-entropy error function is

JCE = −
m∑

i=1

yi log h(xi) + (1− yi) log(1− h(xi))

This assumes a binary-classification data set D = {(xi, yi)}, where xi is the input vector for
the ith instance, yi ∈ {0, 1} is the target, and h is a hypothesis that outputs the probability
that yi = 1 given xi. Suppose h is the logistic function:

hw(xi) =
1

1 + e−
∑n

j=0
wjxi,j

where xi,0 = 1, allowing for a constant offset in the summation.

A. (3 pts.) Derive a formula for the gradient of the cross-entropy error function with respect
to the weights, ∇wJCE.

B. (4 pts.) Consider the data files “wpbc x normalized.txt” and “wpbc yrecur.txt”. The
first file contains the input data for the Wisconsin Breast Cancer problem, with each row
corresponding to an instance (i.e., patient) and each column corresponding to a different
feature measured about the patient. The columns of this data matrix have been normalized
to have mean zero and standard deviation one. (This can be a helpful trick to use when using
gradient descent or similar numerical optimization approaches.) The second file contains 0
or 1 on each line, corresponding to non-recurrence or recurrence of the cancer. Using your
results from part A, implement a gradient descent approach that fits a logistic classifier that
uses just the first feature and a constant offset. (This first feature is the “nucleus size”,
which we have seen on several plots in class.) The classifier should thus have the form
hw(x) = σ(w0 + w1x). Use your gradient descent code to find the weights w0 and w1 that
minimize (as nearly as possible) the cross-entropy error function. Report these weights,
report the resulting cross-entropy, and plot the output of the function, hw(x) as a function
of x, along with the 0/1 non-/recurrence data. Also, turn in your code.

C. (3 pts.) Use your gradient descent approach to fit another logistic classifier, this time
using all the features in the input data matrix, plus a constant offset. Report the resulting
weights and cross-entropy, and turn in your code. Is this a “better” classifier than the one
from part B? Comment. Hint: For this part especially you may need to be careful about how
you choose your initial weights and step-size. I recommend starting the weights at zero. For
the step-size, you may use a constant, but experiment until you find a good choice. Too large
will lead to oscillations or divergence. Too small will require you to do very many steps until
arriving at a satisfaction solution. Experiment until you find a good choice.

1



2. Alternative error function for logistic regression. (10 pts.)

Consider a logistic regression problem with data set D = {(xi, yi)}, such that the targets
yi are real values strictly between 0 and 1. One could solve this problem by numerically
finding w that minimizes the typical squared error function JSSQ =

∑m
i=1(yi − σ(wTxi))

2.
However, consider the following line of reasoning. We want to find weights w such that
for all instances i the we have approximate equality between the target and the hypothesis
output: yi ≈ σ(wTxi). We can rewrite this as σ−1(yi) ≈ wTxi, where σ−1 is the inverse of
the logistic function. We could, then, seek w that minimizes the alternative squared error
function JSSQ2 =

∑m
i=1(σ

−1(yi)−wTxi)
2.

A. (5 pts.) Does minimizing JSSQ2 correspond to maximizing the likelihood of the data
under some noise model? If not, explain why not. If so, state the noise model and prove the
correspondence of the minimizing JSSQ2 and maximizing likelihood under that noise model.

B. (5 pts.) Describe a good method for minimizing JSSQ2 with respect to w.

3. Backprop. (10 pts.)

A. (4 pts.) Implement the error backpropagation algorithm (backprop) for computing the
gradient of the SSQ of a data set with respect to the weights of an artificial neural network
(ANN). You can assume an ANN with a single hidden layer. However, your code should
allow for any number of input units and any number of hidden layer units. Choosing initial
weights and step-size appropriately, use your code to train a network that approximates the
two-input XOR function. (You should create the training data set yourself.) Report the
weights obtained, and the output value for each of the four input combinations (00, 01, 10
and 11). Also, turn in your code.

B. (4 pts.) As mentioned in class, an ANN with a single hidden layer can approximate
any Boolean function, though the number of hidden-layer units required may be exponential
in the number of input-layer units. In part B, you are to train a network to approximate
the three-input XOR function, also called the “parity” or “odd” function. This function is
1 when the sum of the inputs is odd and 0 when the sum of the inputs is even. Because
you may not know ahead of time how many hidden units are required to approximate this
function, you should simply try out different choices. Report the minimum number of hidden
units required to approximate the function well–meaning, for each input combination, the
output is within, say, 0.01 of the correct value. Report the weights of the network, the output
value for each of the eight input combinations (000, 001, . . . , 111), and turn in your code.

C. (2 pts.) Do the same thing as in part B, but for the four-input parity function.

2


