COMP 652 - Homework 1

Assigned: Sep 10, 2008
Due: Sep 17, 2008
Late: Sep 22, 2008

1. Explicit solution to univariate linear regression. (10 pts.)

Recall from class that the optimal weights for a least squares linear regression problem are
w = (XTX)'XTY, where X is the input data matrix augmented with a column of ones,
and Y is a column vector containing the output, or target, values:
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I said the formula above for w was almost an analytical solution to the problem, in the sense
that it leaves us with a matrix inverse to perform. In general, there is no good formula for
matrix inverses. But there is for the special case of a two-by-two matrix!. In univariate linear
regression, the input vectors are of length one—that is, we have a single input variable, and
we're looking at hypotheses of the form h = wy + wix. In this case, X7 X is a two-by-two
matrix.

A. (7 pts.) Derive explicit formulae for the optimal weights wy and w; for a univariate
linear regression problem, in terms of the x; and the y;. Show both your final formulae and
how you arrived at those formulae.

B. (3 pts.) Use your formula on the data set below, which corresponds to the artificial
univariate linear regression problem studied at the end of Lecture 1 and the start of Lecture
2, and check whether your answers for the optimal weights match those given in the lecture?.
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f you do not remember this formula, look it up! Or, rederive it yourself by assuming a matrix A =

b|. . . a b a B |10

g | 18 siven, and solving the system [ e d ] [ v 5 } = [ 01 ] for the unknowns «, 3, v and d.
2 Actually, the lecture reported wy = 1.05 and w; = 1.60. However, my recalculation just now resulted in

wo = 1.0588 and wy; = 1.6102.



2. Fitting polynomials and using cross-validation to avoid overfitting. (10 pts.)

Consider the data in file “COMP652_ HW1_Q2Data.txt”, which contains a number of (z,y)
data instances.

A. (5 pts.) Implement polynomial regression for this data set. Show a plot of the data
along with the optimal order-1 (i.e., linear), order-2, order-3 and order-4 fits to the data.
Also, turn in your code.

B. (5 pts.) Implement leave-one-out cross validation, and use it to determine the order
d that gives the fit with best estimated generalization error. State the best d, report the
estimated generalization error for all d’s tested, and turn in your code.

3. Error criterion for exponential noise. (10 pts.)

At the end of Lecture 2, we showed that one justification for minimizing the sum-squared-
error (SSQ) criterion in a regression problem is that the hypothesis with least SSQ is also
the one under which the data has maximum likelihood — if we assume that the target values
are generated from the hypothesis, but perturbed by additive Gaussian noise. That is, if we
assume that y; = h(x;) + e;, where the e; are independent Gaussian random variables with
standard deviation o, then
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Now, suppose that the noise variables were not Gaussian but rather exponentially dis-
tributed?. Recall that the exponential distribution has a single parameter, ), and its density

has the formula:
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With this assumption about the e;, the hypothesis that maximizes the likelihood of the data
is no longer the one that minimizes the SSQ. Rather, it minimizes a different error function.
In fact, it minimizes a different error criterion, subject to a certain constraint. Derive the
error criterion and constraint for this case of exponentially-distributed noise. (Hint: the
derivation showed in class for the Gaussian noise case mostly applies, but a few details are
different.) Show your final result, as well as the derivation.

3Why this might be so, I don’t know. But in general, different data sets may be subject to different kinds
of noise, and exponential noise is convenient for this question.



