COMP-761: Quantum Information Theory

Student Presentations

 

Format:

 

Each student will make a fifty minute presentation on a topic from the recent quantum information theory literature. Most presentations will focus on a single research paper, but I am open to presentations that synthesize results from several papers. Presentations should be targeted to the other students in the class, who will likely not be familiar with the objectives, definitions and techniques used in the paper under consideration. Therefore, a significant amount of time should be devoted to motivating and introducing the problem, say roughly 10-15 minutes. Some effort should be made to explain the methods used in the paper even when a full description will be impossible due to the time constraint. Laptop projector, overhead transparencies and blackboard are all acceptable media and I harbor no preference among them. (Just beware the risks of each medium: blackboard lectures can degenerate into confusion if not carefully prepared and PowerPointers must act consciously to avoid powerpoints.) Be sure to leave a few minutes at the end to sum up and offer some perspective. There will be a ten minute question period after each presentation.

 

Schedule: TBA

 

Some tips (By no means an exhaustive list):

††††††††††† Practice to make sure your presentation isnít too long or too short.

††††††††††† Find a partner and practice again. Ask for constructive criticism.

††††††††††† Try to anticipate questions.

††††††††††† Be sure to explain all symbols on your slides. Donít assume the audience has time to read them.

 

Possible topics (In rough schedule order Ė feel free to suggest others):

1) The Landauer erasure principle and Maxwellís Demon

††††††††††† quant-ph/0103108 (a review article)††††

††††††††††† 2) Quantum states cannot be broadcast

††††††††††††††††††††††† quant-ph/9511010

††††††††††† 3) Accessible information, POVMís and nonlocality

††††††††††††††††††††††† Phys. Rev. Lett. 66, 1119-1122 (1991).††††††††††††††††††††††

††††††††††† 4) Quantum color-coding

††††††††††††††††††††††† quant-ph/0405086, quant-ph/0409173

††††††††††† 5) Universal quantum compression and entanglement concentration

††††††††††††††††††††††† quant-ph/0403078, quant-ph/0209124, quant-ph/0209030

††††††††††† 6) Entropic conditions for quantum error correction

††††††††††††††††††††††† quant-ph/9706064, quant-ph/0112106

††††††††††† 8) The subentropy and lower bounds on accessible information

††††††††††††††††††††††† Phys. Rev. A 49, 668Ė677 (1994)

9) Locking correlations in quantum states

††††††††††††††††††††††† quant-ph/0303088, quant-ph/0307104, quant-ph/0404096

††††††††††† 11) Equivalence of additivity conjectures in quantum information theory

††††††††††††††††††††††† quant-ph/0305035

††††††††††† 12) Remote state preparation

††††††††††††††††††††††† quant-ph/0307100

††††††††††† 13) Approximate transformations of bipartite pure state entanglement

††††††††††††††††††††††† quant-ph/9902033, quant-ph/9910099

††††††††††† 14) Capacities of bidirectional channels

††††††††††††††††††††††† quant-ph/0205057, quant-ph/0307091 (Bidirectional part)

††††††††††† 15) Identification capacities of quantum channels

††††††††††††††††††††††† quant-ph/0401060, quant-ph/0403203

††††††††††† 16) Distilling common randomness from noisy entanglement

††††††††††††††††††††††† quant-ph/0304196

††††††††††† 17) Quantum rate distortion theory

††††††††††††††††††††††† quant-ph/0011085

††††††††††† 18) The inequalities of quantum information theory

††††††††††††††††††††††† IEEE Trans. Inf. Theory, vol. 49, no. 4, pp. 773-789, 2003.

††††††††††† 19) All inequalities for the relative entropy

††††††††††††††††††††††† quant-ph/0511260

††††††††††† 20) On environment-assisted capacities of quantum channels

††††††††††††††††††††††† quant-ph/0507045

††††††††††† 21) Optimal superdense coding of entangled quantum states

††††††††††††††††††††††† quant-ph/0407061

††††††††††† 22) The capacity of a quantum channel for simultaneous transmission of classical and quantum information

††††††††††††††††††††††† quant-ph/0311131

††††††††††† 23) Distillation of secret key and entanglement from quantum states

††††††††††††††††††††††† quant-ph/0306078

††††††††††† 24) The quantum Schur transform: I. Efficient qudit circuits

††††††††††††††††††††††† quant-ph/0601001

††††††††††† 25) A de Finetti representation for finite symmetric quantum states

††††††††††††††††††††††† quant-ph/0410229

††††††††††† 26) Entanglement of assistance and multipartite state distillation

††††††††††††††††††††††† quant-ph/0505038

††††††††††† 27) Additivity of the classical capacity of entanglement-breaking quantum channels

††††††††††††††††††††††† quant-ph/0201149

††††††††††† 28) Unextendible product bases, uncompletable product bases and bound entanglement

††††††††††††††††††††††† quant-ph/9908070

††††††††††† 29) Quantum network coding

††††††††††††††††††††††† quant-ph/0601088

††††††††††† 30) QMA/qpoly is in PSPACE/poly: De-Merlinizing quantum protocols

††††††††††††††††††††††† quant-ph/0510230

†††††††††††