
Automatically Deriving Schematic
Theorems for Dynamic Contexts

Olivier Savary Bélanger
McGill University

osavary@cs.mcgill.ca

Kaustuv Chaudhuri
INRIA, France

kaustuv.chaudhuri@inria.fr

Abstract
Hypothetical judgments go hand-in-hand with higher-order abstract
syntax for meta-theoretic reasoning. Such judgments have two kinds
of assumptions: those that are statically known from the specifica-
tion, and the dynamic assumptions that result from building deriva-
tions out of the specification clauses. These dynamic assumptions
often have a simple regular structure of repetitions of blocks of
related assumptions, with each block generally involving one or
several variables and their properties, that are added to the context in
a single backchaining step. Reflecting on this regular structure can
let us derive a number of structural properties about the elements of
the context.

We present an extension of the Abella theorem prover, which
is based on a simply typed intuitionistic reasoning logic support-
ing (co-)inductive definitions and generic quantification. Dynamic
contexts are represented in Abella using lists of formulas for the
assumptions and quantifier nesting for the variables, together with
an inductively defined context relation that specifies their structure.
We add a new mechanism for defining particular kinds of regular
context relations, called schemas, and tacticals to derive theorems
from these schemas as needed. Importantly, our extension leaves
the trusted kernel of Abella unchanged. We show that these tacticals
can eliminate many commonly encountered kinds of administrative
lemmas that would otherwise have to be proven manually, which is
a common source of complaints from Abella users.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Computational
logic, lambda calculus and related systems, proof theory

General Terms Theory

Keywords dynamic contexts; context relations; context schemas;
tactics and tacticals

1. Introduction
Higher-order abstract syntax (HOAS) [13], also known as λ-tree
syntax (λTS) [9], is the popular name for a representational scheme
where data structures with binding constructs are represented using
λ-terms in a logical framework in such a way the binding structure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LFMTP ’14, July 17, 2014, Vienna, Austria.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2817-3/14/07. . . $15.00.
http://dx.doi.org/10.1145/2631172.2631181

of the λ-terms reflects that of the represented data. In this paper we
use the term HOAS in the narrow sense when the logical framework
guarantees that all λ-terms are built out of variables, λ-abstractions,
and applications, and that the equational theory of λ-terms identifies
terms up to αβη-conversion. For example, consider the following
signature (in λProlog [10]) specifying a data structure for simply
typed λ-terms.

k ind ty type .
type i ty.
type arr ty → ty → ty.

k ind tm type .
type app tm → tm → tm.
type abs ty → (tm → tm) → tm.

The term λf :i→i. λx:i. f(fx) would be represented as follows.

abs (arr i i)
(λf. abs i (λx. app f (app f x)))

Reasoning about such representations requires a logic that can
support arbitrarily nested implications and universal quantifica-
tion, such as the logic of higher-order hereditary Harrop formulas
(HOHH) [10, sec. 5.2.2] that forms the basis of λProlog and the
Abella interactive theorem prover [5, 19]. Such logics are generally
presented in terms of sequents (or hypothetical judgments) of the
form Γ ` C where C is a formula and Γ is a context of formulas.
As an illustration, suppose we wish to represent the following type-
checking judgment that relates a λ-term to its type. In λProlog we
write it using a relation of

1 with these program clauses.

type of tm → ty → o.

of (app M N) B ⇐
of M (arr A B), of N A.

of (abs A R) (arr A B) ⇐
p i λx. (of x A ⇒ of (R x) B).

The universal quantifier pi and implication ⇒ occur in the body
of the clause for abstractions and determines a scoped assumption
for a fresh variable x that is used to reason about the body of the
λ-term R. Note that (R x) stands for application in λProlog; if R
were λu. abs i (λx. app u x), for example, then (R x) would
be equal to abs i (λz. app x z), which avoids the capture of x.

Let Φ stand for this pair of defining clauses for of. The typing
judgment λf :i→i. λx:i. f(fx) : (i → i) → i → i amounts to
showing that the following sequent is derivable:

Φ ` of (abs (arr i i) (λf.
abs i (λx. app f (app f x))))

(arr (arr i i) (arr i i)).

1 Note: all relations have target type o, the type of λProlog formulas.

To prove this sequent, we would need to backchain the second clause
in Φ, which will produce the subgoal:

Φ, of f (arr i i) `
of (abs i (λx. app f (app f x))) (arr i i)

where f is a fresh variable, i.e., it does not occur free in the original
goal. Backchaining once more would produce the subgoal:

Φ, of f (arr i i), of x i `
of (app f (app f x)) i

where x is a fresh variable, i.e., it does not occur in the first subgoal
and is different from f .

As should be obvious from this example, every context that
occurs in derivations involving the of relation has the structure:

Φ, of x1 t1, . . ., of xn tn

where for i ∈ 1..n, the variable xi is fresh for Φ and for (xj , tj)
for every j ∈ 1..i − 1. The program Φ is a static participant in
these contexts, while the rest of the context is dynamic, determined
entirely by the original goal. In Abella, which can support inductive
definitions and generic quantification (using the∇ quantifier [11]),
the form of this dynamic portion of the context can be specified as
an inductively defined predicate ctx as follows.

Def ine ctx : o l i s t → prop by
ctx n i l

; nab la x, ctx (of x A :: G) , ctx G.

The type olist denotes a list of HOHH formulas (built as usual
using nil and ::) that represents the context, while the type prop
denotes formulas of the meta-logic. The definition consists of a
sequence of clauses separated by semi-colons; each clause contains
a head and an optional body (specified using ,). We follow the
λProlog convention of universally closing every clause of the
definition over its capitalized free variables. The nabla at the head of
the second clause of this inductive definition asserts that x is fresh
for—i.e., does not occur free in—A and G.

Using definitions such as ctx in proofs requires a number of
essentially administrative inductive theorems for reasoning about
the dynamic context (i.e., lists of type olist) specified by it.. These
lemmas amount to unfolding the ctx definition to observe the
structural properties of its argument, such as that the head of the list
is of the form of x A, that x is a nominal constant, and that it does
not occur in A or in the tail of the list. In Abella 2.0, such theorems
have to be proved manually. This is a common source of frustration
because of the generally uninteresting nature of these theorems and
their proofs. The problem is worse than it appears on the surface
because in a large development there may be several relations like of
above that may even be mutually recursive. Moreover, we often need
to reason about multiple contexts at the same time using inductively
defined context relations, which causes an exponential proliferation
of administrative lemmas.

In this work, we add a small amount of automation to Abella that
simplifies this kind of administrative overhead in the case where the
contexts being specified are regular. We add a mechanism to Abella
to define such regular contexts in terms of context relation schemas,
which is an explicit representation of the context relation as a weak
form of regular expression. This notion is a variant of regular worlds
from Twelf [15] and schemas from Beluga [16], but generalized to
context relations of arbitrary arity. We then add tacticals to Abella
that reflect on both the proof state and the declared schemas to
derive a number of administrative lemmas (along with their proofs)
automatically and on demand. Our automation is certifying: we
leave the core language and tactics of Abella unchanged, but add a
shallow surface layer of syntax that is compiled—as needed—into
that core. This is achieved by adding a plugin architecture to Abella
that allows for well-delimited extensions to the grammar of Abella;

these plugins in turn produce textual output that is then re-parsed by
the core (unmodified) Abella parser. Indeed, these plugins can be
used in an elaboration mode to remove all uses of the plugin from
an Abella development. Therefore, we do not rely on extensions of
the trusted computing base of Abella, not even its parser.

We begin with a quick overview of the Abella system (Section 2)
followed by a discussion of its new plugin architecture extension
(Section 3). We then give the specifics of the main Schemas plugin
that implements a mechanism for declaring schematic context
relations (Section 4). The particular administrative lemmas that
are derived automatically by this plugin are explained in detail in
Section 5. We end with a some quantitative evaluation of the plugin
(Section 6) and summary of related work (Section 7).

The implementation of this version of Abella can be found in:

http://abella-prover.org/schemas

2. Abella: an Overview
The Abella system has been documented in a sequence of papers [5,
19] and has a web-site2 with a sequence of tutorials, a user manual,
and an annotated suite of examples. We will only sketch the use of
Abella in this paper, eliding all details of its proof language.

Fundamentally, Abella consists of a reasoning logic that is
ordinary first-order intuitionistic logic extended with:
• inductive and co-inductive definitions of predicates;
• a simply typed higher-order term language endowed with an

intensional equality predicate at all types whose semantics is
given by unification;
• nominal constants and equivariant equality—i.e., two terms

that may be rewritten to each other by αβη and a systematic
permutation of their nominal constants are equated;3 and
• the nabla (∇) quantifier [11] and nominal abstraction [7] for

reasoning about nominal constants.
One particular inductive definition for a focused sequent cal-

culus for HOHH is treated specially, with a notation using { } and
tactics designed to leverage certain meta-theoretic properties of this
definition [19]. This inner specification logic is a fragment of the
λProlog language, so Abella can be used to reason about λProlog
specifications of object logics. Thus, Abella is an instance of the
two-level logic approach to specification and reasoning [8].

As a concrete illustration of the use of Abella, let us take
the typing example from the previous section. The type and kind
declarations are placed in a signature (here, stlc.sig), and the
clauses for the declared relations are placed in a corresponding
module (here stlc.mod). The pair of .sig and .mod files can
be directly executed in λProlog, such as using the tjcc compiler
and tjsim interactive toplevel of the Teyjus implementation [17].
Reasoning about a given specification (a signature/module pair)
is done either interactively at the Abella toplevel or in a batch
form using a .thm file (here, type_unique.thm). Figure 1 lists the
contents of the signature, the module, and an initial portion of the
reasoning file for a theorem stating that the types of λ-terms are
uniquely determined by the of predicate.

The theorem unique is proved by induction on the structure of
the first HOHH derivation, viz. {G ` of M A}. This is achieved in
Abella by means of the induction tactic that produces this subgoal:

IH : f o r a l l G M A B, ctx G → {G ` of M A}* →
{G ` of M B} → A = B.

====================
f o r a l l G M A B, ctx G → {G ` of M A}@ →

{G ` of M B} → A = B.

2 http://abella-prover.org
3 This is related to a similar notion from nominal logic [18], but we retain
the HOAS representation of terms.

s i g stlc.

k ind ty, tm type .
type i ty.

type arr ty → ty → ty.

type app tm → tm → tm.

type abs ty → (tm → tm) → tm.

type of tm → ty → o.
end.

module stlc.

of (app M N) B :−
of M (arr A B), of N A.

of (abs A R) (arr A B) :−
p i λx. of x A ⇒ of (R x) B.

end.

S p e c i f i c a t i o n "stlc".

Def ine ctx : o l i s t → prop by
ctx n i l

; nab la x, ctx (of x A :: G) , ctx G.

Theorem unique : f o r a l l G M A B, ctx G →
{G ` of M A} → {G ` of M B} →
A = B.

stlc.sig stlc.mod type_uniq.thm

Figure 1. Simply typed λ-calculus in Abella

(Note: Abella adopts the Coq style of displaying subgoals: hypothe-
ses and conclusions are separated by a line of ‘=’s.) The inductive
hypothesis, called IH, has the same form as the theorem except the
assumption that must be strictly smaller is marked with *. This as-
sumption in the conclusion is modified to have annotation @. This
annotation changes to * after at least one application of a backchain-
ing step, i.e., at least one unfolding of the inductive definition of the
HOHH sequent calculus. In Abella, this is achieved using the case
tactic that considers every possible way to backchain on clauses in
the program or in the dynamic context G to derive the conclusion
of M A. As expected, there are exactly three possibilities.

P1. Backchaining on the first program clause produces:
Variables: G M A B M1 N1 A1 B1
H1 : ctx G
H3 : {G ` of (app M1 N1) B}
H4 : {G ` of M1 (arr A1 B1)}*
H5 : {G ` of N1 A1}*
====================
B1 = B

The eigenvariables M and A are unified with the terms app

M1 N1 and B1 respectively.
P2. Backchaining on the second program clauses produces:

Variables: G M A B R A1 B1,
H1 : ctx G
H3 : {G ` of (abs A1 R) B}
H4 : {G, of n1 A1 ` of (R n1) B1}*
====================
arr A1 B1 = B

Once again, some eigenvariables get unified with other terms.
Moreover, the new assumption H4 has a larger dynamic
context, with a fresh assumption of n1 A1 where n1 is
a nominal constant. Abella uses the convention that all
identifiers beginning with ‘n’ and followed by numbers are
nominal constants.

P3. Finally, backchaining on an element of G itself produces:
Variables: G M A B F
H1 : ctx G
H3 : {G ` of M B}
H4 : {G, [F] ` of M A}*
H5 : member F G
====================
A = B

The hypothesis H4 stands for the assertion that we are
backchaining on F, which must be a member of G by H5.
Note that we don’t necessarily know what G is, but we do
have an inductive characterization of its structure by H1.

The proof follows the technique of unfolding H3, and then
appealing to the IH on the results. For example, for P1, one of
the cases would be:

Variables: G M A B M1 N1 A1 B1 A2 B2
H1 : ctx G
H4 : {G ` of M1 (arr A1 B1)}*
H5 : {G ` of N1 A1}*
H6 : {G ` of M1 (arr A2 B2)}

H7 : {G ` of N2 A2}
====================
B1 = B2

Here, invoking the IH on H1, H5, H7 will unite A1 and A2, so
H1, H4, H6 will then unite arr A1 B1 with arr A1 B2, which will
make the conclusion true. The other case is when H3 is itself proved
by backchaining on a clause in G:

Variables: G M A B M1 N1 A1 B1
H1 : ctx G
H4 : {G ` of M1 (arr A1 B1)}*
H5 : {G ` of N1 A1}*
H6 : {G, [F] ` of (app M1 N1) B}
H7 : member F G
====================
B1 = B

This case is impossible, since (by H1) G contains only assumptions of
the form of n C where n is a nominal constant. Nominal constants
can only be united with other nominal constants up to equivariance,
so {G, [of n C] ` of (app M1 N1) B} has no proof, since n and
app M1 N1 do not unify. In Abella this can be stated as a lemma.

f o r a l l G E, ctx G → member E G →
e x i s t s X A, (E = of X A) ∧ name X.

where name asserts that its argument is a nominal constant of type
tm, definable in Abella as:

Def ine name : tm → prop by nab la x, name x.

This is an administrative lemma that can almost entirely be derived
from the ctx definition.

Another example of an administrative lemma comes from case
P3, where from the above lemma we know that F = of n1 C

and member (of n1 C)(G n1). Note that G is raised over the new
nominal constant n1. This changes H4 to {G n1, [of n1 C] ` of

(M n1) (A n1)}, which in turn gives the solution M n1 = n1 (i.e.,
M = λx. x) and A n1 = C (i.e., A = λx. C). Now, if we apply the
same reasoning to the hypothesis H3, we would deduce that member
(of n1 D) (G n1) and of n1 D. The conclusion will require us to
show that C = D. This requires the following lemma.

f o r a l l G X A B, ctx G → member (of X A) G →
member (of X B) G → A = B.

This is a uniqueness lemma that guarantees that every every variable
is assigned a unique type in G by the ctx definition. As before, this
lemma has an uninteresting inductive proof that follows almost
entirely from the definition of ctx. Indeed, its proof itself uses
another administrative lemma asserting that a nominal constant that
does not occur in a list cannot occur in any member of the list.

f o r a l l G E, nab la (n:tm),
member (E n) G → e x i s t s F, E = λx. F.

In other words, if E n occurs in G, which cannot depend on n because
of the order of forall and nabla, it must be the case that E cannot
depend on n either, i.e., E begins with a vacuous λ-abstraction.

In all, the administrative lemmas and their proofs constitute
about 60% of the lines of code in this reasoning file. Such lemmas
occur repeatedly in the examples suite of Abella, often with slight
variations in their formulation and a wide variance in their names.
Larger developments contain a number of specified relations such
as of, each producing its own ctx definition and their associated
administrative lemmas. Indeed, Abella even allows for context
relations, which are inductive definitions such as ctx with multiple
context arguments, which further causes an exponential proliferation
of administrative lemmas. It has been clear for a long time that we
require better automation to deal with such lemmas about contexts.
Indeed, this is one of the criticisms of Abella in the recent survey of
HOAS reasoning systems by Felty et al. [4].

3. A Framework for Plugins
This work proposes to derive a large class of these administrative
lemmas automatically when the relevant ctx-like definition has a
regular form. We implement this technique in terms of a plugin in
an extension of the Abella system with a plugin architecture. As the
architecture is rather generic, we describe it before the particular
plugin for deriving administrative lemmas.

Abella is written in OCaml and has a broadly LCF-style archi-
tecture with a core family of trusted tactics that formalize the infer-
ence rules of the logic G [7]. The basic reasoning tactics case (for
case-analysis) and search (for depth-bounded automated search) are
implemented using these core tactics. However, Abella 2.0 lacks a
mechanism for defining new tactics like case and search; users of
Abella must write their proofs using the tactics that already exist.
This design allows Abella to be compiled—even to act as a compiler
itself—but does limit its versatility.

Our approach is to allow users to write Abella plugins that
can extend both the grammar of Abella and its family of tactics.
However, we do not allow arbitrary extensions of either. We require
all extensions to the grammar to be explicitly delimited, and for
all top level commands and proof tactics added in the plugins to
function as elaborators that produce proof text for the core Abella
plugins. This not only makes the plugins certifying, keeping the
trusted core of Abella unaltered, but also allows developments built
using plugins to be used even in versions of Abella without the
plugin architecture.

Each toplevel command or tactic added by a plugin named Plug

must have the form

Plug ! <text> !.

where the <text> is arbitrary text that must not contain the token ‘!’.
Abella will scan its list of known plugins for a plugin named Plug,
which will then be asked to elaborate the <text> into either toplevel
commands or core tactics, depending on where it was encountered.
Plugins can be stateful: they can store and recall all the text that they
have encountered in a single run of Abella. However, they are not
allowed to modify any associated specification or reasoning files,
nor the internal data structures of Abella’s core.4

More precisely, every plugin is an OCaml module that ascribes
to the following module type:

module type PLUGIN = s i g
v a l process_tactic :

core:(string → Prover.sequent)
→ string
→ Prover.sequent
→ unit

4 Since OCaml is an impure language, it is not possible to enforce these rules
as such; however, since all plugins must be able to produce output that can be
re-checked in a version of Abella without plugins, no plugin can ultimately
break soundness.

v a l process_top :
core:(string → unit)
→ string
→ unit

end

Each module of type PLUGIN has to implement two functions,
process_tactic and process_top, defining its behavior on tactics
and toplevel commands, respectively. Each function takes a named
parameter core, a shallow wrapper around the core Abella function-
ality which processes the elaborated string produced by the plugin.
In particular, this string argument to core is parsed by the unmodi-
fied Abella parser, i.e., the parser from Abella 2.0 that does not imple-
ment the plugin architecture. These core functions may be called—
possibly never or multiple times—by the plugin functions, but a
plugin must treat the core function abstractly. The process_tactic

function can additionally reflect on the state of the prover—i.e.,
the current subgoal that has the type Prover.sequent—at the point
where the corresponding plugin tactical was invoked. However, this
function cannot construct new sequents and must instead drive the
core function using core Abella tactics for every new sequent it
wishes to create. The only way for the plugin to alter the state of
Abella using the core function.

To add a new plugin to Abella, it is necessary to add the
module implementing PLUGIN to a global plugins table. This table
is stored in the file abella.ml that is the entry point for Abella,
so every added plugin requires recompiling this file and relinking
Abella. For instance, to add the Schemas plugin implemented as the
OCaml module Schemas (described in the next section), we add the
following line to abella.ml and recompile Abella.

Hashtbl.add plugins "Ctx"
(module Schemas : PLUGIN) ; ;

Note that plugins is a mapping from strings to first-class OCaml
modules, which were added in OCaml 3.12 and significantly im-
proved in 4.0. We require plugin names to be valid upper-cased
Abella identifiers distinct from all built-in core keywords, and their
namespace is flat and global. In future work, we plan to use the
dynamic loading features of OCaml 4.02+—which is not yet re-
leased at the time of writing this paper—to avoid recompilation, and
instead have Abella dynamically initialize the table of plugins from
a configuration file.

4. Regular Context Relations
The ctx definition of Fig. 1 is a unary context relation. Abella allows
definitions of context relations of arbitrary arity, and even relations
between contexts and other inductively defined structures such as
natural numbers. From this zoo of possibilities, we select a class of
regular context relations for which we can automatically derive the
administrative lemmas. A regular context relation of arity n ≥ 1:
• is an inductively defined predicate on n arguments of type olist ;
• relates n nil s as the base case; and
• each non-base case clause of the predicate completely specifies

the heads of all the argument lists and whose bodies are just
recursive invocations on the tails of the lists.

The Schemas plugin of Abella adds a new toplevel declaration,
Schema, for declaring such regular context relations. This declara-
tion has the following general form

Schema <name > , <clause1> ; · · · ; <clausej >

where each <clausei> has the form:

e x i s t s A1 ... Am, nab la x1 ... xn,
(F1, ... , Fk)

where the Fi are either arbitrary HOHH formulas built using the
variables A1, ..., Am, x1, ..., xn or left blank, indicating that

the clause does not modify this projection of the context relation.
The number of Fi determines the arity of the definition; each clause
must specify exactly k projections for a relation of arity k. Note that
the nesting order of exists and nabla is fixed and guarantees that
every xi is fresh for each Aj .

As a simple example, here is how the ctx definition of Fig. 1 can
be written as a schema.

Schema ctx ,
e x i s t s A, nab la x, (of x A).

Using the Ctx plugin, we would in fact write it as follows:

Ctx! Schema ctx , e x i s t s A, nab la x, (of x A). !.

When the Ctx plugin processes this declaration, it instructs Abella’s
kernel (using process_top, cf. Section 3) to process exactly the
inductive definition of ctx in Fig. 1. The ctx nil nil case is
implicitly added, and is therefore not part of the schema declaration.
In the rest of this section, we will elide the Ctx! ! delimiters.

A more complex example comes from the normal.thm
5 file from

Abella’s example suite that shows how to partition λ-terms into
normal and neutral (aka. atomic) forms:

Def ine ctxs : o l i s t → o l i s t → prop by
ctxs n i l n i l

; nab la x, ctxs (term x :: L)
(neutral x :: K) , ctxs L K.

Here is how it is depicted as a context relation schema.

Schema ctxs , nab la x, (term x, neutral x).

Note that if any of the exists or nabla bound variables list is empty,
the corresponding exists or nabla prefix may be dropped. The
important feature of this schema is that the nominal variable x is
shared between the two contexts in the relation.

For a yet more complex example to illustrate that the formulas
at the heads of the lists representing the related contexts need not be
atomic, take the ctx2 definition from breduce.thm

6 [19].

Def ine ctx2 : o l i s t → o l i s t → prop by
ctx2 n i l n i l

; nab la x p, ctx2 (bred x x :: G)
(path x p :: D) , ctx2 G D

; nab la x,
ctx2 ((p i λu. bred N u ⇒ bred x u) :: G)

((p i λq. path N q ⇒ path x q) :: D) ,

ctx2 G D.

Here is its depiction as a context relation schema.

Schema ctx2 =
nab la x p, (bred x x, path x p)

; e x i s t s N, nab la x,
((p i λu. bred N u ⇒ bred x u),
(p i λq. path N q ⇒ path x q)).

The second clause above has three kinds of variables: existential (N),
nominal (x), and bound (u and q). Only the existential and nominal
variables can be shared between the related contexts.

For a final example, take the ctxs definition from cr.thm:7

Def ine ctxs : o l i s t → o l i s t → o l i s t → prop by
ctxs n i l n i l n i l

; nab la x, ctxs (trm x :: L)
(pr1 x x :: K)
(cd1 x x :: notabs x :: J) ,

ctxs L K J.

5 In: examples/lambda-calculus/term-structure/normal.thm
6 In: examples/higher-order/breduce.thm
7 In: examples/lambda-calculus/cr.thm

The third argument of the second clause adds two elements to
the head. We use the conjunction operator (&) of λProlog in the
corresponding schema.

Schema ctxs =
nab la x, (trm x, pr1 x x, cd1 x x & notabs x).

It should be noted that the support for reasoning about & is currently
rather primitive in Abella. While the above declaration is accepted
by the plugin, the automatically derived theorems currently are not
accepted by Abella. (The generated definition itself is accepted.)

We end this section by noting a number of ways in which regular
context relations given as schemas do not capture the full generality
of definable relations in Abella:
• Multiple schemas may not be mutually recursive.
• Schemas can only relate dynamic contexts (olist), not other

inductively defined objects such as natural numbers.
None of these restrictions is significant as there is exactly one in-
stance of each kind in the current Abella examples. Moreover, re-
moving these restrictions appears to add considerable complications
to the automatic derivation of theorems. We therefore leave them to
future work.

5. Derived Administrative Lemmas
In this section we inventory the administrative lemmas that are
automatically derived from the schema declarations by the Schemas
plugin. These lemmas are of two basic kinds: those that arise from
the types of the existentially and nominally quantified variables in a
schema declaration, and those that arise from its logical structure.
Lemmas of the first kind are mainly used in the automatically derived
proofs of the lemmas of the second kind, but are sometimes also
useful in the general toolset.

5.1 Lemmas from Types
Consider again the simple schema below corresponding to the ctx

predicate of Fig. 1.

Schema ctx , e x i s t s A, nab la x, (of x A).

As we already mentioned, from this declaration (and its induced
inductive definition), we intend to derive, automatically, that x is a
nominal constant and that x is fresh for A. In Abella, these properties
are easily defined, but because Abella is not polymorphic, these
definitions have to be manually monomorphized to the types in
question. For instance, in the above schema, type-inference would
derive the fact that A has type ty and x has type tm. Thus, we would
need the following instances of the name and fresh predicate:

Def ine name_tm : tm → prop by
nab la x, name x.

Def ine fresh_tm_in_ty : tm → ty → prop by
nab la x, fresh x A.

As a side-effect of processing the Schema declaration above, the
Schemas plugin automatically adds these definitions. Precisely, a
name predicate is generated for each type of nominally quantified
variable in any clause of a schema, and a fresh predicate for every
pair of types of nominal variables and existential variables in each
clause of the schema. Note that these instances apply to basic types
declared in the signature, not to arbitrary types; if the schema uses
such types, then no such definitions are generated. The Schemas
plugin keeps track of all such administrative definitions to prevent
duplicates, but it may add definitions that are not ever used. This
is because Abella only allows inductive definitions at the top-level,
not during a proof, and no plugin is allowed to “rewind” the state of
Abella to retroactively add definitions.

For each type of a nominally quantified variable, the Schemas
plugin also generates a prune lemma, as explained in Section 2.
Here is the version for tm:

Theorem member_prune_tm :
f o r a l l G E, nab la (x:tm),

member (E x) G → e x i s t s F, E = λx. F.

Note that no member_prune_ty is generated as there is never a
nominally quantified variable of type ty in the schema. The Schemas
plugin uses process_top and process_tactic to both state and
prove the member_prune_tm theorem.

We note here that much of this administrative boilerplate can
be removed if Abella were to support type-polymorphism. The
definitions of name and fresh, and the statement and proof of
member_prune, are identical for every type, and ideally should be
part of the standard prelude. However, this does not mean that
type-based administrative definitions and lemmas are completely
worthless. For instance, Abella does not currently allow induction on
typing itself, which means that induction on the structure of a term
must be mediated by a somewhat redundant inductive definition
of the structure of well-typed terms. Such definitions and their
corresponding lemmas can be automatically derived by the Schemas
plugin (or by a different specialized plugin) in the future.

5.2 Lemmas from Logical Structure
The remaining administrative lemmas in the Schemas tactic come
from the logical structure of the Schema declaration. These are
implemented in the Schemas plugin as new tacticals that can be
invoked in the process of a proof. Each tactical reflects on the
structure of the subgoal being proved and the schema declarations
known so far to introduce new assumptions into the context, which
are then used using the standard Abella tactics to continue the proof.

Inversion. The inversion tactical reflects on two assumptions,
one of which is a context atom ctx G1 ... Gn, where ctx is
produced by a Schema declaration, and the other is of the form
member E Gi for some i ∈ 1..n. The result of the tactical is that E
must be one of the formulas that occur in the ith position in the
clauses of the Schema declaration. For example, given the schema:

Schema ctx_ofev ,
e x i s t s A, nab la x, (of x A, eval x x)

; e x i s t s A V, nab la x, (of x A, eval x V).

and a subgoal with:

H1 : ctx_ofev G D
H2 : member E D

the tactical inversion H1 H2 produces the new assumption

H3 : (e x i s t s A X, (E = eval X X)
∧ member (of X A) G
∧ fresh_tm_in_ty X A)

∨ (e x i s t s A V X, (E = eval X V)
∧ member (of X A) G
∧ fresh_tm_in_ty X A
∧ fresh_tm_in_tm X V)

Each disjunct produced by this tactical therefore contains:
• the corresponding member(s) of the other context(s) in the

context relation; and
• the necessary assumptions about freshness of the nabla-quantified

variables in the Schema declaration
corresponding to the clause.

Internally, the process_tactic function of the plugin is used to
first assert8 and prove the general form of an inversion lemma; this
asserted lemma is then used for the particular hypotheses indicated
in the arguments of the tactical. The proof of the assertion is by a

8 The assert tactic of Abella is used to assert and prove a lemma in a
subproof and then to continue the proof with the lemma as a hypothesis, i.e.,
it is an instance of the cut rule of the G logic.

nested induction on the induced inductive definition produced by
the relevant Schema declaration, with one case each for each clause
of the schema and an additional base case for the related contexts
all being empty.

This generated statement and proof of the inversion lemma is
cached by the Schemas plugin. If it is used repeatedly in subproofs
of the same proof, then it does not need to be re-checked by Abella.
However, this is not the case if the inversion tactical is used in
sibling branches or in other theorems, where it would have to be
checked again. This design is currently due to limitations of Abella’s
design that prevents closed lemmas from being exported out of
proofs. Moreover, although Abella allows aborting of the current
proof, the plugin architecture does not see the whole proof and
hence cannot itself replay the whole proof in a suitably modified
environment with an additional named lemma. These restrictions
are not fundamental and may be lifted in future versions of Abella
and the Schemas plugin.

Synchronize. Related to the inversion tactical is sync, which
uses the form of the term in the member relation to select the
relevant disjunct(s) of the inversion lemma. For instance, consider
the following simplified form of the schema form of the ctx2 relation
of breduce.thm:

Schema ctx_bp ,
nab la x p, (bred x x, path x p)

; e x i s t s N, nab la x, (bred x N, jump x N).

Here, if we knew that:

H1 : ctx_bp G D
H2 : member (path n1 n2) D

then the tactical application sync H1 H2 produces:

H3 : member (bred n1 n2) G

as that is the only disjunct of the inversion lemma that is relevant.
Note that n1 and n2 must be nominal constants by the lexical
structure of Abella.

A more interesting case is:

H1 : ctx_bp G D
H2 : member (bred n1 n2) G

In this case, sync H1 H2 would produce:

H3 : member (jump n1 (N n1 n2)) G
H4 : fresh_tm_in_ty n1 (N n1 n2)

for a fresh variable N that is raised over both n1 and n2. The first
clause of the schema does not match because bred n1 n1 does not
equivariantly unify with bred n1 n2. In this case, the additional
assumption H4 would suffice to show that N n1 n2 does not actually
contain n1, i.e., that N has a vacuous λ-abstraction.

This tactical is more useful than inversion when the form of the
member is constrained enough to fit exactly one clause of the schema.
If it were applied to unconstrained terms, then the effect would just
be a case enumeration identical to the use of inversion. The sync

tactical is implemented in much the same way as inversion, except
it also prunes obviously impossible cases based on the patterns of
the formulas in the schema. Note that this tactic would fail to apply
in the case that the unification problems fall outside the pattern
fragment, but this is not a limitation of the plugin as proving the
equivalent theorem in core Abella would require manual intervention
anyhow. (Such schemas are rare in practice.)

Uniqueness. A very useful administrative lemma is the fact that
each nabla-quantified variable has at most one point of introduction
in a regular context relation. This is best illustrated with an example:
consider again the schema for ctx from Fig. 1:

Schema ctx , e x i s t s A, nab la x, (of x A).

In this case, if we are in a subgoal with:

H1 : ctx G
H2 : member (of X A) G
H3 : member (of X B) G

then it must be that A and B are equal, since there is only one clause
of ctx that could have introduced any member of the form of X C

into G. This is achieved by the tactical application unique H1 H2 H3,
which has the side effect of uniting the terms A and B.

While easily explained, this tactical has several subtleties. First,
we require that the contexts—the G above—be identical in all three
arguments to unique, and that each member—the of X A and of

X B above—be unifiable with one of the formulas in the contexts
related in the Schema declaration. If the latter assumption is not
true, then we can just use inversion to rule out this entire subgoal
as impossible. Second, we do not require the term corresponding
to the nabla-quantified variables—the X above—to be a nominal
constant; if it is not a nominal constant, then the inversion lemma
rules out the subgoal as impossible. Finally, the generated lemma
and its proof requires the use of the member_prune lemma explained
in the previous section: in the inductive argument, the case where
one of the members is the first element of the context while the other
member is not is impossible, and member_prune very succinctly
rules it out.

Projection. It is a common design pattern in Abella to prove
inductive theorems for the smallest context relations that suffice.
Thus, theorems about typing using a specified relation of would use
a unary context schema about of, while those about evaluation
using eval would use a unary schema for eval. However, if a
theorem has to relate typing to evaluation, such as in proofs of
type-preservation, then it is necessary to state the theorem using a
binary schema relating the two contexts. Unfortunately, in Abella
there is no automatic way to “import” a theorem proved using a
unary context relation into one with a binary relation, nor “export”
theorems the other way. Such facts must be proved by hand.

A common denominator of such facts is that there exist mappings
between two context relations that existentially close over the
contexts in the target of the mapping that are not present in the
source. We call such mappings projections. The projas tactical
applies to an assumption:

H1 : rel1 G1 ... Gn

where rel1 is a schematic context relation. The tactical application

projas (rel2 D1 ... Dm) H1

where each Dj is either one of the Gi or is a new eigenvariable, has
the effect of adding the assumption

H2 : rel2 D1 ... Dm

to the goal, when justified.
This tactical application is interpreted into a general projection

lemma that has the following form. Let Dφ(1), . . . , Dφ(k) be the
eigenvariables that are distinct from all the Gi. Then, the following
lemma is proved by induction:

f o r a l l G1 ... Gn, rel1 G1 ... Gn →
e x i s t s Dφ(1) ... Dφ(k), rel2 D1 ... Dm.

This proof proceeds by induction on the definition of rel1, but
is rather straightforward. Of course, if all the Dj are distinct from
the Gi, then this tactic is useless. Like the other tacticals, projas
detects invocations which are invalid or outside its fragment and
only generate proofs which will be accepted by the Abella kernel.

To illustrate one of the limitations to its fragment, consider the
following pair of schemas:

Schema rel1 , (i, i).
Schema rel2 , (i,) ; (, i).

where i is an atomic HOHH formula of type o. Clearly,

f o r a l l G, rel1 G → rel2 G.

is provable. However, as no single clause of rel2 matches the non-
trivial clause of rel1, projas would not apply to this theorem.

6. Experimental Evaluation
We based our implementation of the plugin architecture on Abella
version 2.0.1.9 Our initial experiments are promising. For instance,
using the Schemas plugin to rewrite the breduce example from [19]
removes over 40% of the lines of code from the file breduce.thm.
Table 1 contains a summary of improvements in a few other exam-
ples from the Abella examples suite. In addition to this quantitative
reduction in size, we can also compare the plugin qualitatively: the
Schemas tacticals free us from the tedium of writing and proving the
administrative lemmas that make Abella developments both tedious
to write and hard to read. Our experience using the plugin has been
entirely positive, so we plan to integrate the plugin architecture into
the next release (2.1.x) of Abella.

File # schemas # lemmas derived LOC removed % removed
breduce 3 11 124 42
copy 1 4 28 43
cr 1 3 32 19
type uniq 1 3 27 63

Table 1. Quantitative evaluation of the Schemas plugin on some
examples from the Abella examples suite

7. Related Work
The concept of regular context relations, at least in the unary case,
is similar to that of regular worlds from Twelf, introduced in version
1.4 [14, Section 9.1]. A regular world is an arbitrary repetition of
a sequence of blocks, which are individually named in Twelf and
correspond to the clauses of our Schema declarations. Despite the
superficial similarity of Twelf’s block and world declarations and our
Schema declarations, there are some significant differences: first,
we use nominal abstraction (“nabla at the head”) [7] to interpret our
nabla-quantified variables, rather than universal quantification as
in Twelf, which allows us to directly use the logical principles of
G to derive pruning, inversion, and uniqueness theorems; second,
regular worlds in Twelf are tied to a particular inductive type family
and cannot be reused as such for different families, nor can a family
have different regular world declarations; third, the regularity is at
the level of local extensions to the dynamic context rather than
to the entire dynamic context as a whole; and finally, because
Twelf contexts contain both variable declarations and ordinary
assumptions, the rigid list structure of regular worlds forces the use
of somewhat unnatural placement of quantifiers in the specification,
explained in [14, p. 49]. Twelf also has a concept of world-checking,
where the constructors of an inductive type family in a signature
are automatically checked (using a trusted checker) to conform to
the declared world for that family. This feature is sometimes useful
as a sanity check on specifications, but is ultimately orthogonal to
formal (logical) reasoning about the specifications.

Regular contexts are given a more principled foundational treat-
ment in the Beluga system [16], which is a dependently typed
programming language for reasoning about contextual modal LF
terms [12]. Indeed, we appropriated the term “schema” from Bel-
uga. Schemas in Beluga, like regular worlds in Twelf, are treated as

9 See: http://abella-prover.org/schemas

classifiers of individual contexts, which make them similar to unary
context relation schemas in our plugin. Schemas are tightly inte-
grated into the Beluga type system, and it does not make much sense
to ask for its treatment of schemas to be certifying with respect to a
system without schemas. However, this does raise the level of trust
required in the Beluga implementation. For instance, administrative
lemmas such as uniqueness and inversion are unnecessary in Beluga
as they are built into the type-checker, which is therefore necessarily
more complex than the rather straightforward implementation of the
core tactics of Abella, which are themselves direct implementations
of the G inference rules [6, 7].

Our plugin architecture is a restricted form of tacticals—
functions on tactics—initially designed in the LCF family of theorem
provers (such as HOL) but now pervasive in Coq, Isabelle, NuPRL,
etc. There is a particular similarity to tactics languages such as
LTac [1] of Coq that allow building tactics libraries that can reflect
on the state of the prover and construct proofs from meta-procedures,
which are then checked by the Coq kernel. However, Coq provides
no support for reasoning about higher-order abstract syntax, which
is our main interest. The Hybrid system [2] is one approach for
reasoning about HOAS in Coq by using an intermediate De Bruijn
representation; indeed, several of the tactics of the Schemas plugin
are reminiscent of similar operations in Hybrid, but a formal corre-
spondence seems difficult given the difference in nature between
Hybrid and Abella.

Meta-theorems for reasoning about HOAS-specified object logics
has been the topic of a recent survey article sequence [3, 4] that
both identifies a family of essential theorems and compares the per-
formance of Twelf, Beluga, Abella, and Hybrid. We believe most
of the lemmas and theorems in the associated ORBI library can be
automatically derived from a simple composition of the tacticals
in the Schemas plugin. For instance, admissibility of reflexivity [4,
Theorems 7, 14, 21], context inversion [4, Lemma 9], and complete-
ness [4, Lemma 22] follow immediately from our sync tactic while
relational strengthening [4, Theorems 15, 20] correspond to projas.
Other theorems such as context membership [4, Lemma 6] require
both inversion and unique, while transitivity [4, Theorem 10] re-
quires a sequence of applications of inversion. While our plugin
does not change the logic of Abella, it resolves much of the tedious-
ness of an explicit representations of contexts that was criticized in
this survey.

8. Conclusion and Perspectives
We have described an extension to Abella with a backwards-
compatible and certifying plugin architecture, which we have used
to implement regular context relations in a Schemas plugin, and
have given a preliminary experimental evaluation using existing
examples from the Abella examples suite.

The main missing feature in this plugin is the ability to reason
about context strengthening using subordination, which is a built-
in (trusted) feature of both Twelf and Beluga. Since Abella relies
strongly on its logical foundations in the G logic, the first step
would be to give a logical characterization of strengthening and
subordination, which is currently an open problem. To an extent
strengthening and subordination are not strictly necessary in Abella
since we can tailor the context relations to fit the theorems, instead
of using a common global context for all theorems. Nevertheless,
there are instances in the Abella examples suite where, for instance,
one needs to show that the addition of natural numbers remains
commutative even when there are assumptions about λ-terms in
the dynamic context. Such lemmas are an easy consequence of
subordination—the type of λ-terms is not subordinate to that of
numbers—but still currently require manual proofs.

Acknowledgements. This work was partially supported by the
INRIA Associated Team grant RAPT and by the ERC Advanced
Grant ProofCert.

References
[1] D. Delahaye. A tactic language for the system Coq. In Proceedings

of the 7th International Conference on Logic for Programming and
Automated Reasoning, volume 1955 of LNCS, pages 85–95. Springer,
2000.

[2] A. Felty and A. Momigliano. Hybrid: A definitional two-level approach
to reasoning with higher-order abstract syntax. J. of Automated
Reasoning, 48:43–105, 2012.

[3] A. P. Felty, A. Momigliano, and B. Pientka. The next 700 challenge
problems for reasoning with higher-order abstract syntax representa-
tions: Part 1—A foundational view, 2014. URL http://www.site.
uottawa.ca/~afelty/dist/FMP-Part1.pdf.

[4] A. P. Felty, A. Momigliano, and B. Pientka. The next 700 challenge
problems for reasoning with higher-order abstract syntax representa-
tions: Part 2—A survey, 2014. URL http://www.site.uottawa.
ca/~afelty/dist/FMP-Part2.pdf.

[5] A. Gacek. The Abella Interactive Theorem Prover (System Description).
In Proceedings of the International Joint Conference on Automated
Reasoning, pages 154–161, 2008.

[6] A. Gacek. A Framework for Specifying, Prototyping, and Reasoning
about Computational Systems. PhD thesis, University of Minnesota,
2009.

[7] A. Gacek, D. Miller, and G. Nadathur. Nominal abstraction. Informa-
tion and Computation, 209(1):48–73, 2011.

[8] A. Gacek, D. Miller, and G. Nadathur. A two-level logic approach
to reasoning about computations. J. of Automated Reasoning, 49(2):
241–273, 2012. . URL http://arxiv.org/abs/0911.2993.

[9] D. Miller and G. Nadathur. A computational logic approach to syntax
and semantics. Presented at the Tenth Symposium of the Mathematical
Foundations of Computer Science, IBM Japan, May 1985.

[10] D. Miller and G. Nadathur. Programming with Higher-Order Logic.
Cambridge University Press, June 2012. .

[11] D. Miller and A. Tiu. A proof theory for generic judgments: An
extended abstract. In P. Kolaitis, editor, 18th Symp. on Logic in
Computer Science, pages 118–127. IEEE, June 2003.

[12] A. Nanevski, F. Pfenning, and B. Pientka. Contextual model type theory.
ACM Trans. on Computational Logic, 9(3):1–49, 2008.

[13] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings
of the ACM-SIGPLAN Conference on Programming Language Design
and Implementation, pages 199–208. ACM Press, June 1988.

[14] F. Pfenning and C. Schuermann. Twelf User’s Guide. Carnegie Mellon
University, 1.4 edition, 2002.

[15] F. Pfenning and C. Schürmann. System description: Twelf — A meta-
logical framework for deductive systems. In H. Ganzinger, editor,
Proceedings of the 16th Conf. on Automated Deduction, number 1632
in LNAI, pages 202–206, Trento, 1999. Springer.

[16] B. Pientka and J. Dunfield. Beluga: A framework for programming and
reasoning with deductive systems (system description). In Proceedings
of the 5th International Joint Conference on Automated Reasoning,
number 6173 in LNCS, pages 15–21, 2010.

[17] X. Qi, A. Gacek, S. Holte, G. Nadathur, and Z. Snow. The Teyjus
system – version 2, Mar. 2008. http://teyjus.cs.umn.edu/.

[18] C. Urban, A. M. Pitts, and M. Gabbay. Nominal unification. Theoretical
Computer Science, 323(1-3):473–497, 2004.

[19] Y. Wang, K. Chaudhuri, A. Gacek, and G. Nadathur. Reasoning
about higher-order relational specifications. In T. Schrijvers, editor,
Proceedings of the 15th International Symposium on Princples and
Practice of Declarative Programming, pages 157–168, Madrid, Spain,
Sept. 2013. .

