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General overview 

¨  Uncertainty relations important in quantum 
cryptography 

 
¨  We view uncertainty relations as special kind of 

randomness extractors (QC-extractors) 

¨  Use techniques from the study of extractors 



Outline 

¨  Introduction 
¤ Getting to the definition 

¨  Quantum to classical randomness extractors 
¤ Definition 
¤ Parameters 
¤ Constructions 

¨  Application to security in noisy storage model 
¤ Model 
¤ Weak string erasure & link between security and 

quantum capacity 

 
 



Randomness extraction 

 
¨  Question: Given a weak source of randomness, how to convert 

it to private random bits? 

 
¨  Example: QKD 

¤  parameter estimation step à adversary has some uncertainty about 
bits of Alice and Bob  

¤  “privacy amplification” or “randomness extraction” step 
 
¨  Important: Weak source of randomness: no control over the 

source 



Randomness extractor from quantum 
source 

¨  Here: source is a quantum system 
¨  1st try: 
 

¨  Not good enough: use the knowledge of the input 
state 

1
2
(| 0 > + |1>) Random bit 



QC-extraction: Better example 

¨  Pick i in {0,1} at random 
 

 with U0= I and U1 = H 
 
Theorem [Maassen and Uffink 1989] 

For any input state 
 

 

 
 
H: Shannon entropy (measure of uncertainty)  
 

Xi Ui 
|ψ >

1
2
(H (X0 )+H (X1)) ≥

n
2

H (X)∈ [0,n]



QC-extraction: Better example 
continued 
•  Pick i in {0,1} at random with U0= I and U1 = H 

 
 
 
 
 
Theorem [Berta, Christandl, Colbeck, Renes, Renner 2010] 

For any input state  
 
 

 
 
 

Xi Ui 
ψAE

1
2
(H (X0 | E)+H (X1 | E)) ≥

n
2
+
1
2
H (A | E)

Adversary system E 

Uncertainty given E 

A 

=-n for max. entangled 

Can be used to prove security 
of QKD 



QC-extractor: informal definition 

¨  Shannon entropy: weak measure of uncertainty 
¨  Want output indistinguishable from uniform random 

bits except with small probability ε 
¨  Need L > 2 measurements 
Definition: For all input states ρAE “not too entangled” 
 

 

Ui 
ψAE

Adversary system E 

A 

≈ε
idA1
| A1 |

⊗ ρE

on average over i in {1,…, L} 

A1 



Measuring uncertainty relative to 
adversary 

¨  Right measure:  

¨  Examples: 

 

Hmin (A | E)∈ [− log | A |, log | A |]

ρAE =|ψ〉〈ψ |A ⊗ρE

Hmin (A | E) = − log | A || ρ〉AE =
1
| A |

| j〉A | j〉∑ E

ρAE =
idA
| A |

⊗ ρE

Hmin (A | E) = 0

Hmin (A | E) = log | A |

Hmin (A | E) =max{λ : ρAE ≤ 2
−λ id⊗ ρE}

Maximally entangled state 



QC-extractor: more formal def 

Definition 
QC-extractor is a set of unitaries {U1,…,UL} such that for all ρAE such that 
Hmin(A|E) > k 
 

¨  τ: Measurement + discard  

¨  Parameters: 
¤  k : how much uncertainty is needed in the input 
¤  log|A1|: size of output 
¤  ε: statistical error 
¤  L: number of unitaries 
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III. QUANTUM TO CLASSICAL RANDOMNESS EXTRACTORS (QC-EXTRACTORS)

The use of random bits is of fundamental importance for many information theoretic and computational tasks.
However, perfect randomness is not easily found in nature. Most sources of randomness only exhibit weak forms of
unpredictability. In order to use such sources in applications, one has to find a procedure to convert weak randomness
into almost uniform random bits. Such procedures are usually referred to as randomness extractors, which have been
extensively studied in the theoretical computer science literature; see [76, 84] for surveys.

In a classical world, the sources of randomness are described by probability distributions and the randomness
extractors are families of (deterministic) functions taking each possible value of the source to a binary string. To
understand the definition of quantum extractors, it is convenient to see a classical extractor as a family of permutations
acting on the possible values of the source. This family of permutations should satisfy the following property: for any
probability distribution on input bit strings with high min-entropy, applying a typical permutation from the family
to the input induces an almost uniform probability distribution on a prefix of the output. We define a quantum to
quantum extractor in a similar way by allowing the operations performed to be general unitary transformations and
the input to the extractor to be quantum.

Definition III.1 (QQ-Extractors). Let A = A
1

A
2

with n = log |A|. Define the trace-out map trA2 : L(A) ! L(A
1

)
by trA2(.) =

P
a2
ha

2

|(.)|a
2

i , where {|a
2

i} is an orthonormal basis of A
2

.
For k 2 [�n, n] and " 2 [0, 1], a (k, ")-QQ-extractor is a set {U

1

, . . . , UL} of unitary transformations on A such
that for all states ⇢AE 2 S(AE) satisfying H

min

(A|E)⇢ � k, we have

1

L

LX
i=1

����trA2

h
Ui⇢AEU

†
i

i
� IA1

|A
1

| ⌦ ⇢E

����
1

 " . (17)

logL is called the seed size of the QQ-extractor.

We make a few remarks on the definition. First, we should stress that the same set of unitaries should satisfy (17)
for all states ⇢AE that meet the conditional min-entropy criterion H

min

(A|E)⇢ � k. In particular, the system E can
have arbitrarily large dimension. The quantity H

min

(A|E)⇢ measures the uncertainty that an adversary has about the
system A. As it is usually impossible to model the knowledge of an adversary, a bound on the conditional min-entropy
is often all one can get. A notable di↵erence with the classical setting is that the conditional min-entropy k can be
negative when the systems A and E are entangled. In fact, in many cryptographic applications, this case is the most
interesting.

A statement of the form of Equation (17) is more commonly known as a ‘decoupling’ result [1, 31, 32, 45, 46].
Note, however, that decoupling does not always lead to the output being close to maximally mixed. Such statements
play an important role in quantum information theory and many coding theorems amount to proving a decoupling
theorem. In fact, the authors of [31, 32] showed that a set of unitaries forming a unitary 2-design (see Definition III.3)
define a (k, ")-QQ-extractors as long as the output size log |A

1

|  (n+ k)/2� log(1/").
A definition of quantum extractors was also proposed in [9, Definition 5.1]. Our definition is stronger in two

respects. Firstly, we consider strong extractors in that we impose a condition on the average of the trace distance to
the uniform distribution by contrast to the trace distance of the average. The weaker constraint used by [9] allows
them to construct quantum extractors with output size equals to the input size.12 Secondly, we require the extractor
to decouple the A system from any quantum side information held in the system E.

In the context of cryptography, a QQ-extractor is often more than one needs. In fact, it is usually su�cient to
extract random classical bits, which is in general easier to obtain than random qubits. This motivates the following
definition, where the di↵erence to a QQ-extractor is that the output system A

1

is measured in the computational
basis. In particular, any (k, ")-QQ-extractor is also a (k, ")-QC-extractor.

Definition III.2 (QC-Extractors). Let A = A
1

A
2

with n = log |A|, and let TA!A1 be the measurement map defined
in Equation (7).

For k 2 [�n, n] and " 2 [0, 1], a (k, ")-QC-extractor is a set {U
1

, . . . , UL} of unitary transformations on A such
that for all states ⇢AE 2 S(AE) satisfying H

min

(A|E) � k, we have

1

L

LX
i=1

����TA!A1(Ui⇢AEU
†
i )�

IA1

|A
1

| ⌦ ⇢E

����
1

 " . (18)

12 In this case, the net randomness extracted is obtained by subtracting the randomness used for the seed

A 

A1 



Parameters: Output size |A1| 

Proposition 
We can extract at most 
 
 
Example: 
¨  If pure state on A: at most log|A| 
¨  If maximally entangled Hmin(A|E) = -log |A|: 

cannot extract anything 
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logL is called the seed size of the QC-extractor.

Observe that Definition III.2 only allows a specific form of measurements obtained by applying a unitary transfor-
mation followed by a measurement in the computational basis of A

1

. The reason we use this definition is that we
want the output of the extractor to be determined by the source and the choice of the seed. In the quantum setting,
a natural way of translating this requirement is by imposing that an adversary holding a system that is maximally
entangled with the source can perfectly predict the output. This condition is satisfied by the form of measurements
dictated by Definition III.2. Allowing generalized measurements (POVMs) already (implicitly) allows the use of ran-
domness for free. Note also, that in the case where the system E is trivial, a (0, ")-QC-extractor is the same as an
"-metric uncertainty relation [34].

A. Examples and limitations of QC-extractors

Universal (or two-independent) hashing is probably one of the most important extractor constructions, which even
predates the general definition of extractors [48]. Unitary 2-designs can be seen as a quantum generalization of
two-independent hash functions.

Definition III.3. A set of unitaries {U
1

, . . . , UL} acting on A is said to be a 2-design if for all M 2 L(A), we have

1

L

LX
i=1

U⌦2

i M(U †
i )

⌦2 =

Z
U⌦2M(U†)⌦2dU (19)

where the integration is with respect to the Haar measure on the unitary group.

Many e�cient constructions of unitary 2-designs are known [26, 38], and in an n-qubit space, such unitaries can
typically be computed by circuits of size O(n2). However, observe that the number of unitaries of a 2-design is at least
L � |A|4�2|A|2+2 [38]. The following is immediate using a general decoupling result from [31, 32] (see Lemma B.1).

Corollary III.4. Let A = A
1

A
2

with n = log |A|. For all k 2 [�n, n] and all " > 0, a unitary 2-design {U
1

, . . . , UL}
on A is a (k, ")-QC-extractor with output size

log |A
1

| = min(n, n+ k � 2 log(1/")). (20)

Similar results also hold for almost unitary 2-designs; see [77]. Using [41], this shows for instance that random
quantum circuits of size O(n2) are QC-extractors with basically the same parameters as in Corollary III.4. We now
prove that choosing a reasonably small set of unitaries at random defines a QC-extractor with high probability. The
seed size in this case is of the same order as the output size of the extractor. We expect that a much smaller seed size
would be su�cient.

Theorem III.5. Let A = A
1

A
2

with n = log |A| and TA!A1 be the measurement map defined in Equation (7). Let
" > 0, c be a su�ciently large constant, and

log |A
1

|  n+ k � 4 log(1/")� c as well as logL � log |A
1

|+ log n+ 4 log(1/") + c . (21)

Then, choosing L unitaries {U
1

, . . . , UL} independently according to the Haar measure defines a (k, ")-QC-extractor
with high probability.

The proof can be found in Appendix C. It uses one-shot decoupling techniques [31, 32, 77] combined with an
operator Cherno↵ bound [3] (see Lemma B.4).

We now give some limitations on the output size and seed size of QC-extractors. The following lemma shows
that even if we are looking for a QC-extractor that works for a particular state ⇢AE , the output size is at most

n+H
p
"

min

(A|E)⇢, where n denotes the size of the input.

Proposition III.6 (Upper bound on the output size). Let A = A
1

A
2

, ⇢AE 2 S(AE), {U
1

, . . . , UL} a set of unitaries
on A, and TA!A1 defined as in Equation (7), such that

1

L

LX
i=1

����TA!A1

⇣
Ui⇢AEU

†
i

⌘
� IA1

|A
1

| ⌦ ⇢E

����
1

 " . (22)

Then,

log |A
1

|  log |A|+H
p
"

min

(A|E) . (23)



Parameters: seed size L 

Proposition 
 
 
 
 
 
 
Huge gap! I suspect log L = O(log log |A|) might be 
possible  
 

log(1 /ε) ≤ logL ≤ log | A1 |+small

Simple argument Probabilistic construction 
{U1,…,UL} random unitaries 

Size of 
output 



QC-extractors: constructions from 
decoupling 
¨  Decoupling unitaries  [Dupuis et. al. 2010] 

¤ Random unitaries (Haar measure)  
¤ Unitary two-design (Reproduce second moment of Haar 

measure) 

¨  Works for any map τ 

¨  QC-extractor: special case 
   τ = 
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into almost uniform random bits. Such procedures are usually referred to as randomness extractors, which have been
extensively studied in the theoretical computer science literature; see [76, 84] for surveys.

In a classical world, the sources of randomness are described by probability distributions and the randomness
extractors are families of (deterministic) functions taking each possible value of the source to a binary string. To
understand the definition of quantum extractors, it is convenient to see a classical extractor as a family of permutations
acting on the possible values of the source. This family of permutations should satisfy the following property: for any
probability distribution on input bit strings with high min-entropy, applying a typical permutation from the family
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quantum extractor in a similar way by allowing the operations performed to be general unitary transformations and
the input to the extractor to be quantum.

Definition III.1 (QQ-Extractors). Let A = A
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We make a few remarks on the definition. First, we should stress that the same set of unitaries should satisfy (17)
for all states ⇢AE that meet the conditional min-entropy criterion H

min

(A|E)⇢ � k. In particular, the system E can
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min

(A|E)⇢ measures the uncertainty that an adversary has about the
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12 In this case, the net randomness extracted is obtained by subtracting the randomness used for the seed
A 

A1 



QC-extractors: constructions from 
decoupling 
¨  Decoupling unitaries  [Dupuis et. al. 2010] 

¤ Random unitaries (Haar measure)  
¤ Unitary two-design (Reproduce second moment of 

random unitaries) evenly distributed unitaries 
¨  Parameters: 

¤  Output size: log |A| + Hmin(A|E) (optimal) 
¤  Seed size: log L = 4 log |A| (probably far from 

optimal) 
¤  Unitaries can be implemented by polytime quantum 

circuits 



QC-extractor: simpler construction 

¨  For cryptographic applications, we want simpler 
unitaries: only single-qubit gates 

 

Vj1 

Vj2 

Vjn 

Output A1 
A 

E 
Vi 

Vj 

Vk 

Output A1 
A 

E 

Py 

Classical 
permutation of 

bitstrings 



QC-extractor: simpler construction 

 
 
 
 
 
Theorem 
{Py Vj}yj is a QC-extractor with 

 

ε ≈ 2−0.58n+log|A1|−Hmin (A|E )

Vj1 

Vj2 

Vjn 

Output A1 
A 

E 

Py 

Classical 
permutation 
of bitstrings 

≈ε
idA1
| A1 |

⊗ ρE



Min-entropy uncertainty relation 

Theorem 
 Hmin (K | EJ ) ≥ 0.58n+Hmin (A | E)

Vj1 

Vj2 

Vjn 

Output K 

A 

E 

J=(j1,j2,…,jn) 



Proof idea 

¨  Use 2-norm instead of the 1-norm 

¨  Similar to leftover hash lemma* with more 
technicalities 

* Leftover hash lemma: two-universal hash functions 
are good randomness extractors 



Applications to cryptography:  
secure function evaluation 

?? ?? 

          
   Should not learn y 

x y 

f(x,y) 

Should not learn x 

x y 

f(x,y) 



Secure function evaluation 

¨  Not possible to solve without assumptions [Lo 97] 
¨  Classical assumptions are typically computational 

assumptions (eg factoring is hard) 

¨  Memory assumption: bounded quantum storage 
[Damgaard, Fehr, Salvail, Schaffner 2005] 
¤ Secure function evaluation possible if parties have 

limited quantum storage 
¤ Honest parties do not need any quantum storage  



Noisy storage model [Wehner, Schaffner, 
Terhal 08] 

 
Ø Noisy quantum storage 

 
 

Ø  Computationally all-powerful 
Ø  Unlimited classical storage 
  What the adversary 

can do 

Classical  
information 

Arbitrary  
encoding 

Quantum 
information 

Adversary’s 
information 

 

Measurement 

Noisy quantum storage 
 
 

Unlimited classical storage 

Protocol will have waiting times         in which noisy-storage must be used:  �t

F�t : B(Hin)� B(Hout)



Weak string erasure [Konig, Wehner, 
Wullschleger 10] 

Primitive: weak string erasure 
 
 
 
 
 
Security criterion 

¤  Cheating Alice does not learn I 
¤  Cheating Bob Hmin(X|B) > λn  

X ∈r {0,1}
n I ⊂r {1,...,n} and X I ∈ {0,1}|I |

It is for this condition that we use the 
limitation on Bob’s storage  



Protocol for weak string erasure in the 
noisy storage model 

J ∈r {0,1, 2}
n

VJ
n J '∈r {0,1, 2}

n

Δt
J I = {i : Ji = J 'i}

Maximally entangled state 

. 

. 

. 

. 

YI (= XI )

X

VJ’
n 

Y



Security statement 

¨  Cheating Alice 
¤ Protocol unconditionally secure 

¨  Cheating Bob 
¤ Provided  

   The protocol is secure 

BestSuccProb( F  ) ≤  2−(1−0.58+δ )n



Summary 

¨  Viewed uncertainty relations as some kind of 
randomness extractor 

¨  Using techniques from extractors and decoupling, 
we give new uncertainty relations 

¨  Use it to relate security to capacity of device to 
maintain entanglement 



Open problems 

¨  Ideally, want security provided 
 
 
Should improve 
From 
 
To 
 
Related to (quantum) min-entropy sampling 

¨  Number of unitaries needed for a QC-extractor not well understood 
¤  Is there a QC-extractor with log L = O(log log |A|)? 
¤  More generally, are there decoupling unitaries with logL = O(log log |

A|)? 
 

Hmin (K | EJ ) ≥ 0.58n+Hmin (A | E)
Hmin (K | EJ ) ≥ 0.58n+ 0.58Hmin (A | E)

BestSuccProb( F  ) ≤  2−δn


