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Abstract

The existence of quantum uncertainty relations is the essential reason that some classically impossible
cryptographic primitives become possible when quantum communication is allowed. One operational
manifestation of these uncertainty relations is a purely quantum effect referred to as information locking [DHL+04].
A locking scheme can be viewed as a cryptographic protocol in which a uniformly random n-bit message is
encoded in a quantum system using a classical key of size much smaller than n. Without the key, no measurement
of this quantum state can extract more than a negligible amount of information about the message, in which case
the message is said to be “locked”. Furthermore, knowing the key, it is possible to recover, that is “unlock”, the
message.

In this paper, we make the following contributions by exploiting a connection between uncertainty relations
and low-distortion embeddings of `2 into `1.

• We introduce the notion of metric uncertainty relations and connect it to low-distortion embeddings of `2 into
`1. A metric uncertainty relation also implies an entropic uncertainty relation.

• We prove that random bases satisfy uncertainty relations with a stronger definition and better parameters
than previously known. Our proof is also considerably simpler than earlier proofs. We apply this result to
show the existence of locking schemes with key size independent of the message length.

• We give efficient constructions of bases satisfying metric uncertainty relations. The bases defining these metric
uncertainty relations are computable by quantum circuits of almost linear size. This leads to the first explicit
construction of a strong information locking scheme. Moreover, we present a locking scheme that can in
principle be implemented with current technology. These constructions are obtained by adapting an explicit
norm embedding due to Indyk [Ind07] and an extractor construction of Guruswami, Umans and Vadhan
[GUV09].

• We apply our metric uncertainty relations to exhibit communication protocols that perform equality testing
of n-qubit states. We prove that this task can be performed by a single message protocol using O(log(1/ε))
qubits and n bits of communication, where ε is an error parameter. We also give a single message protocol
that uses O(log2 n) qubits, where the computation of the sender is efficient.
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1 Introduction

Uncertainty relations express the fundamental incompatibility of certain measurements in quantum mechanics.
Far from just being puzzling constraints on our ability to know the state of a quantum system, uncertainty
relations are arguably at the heart of why some classically impossible cryptographic primitives become possible
when quantum communication is allowed. For example, so-called entropic uncertainty relations introduced in
[BBM75, Deu83] are the main ingredients of security proofs in the bounded and noisy quantum storage models
[DFSS05, DFR+07, KWW09]. A simple example of an entropic uncertainty relation was given by Maassen and
Uffink [MU88]. Let B+ denote a “rectilinear” or computational basis of C2 and B× be a “diagonal” or Hadamard
basis and let B+n and B×n be the corresponding bases obtained on the tensor product space (C2)⊗n. Then we have
that for any quantum state on n qubits described by a unit vector |ψ〉 ∈ (C2)⊗n, the average measurement entropy
satisfies

1

2

(
H(pB+n ,|ψ〉) + H(pB×n ,|ψ〉)

)
≥ n

2
(1)

where pB,|ψ〉 denotes the outcome probability distribution when |ψ〉 is measured in basis B and H denotes the
Shannon entropy. Equation (1) expresses the fact that measuring in a random basis BK where K ∈u {+n,×n}
produces an outcome that has some uncertainty irrespective of the state being measured.

A surprising application of entropic uncertainty relations is the effect known as information locking [DHL+04]
(see also [Leu09]). Suppose Alice holds a uniformly distributed random n-bit stringX . She chooses a random basis
K ∈u {+n,×n} and encodes X in the basis BK . This random quantum state E(X,K) is then given to Bob. How
much information about X can Bob, who does not know K, extract from this quantum state via a measurement?
To better appreciate the quantum case, observe that if X were encoded in a classical state Ec(X,K), then Ec(X,K)
would “hide” at most one bit about X ; more precisely, the mutual information I(X; Ec(X,K)) ≥ n − 1. For
the quantum encoding E , one can show that for any measurement that Bob applies on E(X,K) whose outcome is
denoted I , we have I(X; I) ≤ n/2 [DHL+04]. The n/2 missing bits of information about X are said to be locked in
the quantum state E(X,K). If Bob had access to K, then X can be easily obtained from E(X,K): The one-bit key
K can be used to unlock n/2 bits about X .

A natural question is whether it is possible to lock more than n/2 bits in this way. In order to achieve this, the
key K has to be chosen from a larger set. In terms of uncertainty relations, this means that we need to consider
more than two bases to achieve an average measurement entropy larger than n/2 (equation (1)). The authors of
[HLSW04] show the existence of an encoding that locks n − 3 bits about X ∈ {0, 1}n using a key K ∈ {0, 1}4 logn.
They prove this result by showing that random bases satisfy entropic uncertainty relations of the form (1) with more
than two measurements. Recently, [Dup10, DFHL10] prove that random encodings exhibit a locking behaviour in
a stronger sense and that it is possible to lock up to n − δ bits for any arbitrarily small constant δ while still using
a key of O(log n) bits. In this setting, a locking scheme can be viewed as a cryptographic protocol that uses a key
of size O(log n) to encrypt a random classical n-bit message in a quantum state. Knowing the key, it is possible to
recover the message from this quantum state. However, without the key, for any measurement, the distribution
of the message X conditioned on the outcome I of the measurement is close to the prior distribution of X in total
variation distance.

It should be noted that entropic uncertainty relations of the form of (1) with t > 2 measurements are not well
understood. A natural generalization of rectilinear +n and diagonal bases ×n called mutually unbiased bases does
not work as well for more than two measurements. In fact, it was shown in [BW07, Amb09] that there are up to
t = 2n/2 mutually unbiased bases {B0,B1, . . . ,Bt−1} that only satisfy an average measurement entropy of n/2,
which is only as good as what can be achieved with two measurements (1). To achieve an average measurement
entropy of (1−ε)n for small εwhile keeping the number of bases subexponential in n, the only known constructions
are probabilistic and computationally inefficient [HLSW04]. Furthermore, standard derandomization techniques
are not known to work in this setting. For example, unitary designs [DCEL09] define an exponential number
of bases. Moreover, using a δ-biased subset of the set of Pauli matrices [AS04, DD10] fails to produce a locking
scheme unless the subset has a size of close to 2n (see Appendix D).

1.1 Our results

In this paper, we study uncertainty relations in the light of a connection with low-distortion embeddings of (Cd, `2)

into (Cd′ , `1). The intuition behind this connection is very simple. Consider the measurements defined by a set of
orthonormal bases {B0,B1, . . . ,Bt−1} of (C2)⊗n. The bases {B0,B1, . . . ,Bt−1} verify an uncertainty relation if for
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every n-qubit state |ψ〉 and “most” bases Bk, the vector representing |ψ〉 in Bk is “spread”. One way of quantifying
the spread of a vector is by its `1 norm, i.e., the sum of the absolute values of its components. A vector |ψ〉 ∈ (C2)⊗n

of unit `2 norm is well spread if its `1 norm is close to its maximal value of
√

2n. For technical reasons, it turns out
that the relevant norm for us is not the `1 norm but rather a closely related norm called `1(`2).

This connection suggests measuring the uncertainty of a distribution by taking a marginal and measuring its
closeness to the uniform distribution. This is a stronger requirement than having large Shannon entropy and it
leads to the definition of metric uncertainty relations (Definition 2.1). Using standard techniques from asymptotic
geometric analysis, we prove the existence of strong metric uncertainty relations (Theorem 2.5). This result can
be seen as a strengthening of Dvoretzky’s theorem [Dvo61, Mil71] for the special case of the `1(`2) norm. In
addition to giving a stronger statement with better parameters, our analysis of the uncertainty relations satisfied
by random bases is considerably simpler than earlier proofs [HLSW04, DFHL10]. In particular, for large n, we
prove the existence of entropic uncertainty relations with average measurement entropy strictly increasing with
the number of measurements. This result also leads to better results on the existence of locking schemes (Corollary
3.4). We also show in Theorem 3.7 how to use these locking schemes to build quantum hiding fingerprints as
defined by Gavinsky and Ito [GI10].

Moreover, adapting an explicit low-distortion embedding of (Rd, `2) to (Rd′ , `1) with d′ = d1+o(1) due to Indyk
[Ind07], we obtain explicit bases of (C2)⊗n that verify strong metric uncertainty relations for a number of bases
that is polynomial in n. Measuring in these bases can be performed by polynomial size quantum circuits. The
main new ingredient that makes our “quantization” of Indyk’s construction verify stronger uncertainty relations
than do general mutually unbiased bases is the additional use of strong permutation extractors, which are a special
kind of randomness extractor. A strong permutation extractor (Definition 2.14) is a small family of permutations
of bit strings with the property that for any probability distribution on input bit strings with high min-entropy,
applying a typical permutation from the family to the input induces an almost uniform probability distribution on
a prefix of the output bits. Our construction of efficiently computable bases satisfying strong metric uncertainty
relations involves an alternating application of approximately mutually unbiased bases and strong permutation
extractors. Our approximately mutually unbiased bases consist of sets of single-qubit Hadamard gates. Moreover,
both the permutations and their inverses have to be efficiently computable for our construction. We build such
strong permutation extractors using the results of Guruswami, Umans and Vadhan [GUV09].

We use these uncertainty relations to build an explicit locking scheme whose encoding and decoding operations
can be performed by circuits of size almost linear in the length of the message. Moreover, we also obtain a locking
scheme where both the encoding and decoding operations consist of a classical computation with polynomial
runtime and a quantum computation using only a small number of single-qubit Hadamard gates (Corollary 3.5).
Performing these quantum operations can be done using the same technology as implementing the BB84 quantum
key distribution protocol [BB84], but as was the case for BB84, our idealized scheme must still be made robust to
noise and imperfect devices. It should be noted that this simple scheme requires a ciphertext that is longer than the
message. On the way to obtaining this result, we prove a min-entropy uncertainty relation on a sparse set of BB84
states that might be of independent interest (Lemma 2.13 with Lemma 2.12). This locking scheme can be used to
obtain string commitment protocols [BCH+08] that are efficient in terms of computation and communication.

We also give an application of our uncertainty relations to a problem called quantum identification. Quantum
identification is a communication task for two parties Alice and Bob, where Alice is given a pure quantum state
|ψ〉 and Bob wants to simulate measurements of the form {|ϕ〉〈ϕ|, 11 − |ϕ〉〈ϕ|} on |ψ〉 where |ϕ〉 is a pure quantum
state. This task can be seen as a quantum analogue of the problem of equality testing [AD89, KN97] where
Alice and Bob hold n-bit strings x and y and Bob wants to determine whether x = y using a one-way classical
channel from Alice to Bob. Hayden and Winter [HW10] showed that classical communication alone is useless
for quantum identification. However, having access to a negligible amount of quantum communication makes
classical communication useful. Their proof is non-explicit. Here, we describe an efficient encoding circuit that
also uses less quantum communication: it allows the identification of an n-qubit state by communicating only a
single message of O(log2 n) qubits and n classical bits.

1.2 Other related work

Aubrun, Szarek and Werner [ASW10b, ASW10a] also used a connection between low-distortion embeddings and
quantum information. They show in [ASW10b] that the existence of large subspaces of highly entangled states
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Inf. leakage Size of key Size of ciphertext Efficient ?
[DHL+04] n/2 1 n yes
[HLSW04] 3 4 log(n) n no
[DFHL10] εn 2 log(n/ε2) +O(1) n no

Corollary 3.4 εn 2 log(1/ε) +O(log log(1/ε)) n+ 2 dlog(9/ε)e no
Corollary 3.4 εn 4 log(1/ε) +O(log log(1/ε)) n no
Corollary 3.5 εn Oδ(log(n/ε)) (4 + δ) · n, with δ > 0 yes
Corollary 3.5 εn O(log(n/ε) log(n)) n yes

Table 1: Comparison of different locking schemes. n is the number of bits of the message. The information leakage
and the size of the key are measured in bits and the size of the ciphertext in qubits. Efficient locking schemes
have encoding and decoding quantum circuits of size polynomial in n. The locking schemes of the first and next
to last actually have encoding circuits that are implementable with current technology; they only use classical
computations and simple single-qubit transformations. It should be noted that our locking definition is stronger
than all the previous definitions. Note that the variable ε can depend on n. For example, one can take ε = η/n to
make the information leakage arbitrarily small. The symbol O(·) refers to constants independent of ε and n, but
there is a dependence on δ for the next to last row.

follows from Dvoretzky’s theorem for the Schatten p-norm1 for p > 2. This in turns shows the existence of channels
that violate additivity of minimum output p-Rényi entropy as was previously demonstrated by [HW08]. Using a
more delicate argument [ASW10a], they are also able to recover Hastings’ [Has09] counterexample to the additivity
conjecture.

In a cryptographic setting, Damgård, Pedersen and Salvail [DPS04] used ideas related to locking to develop
quantum ciphers that have the property that the key used for encryption can be recycled. In [DPS05], they
construct a quantum key recycling scheme (see also [OH05]) with near optimal parameters by encoding the
message together with its authentication tag using a full set of mutually unbiased bases.

1.3 Notation

We use the following notation throughout the paper. For a positive integer n, we define [n] = {0, . . . , n − 1}.
Random variables are usually denoted by capital letters X,K, . . . , while pX denotes the distribution of X ,
i.e., P {X = x} = pX(x). The notation X ∼ p means that X has distribution p. unif(S) is the uniform
distribution on the set S. To measure the distance between probability distributions on a finite set X , we use
the total variation distance or trace distance ∆(p, q) = 1

2

∑
x∈X |p(x) − q(x)|. We will also write ∆(X,Y ) for

∆(pX , pY ). When ∆(X,Y ) ≤ ε, we say that X is ε-close to Y . A useful characterization of the trace distance is
∆(p, q) = maxX∼p,Y∼q P {X = Y } (this equality is known as Doeblin’s coupling lemma). Another useful measure
of closeness between distributions is the fidelity F (p, q) =

∑
x∈X

√
p(x)q(x). We have the following relation

[FvdG99] between the fidelity and the trace distance

1− F (p, q) ≤ ∆(p, q) ≤
√

1− F (p, q)
2
. (2)

The Shannon entropy of a distribution p onX is defined as H(p) = −∑x∈X p(x) log p(x) where the log is taken here
and throughout the paper to be base two. We will also write H(X) for H(pX). The mutual information between
two random variablesX and Y is defined by I(X;Y ) = H(X)+H(Y )−H(X,Y ). The min-entropy of a distribution
p is defined as Hmin(p) = − log maxx p(x). We say that a random variable X is a k-source if Hmin(X) ≥ k. To refer
to the i-th component of a vector v ∈ Rn, we usually write vi except when v already has a subscript, in which
case we use v(i). The weight of a binary vector v (number of ones) is denoted by w(v) and the Hamming distance
between two binary vector v, v′ (number of components that are different) is written as dH(v, v′).

The quantum systems we consider are denoted A,B,C . . . and are identified with their Hilbert spaces. The
dimension of a Hilbert space A is denoted by dA. Every Hilbert space A comes with a preferred orthonormal
basis {|a〉A}a∈[dA] that we call the computational basis. The elements of this basis are labeled by integers from 0 to
dA − 1. For a Hilbert space of the form C2n , this canonical basis will also be labeled by strings in {0, 1}n. A ' B
means that the Hilbert spaces A and B are isomorphic. For a state |ψ〉 ∈ A, p|ψ〉 is the distribution of the outcomes

1The Schatten p-norm of a matrix M is defined as the `p norm of a vector of singular values of M .
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of the measurement of |ψ〉 in the basis {|a〉}. We have p|ψ〉(a) = |〈a|ψ〉|2. Similarly, for a mixed state ρ, we define
pρ(a) = tr[|a〉〈a|ρ]. The tensor productA⊗B is sometimes denoted simplyAB. S(A) is the set of density operators
acting on A. The Hilbert space on which a density operator ρ ∈ S(A) acts is denoted by a superscript, as in ρA.
Partial traces are abbreviated by omitting superscripts so that ρA def

= trB ρ
AB . This notation is also used for pure

states |ψ〉A ∈ A. The density operator associated with a pure state is abbreviated by omitting the ket and bra
ψ

def
= |ψ〉〈ψ|. The symbol 11A is reserved for the identity map on A. If U is a unitary acting on A, and |ψ〉 a state in

A⊗B, we sometimes use U |ψ〉 to denote the state (U ⊗ 11B)|ψ〉.
The trace distance between density operators acting on A is defined by ∆(ρ, σ) = 1

2 tr
√

(ρ− σ)2. The von
Neuman entropy of a quantum state ρA is defined by H(ρA) = − tr ρ log ρ. It will also be denoted H(A)ρ. For a
bipartite state ρAB ∈ S(AB), the quantum mutual information I(A;B)ρ = H(A)ρ + H(B)ρ −H(A,B)ρ.

2 Uncertainty relations

Outline of the section In this section, we start by introducing uncertainty relations and setting up some notation
(Section 2.1). Then we define metric uncertainty relations in Section 2.2. In Section 2.3, we prove the existence of
strong metric uncertainty relations. Explicit constructions are given in Section 2.4.

2.1 Background

Consider a set of orthonormal bases B = {B0, . . . ,Bt−1} of the Hilbert space C. Each basis Bk = (vk0 , . . . , v
k
dC−1)

defines a measurement on C. The outcomes of these measurements are indexed by x ∈ [dC ]. The outcome
distribution pBk,|ψ〉when the measurement is performed on the state |ψ〉 ∈ C is defined by pBk,|ψ〉(x) = |〈vkx|ψ〉|2 for
all x ∈ [dC ]. An uncertainty relation for a set of orthonormal bases B = {B0, . . . ,Bt−1} expresses the property that
for any state |ψ〉 ∈ C, there are some measurements in B whose outcomes given state |ψ〉 have some uncertainty. A
common way of quantifying this uncertainty is by using the Shannon entropy. The set of bases B is said to satisfy
an entropic uncertainty relation if there exists a positive number h such that for all states |ψ〉 ∈ C,

1

t

t−1∑

k=0

H(pBk,|ψ〉) ≥ h.

For example, for a qubit space (dimC = 2), consider the two bases B0 = (|0〉, |1〉) and B1 =(
1√
2
(|0〉+ |1〉), 1√

2
(|0〉 − |1〉)

)
. It was shown in [MU88] that these two bases satisfy the following entropic

uncertainty relation: for all states |ψ〉 ∈ C,

1

2

(
H(pB0,|ψ〉) + H(pB1,|ψ〉)

)
≥ 1

2
.

Note that this uncertainty relation cannot be improved: For any bases B0,B1, one can always choose a state |ψ0〉
that is aligned with one of the vectors of B0 so that H(pB0,|ψ0〉) = 0, in which case 1

2

(
H(pB0,|ψ0〉) + H(pB1,|ψ0〉)

)
≤ 1

2 .
It is more convenient here to talk about uncertainty relations for a set of unitary transformations. Let {|x〉C}x

be the computational basis of C. We associate to the unitary transformation U the basis {U†|x〉}x. On a state |ψ〉,
the outcome distribution is described by

pU |ψ〉(x) = |〈x|U |ψ〉|2.
As can be seen from this equation, we can equivalently talk about measuring the state U |ψ〉 in the computational
basis. An entropic uncertainty relation for U0, . . . , Ut−1 can be written as

1

t

t−1∑

k=0

H(pUk|ψ〉) ≥ h. (3)

Entropic uncertainty relations have been used in proving the security of cryptographic protocols in the bounded
and noisy quantum storage models [DFR+07, KWW09]. For more details on entropic uncertainty relations and
their applications, see the recent survey [WW10].
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2.2 Metric uncertainty relations

Here, instead of using the entropy as a measure of uncertainty, we use closeness to the uniform distribution. In
other words, we are interested in sets of unitary transformations U0, . . . , Ut−1 that for all |ψ〉 ∈ C satisfy

1

t

t−1∑

k=0

∆
(
pUk|ψ〉, unif([dC ])

)
≤ ε

for some ε ∈ (0, 1). ∆(p, q) refers to the total variation distance between distributions p and q. This condition is very
strong, in fact too strong for our purposes, and we will see that a weaker definition is sufficient to imply entropic
uncertainty relations. Let C = A⊗ B. (For example, if C consists of n qubits, A might represent the first n− log n
qubits andB the last log n qubits.) Moreover, let the computational basis forC be of the form {|a〉A⊗|b〉B}a,b where
{|a〉} and {|b〉} are the computational bases of A and B. Instead of asking for the outcome of the measurement on
the computational basis of the whole space to be uniform, we only require that the outcome of a measurement of
the A system in its computational basis {|a〉} be close to uniform. More precisely, we define for a ∈ [dA],

pAUk|ψ〉(a) =

dB−1∑

b=0

|〈a|A〈b|BUk|ψ〉|2.

We can then define a metric uncertainty relation. Naturally, the larger the A system, the stronger the uncertainty
relation for a fixed B system.

Definition 2.1 (Metric uncertainty relation). Let A and B be Hilbert spaces. We say that a set {U0, . . . , Ut−1} of unitary
transformations on AB satisfies an ε-metric uncertainty relation on A if for all states |ψ〉 ∈ AB,

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε. (4)

Remark. Observe that this implies that (4) also holds for mixed states: for any ψ ∈ S(A ⊗ B),
1
t

∑t−1
k=0 ∆

(
pA
UkψU

†
k

, unif([dA])
)
≤ ε. ut

Metric uncertainty relations imply entropic uncertainty relations In the next proposition, we show that a metric
uncertainty relation is also an entropic uncertainty relation. It is worth stressing that there are no restrictions on
measurements.

Proposition 2.2. Let ε ∈ (0, 1
2e ) and {U0, . . . , Ut−1} be a set of unitaries on AB verifying an ε-metric uncertainty relation

on A:
1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε.

Then
1

t

t−1∑

k=0

H(pUk|ψ〉) ≥ (1− 2ε) log dA − η(ε).

where η(ε) = −2ε ln(2ε).

Proof Recall that the distribution pAUk|ψ〉 (see equation (4) for a definition) on [dA] is a marginal of the distribution
pUk|ψ〉. Thus H(pUk|ψ〉) ≥ H(pAUk,|ψ〉). Using Fannes’ inequality [Fan73], we have for all k

H(pAUk,|ψ〉) ≥ log dA − 2∆
(
pAUk|ψ〉, unif([dA])

)
log dA − η(ε)

≥ (1− 2ε) log dA − η(ε).

ut
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Explicit link to low-distortion embeddings Even though we do not explicitly use the link to low-distortion
embeddings, we describe the connection as it might have other applications. In the definition of metric uncertainty
relations, the distance between distributions was computed using the trace distance. The connection to low-
distortion metric embeddings is clearer when we measure closeness of distributions using fidelity. We have

F
(
pAUk|ψ〉, unif([dA])

)
=

1√
dA

dA−1∑

a=0

√
pAUk|ψ〉(a)

=
1√
dA

dA−1∑

a=0

√√√√
dB−1∑

b=0

|〈a|A〈b|BUk|ψ〉|2

=
1√
dA
‖Uk|ψ〉‖`A1 (`B2 )

where the norm `A1 (`B2 ) is defined by

Definition 2.3 (`1(`2) norm). For a state |ψ〉 =
∑
a,b αa,b|a〉A|b〉B ,

∥∥|ψ〉
∥∥
`A1 (`B2 )

=
∑

a

∥∥{αa,b}b
∥∥

2
=
∑

a

√∑

b

|αa,b|2.

We use ‖ · ‖12
def
= ‖ · ‖`A1 (`B2 ) when the systems A and B are clear from the context.

Observe that this definition of norm depends on the choice of the computational basis. The `A1 (`B2 ) norm will
always be taken with respect to the computational bases.

For {U0, . . . , Ut−1} to satisfy an uncertainty relation, we want

1

t

∑

k

1√
dA
‖Uk|ψ〉‖`A1 (`B2 ) ≥ 1− ε.

This expression can be rewritten by introducing a new register K that holds the index k. We get for all |ψ〉
∥∥∥∥∥

1√
t

∑

k

Uk|ψ〉C |k〉K
∥∥∥∥∥
`AK1 (`B2 )

≥ (1− ε)
√
t · dA. (5)

Using the Cauchy-Schwarz inequality, we have that for all |ψ〉,
∥∥∥∥∥

1√
t

∑

k

Uk|ψ〉C |k〉K
∥∥∥∥∥
`AK1 (`B2 )

≤
√
t · dA

∥∥∥∥∥
1√
t

∑

k

Uk|ψ〉C |k〉K
∥∥∥∥∥

2

=
√
t · dA. (6)

Rewriting (5) and (6) as

(1− ε) ≤ 1√
t · dA

·

∥∥∥ 1√
t

∑
k Uk|ψ〉C |k〉K

∥∥∥
`AK1 (`B2 )∥∥∥ 1√

t

∑
k Uk|ψ〉C |k〉K

∥∥∥
2

≤ 1,

we see that the image of C by the linear map |ψ〉 7→ 1√
t

∑
k Uk|ψ〉 ⊗ |k〉 is an almost Euclidean subspace of

(A ⊗ K ⊗ B, `AK1 (`B2 )). In other words, as the map |ψ〉 7→ 1√
t

∑
k Uk|ψ〉 ⊗ |k〉 is an isometry (in the `2 sense),

it is an embedding of (C, `2) into (AKB, `AK1 (`B2 )) with distortion 1/(1− ε) [Mat02].
Observe that a general low-distortion embedding of (C, `2) into (AKB, `AK1 (`B2 )) does not necessarily give a

metric uncertainty relation as it need not be of the form |ψ〉 7→ 1√
t

∑
k Uk|ψ〉⊗|k〉. When t = 2, a metric uncertainty

relation is related to the notion of Kashin decomposition [Kas77]; see also [Pis89, Sza06].

A remark on the composition of metric uncertainty relations There is a natural way of building an uncertainty
relation for a Hilbert space from uncertainty relations on smaller Hilbert spaces. This composition property is also
important for the cryptographic applications of metric uncertainty relations presented in the second half of the
paper, in which setting it ensures the security of parallel composition of locking-based encryption.
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Proposition 2.4. Consider Hilbert spacesA1,A2,B1,B2. For i ∈ {0, 1}, let {U (i)
ki
}ki∈[ti] be a set of unitary transformations

ofAi⊗Bi verifying an ε-metric uncertainty relation onAi. Then, {U (1)
k1
⊗U (2)

k2
}k1,k2∈[t1]×[t2] verifies a 2ε-metric uncertainty

relation on A1 ⊗A2.

Proof Let |ψ〉 ∈ (A1⊗B1)⊗ (A2⊗B2) and let pk1,k2 denote the distribution obtained by measuring U (1)
k1
⊗U (1)

k2
|ψ〉

in the computational basis of A1 ⊗A2. Our objective is to show that

1

t1t2

∑

k1∈[t1],k2∈[t2]

∆(pk1,k2 , unif([dA1 ]× [dA2 ])) ≤ 2ε. (7)

We have

∆(pk1,k2 , unif([dA1 ]× [dA2 ])) =
1

2

∑

a1,a2

∣∣∣∣pk1,k2(a1, a2)− 1

dA1dA2

∣∣∣∣

≤ 1

2

∑

a1,a2

∣∣∣∣pk1,k2(a1, a2)− pk1,k2(a1)

dA2

∣∣∣∣+
1

2

∑

a1,a2

∣∣∣∣
pk1,k2(a1)

dA2

− 1

dA1
dA2

∣∣∣∣

=
1

2

∑

a1

pA1

k1,k2
(a1)

∑

a2

∣∣∣∣∣
pk1,k2(a1, a2)

pA1

k1,k2
(a1)

− 1

dA2

∣∣∣∣∣+
1

2

∑

a1

∣∣∣∣p
A1

k1,k2
(a1)− 1

dA1

∣∣∣∣ (8)

where pA1

k1,k2
(a1)

def
=
∑
a2
pk1,k2(a1, a2) is the outcome distribution of measuring the A1 system of U (1)

k1
⊗ U (2)

k2
|ψ〉.

The distribution pk1,k2 can also be seen as the outcome of measuring the mixed state

U
(1)
k1
ψA1B1U

(1)
k1

†

in the computational basis {|a1〉}. Thus, we have for any k2 ∈ [t2],

1

t1

∑

k1

∆
(
pA1

k1,k2
, unif([dA1

])
)
≤ ε.

Moreover, for a1 ∈ [dA1
], the distribution on [dA2

] defined by pk1,k2 (a1,a2)

p
A1
k1,k2

(a1)
is the outcome distribution of measuring

in the computational basis of A2 the state

U
(2)
k2
ψA2B2

k1,a1
U

(2)
k2

†

where ψA2B2

k1,a1
is the density operator describing the state of the system A2B2 given that the outcome of the

measurement of the A1 system is a1. We can now use the fact that {U (2)
k2
}. Taking the average over k1 and k2

in equation (8), we get
1

t1t2

∑

k1,k2

∆(pk1,k2 , unif([dA1 ]× [dA2 ])) ≤ 2ε.

ut

This observation is in the same spirit as [IS10, Proposition 1], and can in fact be used to build large almost
Euclidean subspaces of `A1 (`B2 ).

2.3 Metric uncertainty relations: existence

In this section, we prove the existence of families of unitary transformations satisfying strong uncertainty relations.
The proof proceeds by showing that choosing random unitaries according to the Haar measure defines a metric
uncertainty relation with positive probability. The techniques used are quite standard and date back to Milman’s
proof of Dvoretzky’s theorem [Mil71, FLM77]. In fact, using the connection to embeddings of `2 into `1(`2)
presented in the previous section, this existential theorem can be viewed as a strengthening of Dvoretzky’s theorem
for the `1(`2) norm [MS86]. Explicit constructions of uncertainty relations are presented in the next section.

In order to use metric uncertainty relations to build quantum hiding fingerprints, we require an additional
property for {U0, . . . , Ut−1}. A set of unitary transformations {U0, . . . , Ut−1} of Cd are said to γ-approximately

8



mutually unbiased bases (γ-MUBs) if for all elements |x〉 and |y〉 of the computational basis and all k 6= k′, we
have

|〈x|U†kUk′ |y〉| ≤
1

dγ/2
. (9)

1-MUBs correspond to the usual notion of mutually unbiased bases.

Theorem 2.5 (Existence of metric uncertainty relations). Let c = 9π2 and ε ∈ (0, 1). Let A and B be Hilbert spaces with

dimB ≥ 9/ε2 and d def
= dimA ⊗ B ≥ 9c·162π

ε2 . Then, for all t > 4·18c·ln(9/ε)
ε2 , there exists a set {U0, . . . , Ut−1} of unitary

transformations of AB satisfying an ε-metric uncertainty relation on A: for all states |ψ〉 ∈ AB,

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε.

Moreover, for d such that 4td2 exp
(
−d1−γ) < 1/2, the unitaries {U0, . . . , Ut−1} can be chosen to also form γ-MUBs.

Remark. The proof proceeds by choosing a set of unitary transformations at random. See (12) and (13) for a precise
bound on the probability that such a set does not form a metric uncertainty relation or a 0.9-MUB. ut
Proof The basic idea is to evaluate the expected value of ∆

(
pAU |ψ〉, unif([dA])

)
for a fixed state when U is a random

unitary chosen according to the Haar measure. Then, we use a concentration argument to show that with high
probability, this distance is close to its expected value. After this step, we show that the additional averaging
1
t

∑t−1
k=0 ∆

(
pAUk|ψ〉, unif([dA])

)
of t independent copies results in additional concentration at a rate that depends on

t. We conclude by showing the existence of a family of unitaries that makes this expression small for all states |ψ〉
using a union bound over a δ-net. The four main ingredients of the proof are precisely stated here but only proved
in Appendix A.

We start by computing the expected value of the fidelity E
{
F
(
pAU |ψ〉, unif([dA])

)}
, which can be seen as an

`1(`2) norm.

Lemma 2.6 (Expected value of `A1 (`B2 ) over the sphere). Let |ϕ〉AB be a Haar-distributed random pure state on AB.
Then,

E
{
F
(
pA|ϕ〉, unif([dA])

)}
≥
√

1− 1

dB
.

We then use the inequality ∆(ρ, σ) ≤
√

1− F (ρ, σ)
2 to get

E
{

∆
(
pA|ϕ〉, unif([dA])

)}
≤ E

{√
1− F

(
pA|ϕ〉, unif([dA])

)2
}
.

By the concavity of the function x 7→
√

1− x2 on the interval [0, 1],

E
{

∆
(
pA|ϕ〉, unif([dA])

)}
≤
√

1−E
{
F
(
pA|ϕ〉, unif([dA])

)}2

≤
√

1−
(

1− 1

dB

)

≤ ε/3.

The last inequality comes from the hypothesis of the theorem that dB ≥ 9/ε2. In other words, for any fixed |ψ〉,
the average over U of the trace distance between pAU |ψ〉 and the uniform distribution is at most ε/3. The next step
is to show that this trace distance is close to its expected value with high probability. For this, we use a version of
Lévy’s lemma presented in [MS86].

Lemma 2.7 (Lévy’s lemma). Let f : Cd → R and η > 0 be such that for all pure states |ϕ1〉, |ϕ2〉 in Cd,

|f(|ϕ1〉)− f(|ϕ2〉)| ≤ η‖|ϕ1〉 − |ϕ2〉‖2.

9



Let |ϕ〉 be a random pure state in dimension d. Then for all 0 ≤ δ ≤ η,

P {|f(|ϕ〉)−E {f(ϕ)} | ≥ δ} ≤ 4 exp

(
−δ

2d

cη2

)

where c is a constant. We can take c = 9π2.

We apply this concentration result to f : |ϕ〉AB 7→ ∆
(
pA|ϕ〉, unif([dA])

)
. We start by finding an upper bound on

the Lipshitz constant η. For any pure states |ϕ1〉AB and |ϕ2〉AB

|f(|ϕ1〉)− f(|ϕ2〉)| ≤ ∆
(
pAϕ1

, pAϕ2

)

≤ 1

2

∑

a,b

∣∣∣∣∣|〈a|
A〈b|B |ϕ1〉|2 −

∑

b

|〈a|A〈b|B |ϕ2〉|2
∣∣∣∣∣

= ∆
(
p|ϕ1〉, p|ϕ2〉

)

≤
√

1− F
(
p|ϕ1〉, p|ϕ2〉

)2

≤
√

2
(
1− F

(
p|ϕ1〉, p|ϕ2〉

))

=

√
2− 2

∑

a,b

|〈a|〈b||ϕ1〉| · |〈a|〈b||ϕ2〉|

=

√∑

a,b

∣∣|〈a|〈b||ϕ1〉| − |〈a|〈b||ϕ2〉|
∣∣2

≤ ‖|ϕ1〉 − |ϕ2〉‖2. (10)

The first two inequalities follow from the triangle inequality. The third inequality is an application of (2). The
fourth inequality follows from the fact that 1 − x2 ≤ 2(1 − x) for all x ∈ [0, 1]. The last inequality follows again
from the triangle inequality. Thus, applying Lemma 2.7, we get for all 0 ≤ δ ≤ 1,

P
{∣∣∣∆

(
pA|ϕ〉, unif([dA])

)
− µ

∣∣∣ ≥ δ
}
≤ 4 exp

(
−δ

2d

c

)

where µ = E
{

∆
(
pA|ϕ〉, unif([dA])

)}
. The following lemma bounds the tails of the average of independent copies

of a random variable.

Lemma 2.8 (Concentration of the average). Let a, b ≥ 1, δ ∈ (0, 1) and t a positive integer. Suppose X is a random
variable with 0 mean satisfying the tail bounds

P {X ≥ δ} ≤ ae−bδ2 and P {X ≤ −δ} ≤ ae−bδ2 .
Let X1, . . . Xt be independent copies of X . Then if δ2b ≥ 16a2π,

P

{∣∣∣∣∣
1

t

t∑

k=1

Xk

∣∣∣∣∣ ≥ δ
}
≤ exp

(
−δ

2bt

2

)
.

Taking δ = ε/3 and using Lemma 2.8 (which we can apply because we have (ε/3)2 · dc ≥ 16 · 42 · π), we get

P

{∣∣∣∣∣
1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
− µ

∣∣∣∣∣ ≥ ε/3
}
≤ exp

(
−1

2

(ε/3)2td

c

)
.

Using this together with Lemma 2.6, we have

P

{
1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≥ 2ε/3

}
≤ exp

(
−ε

2td

18c

)
. (11)

We would like to have the event described in (11) hold for all |ψ〉 ∈ AB. For this, we construct a finite set N of
states (a δ-net) for which we can ensure that 1

t

∑t−1
k=0 ∆

(
pAUk|ψ〉, unif([dA])

)
< 2ε/3 for all |ψ〉 ∈ N holds with high

probability.
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Lemma 2.9 (δ-net). Let δ ∈ (0, 1). There exists a set N of pure states in Cd with |N | ≤ (3/δ)2d such that for every pure
state |ψ〉 ∈ Cd (i.e., ‖|ψ〉‖2 = 1), there exists |ψ̃〉 ∈ N such that

‖|ψ〉 − |ψ̃〉‖2 ≤ δ.

Let N be the ε/3-net obtained by applying this lemma to the space AB with δ = ε/3. We have

P

{
∃|ψ〉 ∈ N :

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≥ 2ε/3

}
≤ |N | · exp

(
−ε

2td

18c

)

≤ exp

(
−d
(
ε2t

18c
− 2 ln(9/ε)

))
.

Now for an arbitrary state |ψ〉 ∈ AB, we know that there exists |ψ̃〉 ∈ N such that ‖|ψ〉 − |ψ̃〉‖2 ≤ ε/3. As a
consequence, for any unitary transformation U ,

∆
(
pAU |ψ〉, unif([dA])

)
≤ ∆

(
pA
U |ψ̃〉, unif([dA])

)
+ ∆

(
pA
U |ψ̃〉, p

A
U |ψ〉

)

≤ ∆
(
pA
U |ψ̃〉, unif([dA])

)
+ ‖U |ψ̃〉 − U |ψ〉‖2

≤ ∆
(
pA
U |ψ̃〉, unif([dA])

)
+ ε/3.

In the first inequality, we used the triangle inequality and the second inequality can be derived as in (10). Thus,

P

{
∃|ψ〉 ∈ AB :

1

t

t−1∑

k=0

∆
(
pUk|ψ〉, unif([dA])

)
≥ ε
}
≤ exp

(
−d
(
ε2t

18c
− 2 ln(9/ε)

))
. (12)

If t > 4·18c·ln(9/ε)
ε2 , this bound is strictly smaller than 1/2 and the result follows.

To prove that we can suppose that {U0, . . . , Ut−1} define γ-MUBs, consider the function f : |ϕ〉 7→ 〈ψ|ϕ〉 for
some fixed vector |ψ〉. Then, if |ϕ〉 is a random pure state, we have E {f(|ϕ〉)} = 0. Moreover, using Levy’s Lemma
with δ = d−γ/2

P
{
|〈ψ|ϕ〉| ≥ d−γ/2

}
≤ 4 exp

(
−d

1−γ

c

)
.

Thus,

P
{
∃k 6= k′, x, y ∈ [d], |〈x|U†kUk′ |y〉| ≥ d−γ

}
≤ 4td2 exp

(
−d

1−γ

c

)
(13)

which completes the proof. ut

Corollary 2.10 (Existence of entropic uncertainty relations). Let C be a Hilbert space of dimension d > 2. There exists
a constant c′ ≥ 1 such that for any integer t > 2 such that 9·162t

5·18 log t ≤ d, there exists a set {U0, . . . , Ut−1} of unitary
transformations of C satisfying the following entropic uncertainty relation: for any state |ψ〉,

1

t

t−1∑

k=0

H(pUk|ψ〉) ≥
(

1−
√
c′ log t

t

)
log d− log

(
18t

c′ log t

)
− η

(√
c′ log t

t

)

where η(ε) = −2ε ln(2ε) for all ε > 0. In particular, in the limit d → ∞, we obtain the existence of a sequence of sets of t
bases satisfying

lim
d→∞

1
t

∑t−1
k=0 H(pUk|ψ〉)

log d
≥ 1−

√
c′ log t

t
.

Remark. Recall that the bases (or measurements) that constitute the uncertainty relation are defined as the images
of the computational basis by U†k . Note that for any set of unitaries {U0, . . . , Ut−1}, we have

1

t

t−1∑

k=0

H(pUk|ψ〉) ≤
(

1− 1

t

)
log d.
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It is an open question whether there exists uncertainty relations matching this bound, even asymptotically as
d→∞ [WW10]. Wehner and Winter [WW10] ask whether there even exists a growing function f such that

lim
d→∞

1

t

∑t−1
k=0 H(pUk|ψ〉)

log d
≥ 1− 1

f(t)
.

The corollary answers this question in the affirmative with f(t) =
√

t
c′ log t . ut

Proof Define c′ = 5 · 18c where c comes from Lévy’s Lemma 2.7, ε =
√

c′ log t
t and decompose C = A ⊗ B with

dB =
⌈
9/ε2

⌉
. As d ≥ 9c·162

ε2 and

4 · 18c log(9/ε)

ε2
= 4 · 18c log

(√
t

c′ log t

)
· t

5 · 18c log t
≤ t,

we get a family U0, . . . , Ut−1 of unitary transformations that satisfies

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε.

By Proposition 2.2, these unitary transformations also satisfy an entropic uncertainty relation:

1

t

t−1∑

k=0

H(pAUk|ψ〉) ≥ (1− ε) log

(
d

d9/ε2e

)
− η(ε)

≥ (1− ε) log d− log(18/ε2)− η(ε).

ut

2.4 Metric uncertainty relations: explicit construction

In this section, we are interested in obtaining families {U0, . . . , Ut−1} of unitaries verifying metric uncertainty
relations where U0, . . . , Ut−1 are explicit and efficiently computable using a quantum computer. For this section,
we consider for simplicity a Hilbert space composed of qubits, i.e., of dimension d = 2n for some integer n. This
Hilbert space is of the formA⊗B whereA describes the states of the first log dA qubits andB the last log dB qubits.
Note that we assume that both dA and dB are powers of two.

We construct a set of unitaries by adapting an explicit low-distortion embedding of (Rd, `2) into (Rd′ , `1) with
d′ = d1+o(1) by Indyk [Ind07]. Indyk’s construction has two main ingredients: a set of mutually unbiased bases
and an extractor. Our construction uses the same paradigm while requiring additional properties on both the
mutually unbiased bases and the extractor.

In order to obtain a locking scheme that only needs simple quantum operations, we construct sets of
approximately mutually unbiased bases from a restricted set of unitaries that can be implemented with single-qubit
Hadamard gates. Moreover, we impose three additional properties on the extractor: we need our extractor to be
strong, to define a permutation and to be efficiently invertible. We want the extractor to be strong because we are
constructing metric uncertainty relations as opposed to a norm embedding. The property of being a permutation
extractor is needed to ensure that the induced transformation on (C2)⊗n preserves the `2 norm. We also require the
efficient invertibility condition to be able to build an efficient quantum circuit for the permutation. See Definition
2.14 for a precise formulation.

The intuition behind Indyk’s idea is as follows. Let V0, . . . , Vr−1 be unitaries defining (approximately) mutually
unbiased bases and let {Py}y∈S be a permutation extractor (these terms are defined later in equation (14) and
Definition 2.14). The role of the mutually unbiased bases is to guarantee that for all states |ψ〉 and for most values
of j ∈ [r], most of the mass of the state Vj |ψ〉 is “well spread” in the computational basis. This spread is measured
in terms of the min-entropy of the distribution pVj |ψ〉. Then, the extractor {Py}y will ensure that on average over
y ∈ S, the masses

∑
b |〈a|〈b|PyVj |ψ〉|2 are almost equal for all a ∈ [dA]. More precisely, the distribution pAPyVj |ψ〉 is

close to uniform.
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We start by recalling the definition of mutually unbiased bases. A set of unitary transformations V0, . . . , Vr−1

is said to define γ-approximately mutually unbiased bases (or γ-MUBs) if for i 6= j and any elements |x〉 and |y〉 of the
computational basis, we have

|〈x|V †i Vj |y〉| =
1

dγ/2
. (14)

As shown in the following lemma, there is a construction of mutually unbiased bases that can be efficiently
implemented [WF89]. The proof of the lemma is deferred to Appendix B.

Lemma 2.11 (Quantum circuits for MUBs). Let n be a positive integer and d = 2n. For any integer r ≤ d+1, there exists
a family V0, . . . , Vr−1 of unitary transformations of Cd that define mutually unbiased bases. Moreover, there is a randomized
classical algorithm with runtime O(n2 polylog n) that takes as input j ∈ [r] and outputs a binary vector αj ∈ {0, 1}2n−1,
and a quantum circuit of size O(n polylog n) and depth O(log n) that when given as input the vector αj (classical input)
and a quantum state |ψ〉 ∈ Cd outputs Vj |ψ〉.

Remark. The randomization in the algorithm is used to find an irreducible polynomial of degree n over F2[X].
It could be replaced by a deterministic algorithm that runs in time O(n4 polylog n). Observe that if n is odd and
r ≤ (d+ 1)/2, it is possible to choose the unitary transformations to be real (see [HSP06]). ut

It is also possible to obtain approximately mutually unbiased bases that use smaller circuits. In fact, the
following lemma shows that we can construct large sets of approximately mutually unbiased bases defined by
unitaries in the restricted set

H = {Hv def
= Hv1 ⊗ · · · ⊗Hvn , v ∈ {0, 1}n},

where H is the Hadamard transform on C2 defined by

H =
1√
2

(
1 1
1 −1

)
.

In our construction of metric uncertainty relations (Theorem 2.16), we could use the 1-MUBs of Lemma 2.11 or the
(1/2 − δ)-MUBs of Lemma 2.12. As the construction of approximate MUBs is simpler and can be implemented
with simpler circuits, we use Lemma 2.12 when the choice of γ-MUBs is not specified.

Lemma 2.12 (Approximate MUBs inH). Let n′ be a positive integer and n = 2n
′
.

1. For any integer r ≤ n, there exists a family V0, . . . , Vr−1 ∈ H that define 1/2-MUBs.

2. For any δ ∈ (0, 1/2), there exists a constant c > 0 independent of n such that for any r ≤ 2cn there exists a family
V0, . . . , Vr−1 of unitary transformations inH that define (1/2− δ)-MUBs.

Moreover, in both cases, given an index j ∈ [r], there is a polynomial time (classical) algorithm that computes the vector
v ∈ {0, 1}n that defines the unitary Vj = Hv .

Proof Observe that for any v ∈ {0, 1}n and any y ∈ {0, 1}n, we have

Hv (|y1〉 ⊗ · · · ⊗ |yn〉) = Hv1 |y1〉 ⊗ · · · ⊗Hvn |yn〉 =
∑

y′i∈{0,1} for vi=1

y′i=yi for vi=0

(−1)v·y
′

√
2

w(v)
|y′1 . . . y′n〉.

Thus,

|〈x|HvHv′ |y〉| = |〈x|Hv+v′ |y〉| ≤ 1

2dH(v,v′)/2
. (15)

Using this observation, we see that a binary code C ⊆ {0, 1}n with minimum distance γn defines a set of γ-
MUBs in H. It is now sufficient to find binary codes with minimum distance as large as possible. For the first
construction, we use the Hadamard code that has minimum distance n/2. The Hadamard codewords are indexed
by x ∈ {0, 1}n′ ; the codeword corresponding to x is the vector v ∈ {0, 1}n whose coordinates are vz = x · z for all
z ∈ {0, 1}n′ . This code has the largest possible minimum distance for a non-trivial binary code but its shortcoming
is that the number of codewords is only n. For our applications, it is sometimes desirable to have r larger than n
(this is useful to allow the error parameter ε of our metric uncertainty relation to be smaller than n−1/2).
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For the second construction, we use families of linear codes with minimum distance (1/2− δ)n with a number
of codewords that is exponential in n. For this, we can use Reed-Solomon codes concatenated with linear codes
on {0, 1}Θ(n′) that match the performance of random linear codes; see for example Appendix E in [Gol08]. For
a simpler construction, note that we can also get 2Ω(

√
n) codewords by using a Reed-Solomon code concatenated

with a Hadamard code. ut

The next lemma shows that for any state |ψ〉, for most values of j, the distribution pVj |ψ〉 is close to a distribution
with large min-entropy provided {Vj} define γ-MUBs. This result might be of independent interest. In fact, the
authors of [DFR+07] prove a lower bound close to n/2 on the min-entropy of a measurement in the computational
basis of the state U |ψ〉where U is chosen uniformly from the full set of the 2n unitaries ofH. They leave as an open
question the existence of small subsets ofH that satisfy the same uncertainty relation. When used with the γ-MUBs
of Lemma 2.12, the following lemma partially answers this question by exhibiting such sets of size polynomial in
n but with a min-entropy lower bound close to n/4 instead. This can be used to reduce the amount of randomness
needed for many protocols in the bounded and noisy quantum storage models.

Lemma 2.13. Let n ≥ 1, d = 2n and ε ∈ (0, 1) and consider a set of r =
⌈

2
ε2

⌉
unitary transformations V0, . . . , Vr−1 of Cd

defining γ-MUBs. For all |ψ〉 ∈ Cd,
∣∣∣
{
j ∈ [r] : ∃ distribution qj ,∆

(
pVj |ψ〉, qj

)
≤ ε and Hmin(qj) ≥

γn

2
− log(8/ε2)

}∣∣∣ ≥ (1− ε)r.

Proof This proof proceeds along the lines of [Ind07, Lemma 4.2]. Similar results can also be found in the sparse
approximation literature; see [Tro04, Proposition 4.3] and references therein.

Consider the rd × d matrix V obtained by concatenating the rows of the matrices V0, . . . , Vr−1. For S ⊆ [rd],
VS denotes the submatrix of V obtained by selecting the rows in S. The coordinates of the vector V |ψ〉 ∈ Crd are
indexed by z ∈ [rd] and denoted by (V |ψ〉)z .
Claim. We have for any set S ⊆ [rd] of size at most dγ/2 and any unit vector |ψ〉,

‖(V |ψ〉)S‖22 ≤ 1 +
|S|
dγ/2

. (16)

To prove the claim, we want an upper bound on the operator 2-norm of the matrix (VS), which is the square
root of the largest eigenvalue of G = V †SVS . As two distinct rows of V have an inner product bounded by 1

dγ/2
, the

non-diagonal entries of G are bounded by 1
dγ/2

. Moreover, the diagonal entries of G are all 1. By the Gershgorin
circle theorem, all the eigenvalues of G lie in the disc centered at 1 of radius |S|−1

dγ/2
. We conclude that (16) holds.

Now pick S to be the set of indices of the dγ largest entries of the vector {|(V |ψ〉)z|2}z∈[rd]. Using the previous
claim, we have ‖(V |ψ〉)S‖22 ≤ 2. Moreover, since S contains the dγ/2 largest entries of {|(V |ψ〉)z|2}z , we have that
for all z /∈ S, |(V |ψ〉)z|2dγ/2 ≤ ‖V |ψ〉‖22 =

∑r−1
j=0 ‖Vj |ψ〉‖22 = r. Thus, for all z /∈ S, |(V |ψ〉)z|2 ≤ r

dγ/2
.

We now build the distributions qj . For every j ∈ [r], define

wj =
∑

z∈S∩{jr,...,(j+1)r−1}
|(V |ψ〉)z|2,

which is the total weight in S of Vj |ψ〉. Defining Tε = {j : wj > ε}, we have |Tε|ε ≤ ‖(V |ψ〉)S‖22 ≤ 2. Thus,

|Tε| ≤ 2/ε ≤ εr.
We define the distribution qj for j ∈ [r] by

qj(x) =

{
|〈x|Vj |ψ〉|2 +

wj
d if jd+ x /∈ S

wj
d if jd+ x ∈ S.

Since ∑

x

qj(x) = wj +
∑

x∈[d]:jd+x/∈S
|〈x|Vj |ψ〉|2 =

∑

x∈[d]

|〈x|Vj |ψ〉|2 = 1,

qj is a probability distribution. Moreover, we have that for j /∈ Tε

∆
(
pVj |ψ〉, qj

)
≤ 1

2


 ∑

x:jd+x/∈S

wj
d

+
∑

x:jd+x∈S

(wj
d

+ |〈x|Vj |ψ〉|2
)

 = wj ≤ ε.
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The distribution qj also has the nice property that for all x ∈ [d], qj(x) ≤ r
dγ/2

+ 1
d ≤ 2r

dγ/2
. In other words,

Hmin(qj) ≥ γn
2 − log(8/ε2). ut

We now move to the second building block in Indyk’s construction: randomness extractors. Randomness
extractors are functions that extract uniform random bits from weak sources of randomness.

Definition 2.14 (Strong permutation extractor). Let n and m ≤ n be positive integers, ` ∈ [0, n] and ε ∈ (0, 1). A family
of permutations {Py}y∈S of {0, 1}n where each permutation Py is described by two functions PEy : {0, 1}n → {0, 1}m
(the first m output bits of Py) and PRy : {0, 1}n → {0, 1}n−m (the last n − m output bits of Py) is said to be an explicit
(n, `)→ε m strong permutation extractor if:

• For any random variable X on {0, 1}n such that Hmin(X) ≥ `, and an independent seed US uniformly distributed
over S, we have

∆

(
p(
US ,PEUS

(X)
), unif(S × {0, 1}m)

)
≤ ε,

which is equivalent to
1

|S|
∑

y∈S
∆
(
pPEy (X), unif({0, 1}m)

)
≤ ε. (17)

• For all y ∈ S, both the function Py and its inverse P−1
y are computable in time polynomial in n.

Remark. A similar definition of permutation extractors was used in [RVW00] in order to avoid some entropy loss
in an extractor construction. Here, the reason we use permutation extractors is different; it is because we want the
induced transformation Py on C2n to preserve the `2 norm. ut

We can adapt an extractor construction of [GUV09] to obtain a permutation extractor with the following
parameters. The details of the construction are presented in Appendix C.

Theorem 2.15 (Explicit strong permutation extractors). For all (constant) δ ∈ (0, 1), all positive integers n, all
k ∈ [c log(n/ε), n] (c is a constant independent of n and ε), and all ε ∈ (0, 1/2), there is an explicit (n, k)→ε (1−δ)k strong
permutation extractor {Py}y∈S with log |S| ≤ O(log(n/ε)). Moreover, the functions (x, y) 7→ Py(x) and (x, y) 7→ P−1

y (x)
can be computed by circuits of size O(npolylog(n/ε)).

A permutation P on {0, 1}n defines a unitary transformation on (C2)⊗n that we also call P . The permutation
extractor {Py}will be seen as a family of unitary transformations over n qubits. Moreover, just as we decomposed
the space {0, 1}n into the first m bits and the last n−m bits, we decompose the space (C2)⊗n into A⊗B, where A
represents the first m qubits and B represents the last n−m qubits. The properties of {PEy } will then be reflected
in the system A.

Combining Theorem 2.15 and Lemma 2.11, we obtain a set of unitaries satisfying a metric uncertainty relation.

Theorem 2.16 (Explicit uncertainty relations: key optimized). Let δ > 0 be a constant, n be a positive integer,
ε ∈ (2−c

′n, 1) (c′ is a constant independent of n). Then, there exist t ≤
(
n
ε

)c (for some constant c independent of n
and ε) unitary transformations U0, . . . , Ut−1 acting on n qubits such that: if A represents the first (1− δ)n/4−O(log(1/ε))
qubits and B represents the remaining qubits, then for all |ψ〉 ∈ AB,

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε.

Moreover, the mapping that takes the index k ∈ [t] and a state |ψ〉 as inputs and outputs the state Uk|ψ〉 can be performed
by a classical computation with polynomial runtime and a quantum circuit that consists of single-qubit Hadamard gates on a
subset of the qubits followed by a permutation in the computational basis. This permutation can be computed by (classical or
quantum) circuits of size O(n polylog(n/ε)).

Remark. Observe that in terms of the dimension d of the Hilbert space, the number of unitaries t is polylogarithmic.
ut

Proof Let ε′ = ε/6. Lemma 2.11 gives r =
⌈
2/ε′2

⌉
≤ 2n unitary transformations V0, . . . , Vr−1 that define mutually

unbiased bases. Moreover, all theses unitaries can be computed by circuits of size O(n polylog n). Theorem 2.15
with ` = n/2− log(8/ε′2) and error ε′ gives |S| ≤ 2c log(n/ε′) permutations {Py}y∈S of {0, 1}n that are computable by
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classical circuits of size O(npolylog(n/ε)). We now argue that this classical circuit can be used to build a quantum
circuit of size O(npolylog n) that computes the unitaries Py .

Given classical circuits that compute P and P−1, we can construct reversible circuits CP and CP−1 for P and
P−1. The circuit CP when given input (x, 0) outputs the state (x, P (x)), so that it keeps the input x. Such a circuit
can readily be transformed into a quantum circuit that acts on the computational basis states as the classical circuit.
We also call these circuits CP and CP−1 . Observe that we want to compute the unitary P , so we have to erase the
input x. For this, we can then combine the circuits CP and CP−1 as described in Figure 1. Note that the size of this
quantum circuit is the same as the size of the original classical circuit up to some multiplicative constant. Thus,
this quantum circuit has size O(npolylog n).

|x〉

|0〉

|0〉

CP

|x〉

|0〉

|P (x)〉

|0〉

|0〉

|P (x)〉

(CP−1)
−1

|P (x)〉

|x〉

Figure 1: Quantum circuit to compute the permutation P using quantum circuits CP for P and CP−1 for P−1.
(CP−1)−1 is simply the circuit CP−1 taken backwards. The bottom register is an ancilla register.

The unitaries {U0, . . . , Ut−1} are obtained by taking all the possible products PyVj for j ∈ [r], y ∈ S. Note that
t = r|S|. We now show that the set {U0, . . . , Ut−1} verifies the uncertainty relation property. Using Lemma 2.13,
for any state |ψ〉, the set

T|ψ〉
def
=

∣∣∣∣
{
j : ∃ distribution qj ,∆

(
pVj |ψ〉, qj

)
≤ ε′ and ∀x ∈ [d], qj(x) ≤ 2r√

d

}∣∣∣∣

has size at least (1− ε′)r. Moreover, for all a ∈ [dA], pAPyVi|ψ〉(a) =
∑
b |〈a|A〈b|bPyVi|ψ〉|2 = P

{
PEy (X) = a

}
where

X has distribution pVi|ψ〉. By definition, for i ∈ T|ψ〉, we have ∆
(
pVi|ψ〉, qi

)
≤ ε′ with Hmin(qi) ≥ n/2 − log(8/ε′2).

Using the fact that {PEy } is a strong extractor (see (17)) for min-entropy n/2− log(8/ε′2), it follows that

1

|S|
∑

y∈S
∆
(
pAPyVi|ψ〉, unif([dA])

)
≤ 2ε′

for all i ∈ T|ψ〉. As |T|ψ〉| ≥ (1− ε′)r, we obtain

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ 3ε′ = ε/2.

To conclude, we show that t can be taken to be a power of two at the cost of multiplying the error by at most two.
In fact, let p be the smallest integer verifying t ≤ 2p, so that 2p ≤ 2t. By repeating 2p − t unitaries, it is easily
seen that we obtain an ε-metric uncertainty relation with 2p unitaries from an ε/2-metric uncertainty relation with
t unitaries. ut

Note that the B system we obtain is quite large and to get strong uncertainty relations, we want the system B
to be as small as possible. For this it is possible to repeat the construction of the previous theorem on theB system.
The next theorem gives a construction where the A system is composed of n − O(log log n) − O(log(1/ε)) qubits.
Of course, this is at the expense of increasing the number of unitaries in the uncertainty relation.

Theorem 2.17 (Explicit uncertainty relation: message length optimized). Let n be a positive integer and ε ∈ (2−c
′n, 1)

(c′ is a constant independent of n). Then, there exist t ≤
(
n
ε

)c logn (for some constant c independent of n and ε) unitary
transformations U0, . . . , Ut−1 acting on n qubits that are all computable by quantum circuits of size O(n polylog(n/ε)) such
that: if A represents the first n − O(log log n) − O(log(1/ε)) qubits and B represents the remaining qubits, then for all
|ψ〉 ∈ AB,

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε. (18)
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Moreover, the mapping that takes the index k ∈ [t] and a state |ψ〉 as inputs and outputs the state Uk|ψ〉 can be performed
by a classical precomputation with polynomial runtime and a quantum circuit of size O(npolylog(n/ε)). The number of
unitaries t can be taken to be a power of two.

Proof Using the construction of Theorem 2.16, we obtain a system A over which we have some uncertainty
relation and a system B that we do not control. In order to decrease the dimension of the system B, we can apply
the same construction to that system. The system B then gets decomposed into A2B2, and we know that the
distribution of the measurement outcomes of systemA2 in the computational basis is close to uniform. As a result,
we obtain an uncertainty relation on the system AA2 (see Figure 2).

A1

B1 = A2B2

A2

B2

U
(1)
k1 U

(2)
k2

B0

Figure 2: Composition of the construction of Theorem 2.16: In order to reduce the dimension of the B system, we
can re-apply the uncertainty relation to the B system.

More precisely, we start by demonstrating a simple property about the composition of metric uncertainty
relations. Note that this composition is different from the one described in (7), but the proof is quite similar.

Claim. Suppose the set {U (1)
0 , . . . , U

(1)
t1−1} of unitaries on A1B1 satisfies a (t1, ε1)-metric uncertainty relation on

system A1 and the {U (2)
0 , . . . , U

(2)
t2−1} of unitaries on B1 = A2B2 satisfies a (t2, ε2)-metric uncertainty relation on

A2. Then the set of unitaries
{

(11A1 ⊗ U (2)
k2

) · U (1)
k1

}
k1,k2∈[t1]×[t2]

satisfies a (t1t2, ε1 + ε2)-metric uncertainty relation

on A1A2: for all |ψ〉 ∈ A1A2B2,

1

t1t2

∑

k1,k2∈[t1]×[t2]

∆

(
p
U

(2)
k2
U

(1)
k1
|ψ〉, unif([dA1dA2 ])

)
≤ ε1 + ε2.

For a fixed value of k1 ∈ [t1] and a1 ∈ [dA1 ], we can apply the second uncertainty relation to the state
〈a1|A1Uk1 |ψ〉
‖〈a1|A1Uk1 |ψ〉‖2

= 1√
p
A1
Uk1
|ψ〉(a1)

∑
b1

(〈a1|〈b1|Uk1 |ψ〉) |b1〉 ∈ B1 = A2B2. As {|b1〉}b1 = {|a2〉|b2〉}a2,b2 , we have

1

t2

∑

k2

∑

a2

∣∣∣∣∣
1

pA1

Uk1 |ψ〉
(a1)

∑

b2

|〈a1|A1〈a2|A2〈b2|B2(11A1 ⊗ Uk2)Uk1 |ψ〉|2 −
1

dA2

∣∣∣∣∣ ≤ ε2.

We can then calculate, in the same vein as (8)

1

t1t2

∑

k1,k2

∑

a1,a2

∣∣∣∣∣
∑

b2

|〈a1|A1〈a2|A2〈b2|B2(11A1 ⊗ Uk2)Uk1 |ψ〉|2 −
1

dA1
dA2

∣∣∣∣∣

≤ 1

t1t2

∑

k1,k2

∑

a1

∣∣∣∣∣
∑

b2

|〈a1|A1〈a2|A2〈b2|B2(11A1 ⊗ Uk2)Uk1 |ψ〉|2 −
pA1

Uk1 |ψ〉
(a1)

dA2

∣∣∣∣∣+
1

t1

∑

k1

∑

a1,a2

∣∣∣∣∣
pA1

Uk1 |ψ〉
(a1)

dA2

− 1

dA1
dA2

∣∣∣∣∣

≤ 1

t1

∑

k1

∑

a1

pA1

Uk1 |ψ〉
(a1)ε2 + ε1

≤ ε2 + ε1.

This completes the proof of the claim.
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To obtain the claimed dimensions, we compose the construction of Theorem 2.16 h times with an error
parameter ε′ = ε/h and δ = 1/8. Starting with a space of n qubits, the dimension of the B system (after one
step) can be bounded by

7

8
n−O(log(1/ε′)) ≤ log dB ≤

7

8
n

So after h steps, we have

(7/8)
h
n−O(log(1/ε′)) · 8(1− (7/8)h) ≤ log dBh ≤ (7/8)

h
n.

Thus,
(7/8)

h
n−O(log(1/ε′)) ≤ log dBh ≤ (7/8)

h
n.

Note that h cannot be arbitrarily large: in order to apply the construction of Theorem 2.16 on a system of m qubits
with error ε′, we should have ε′ ≥ 2−c

′m. In other words, if

log dBh ≥
1

c′
log(h/ε), (19)

then we can apply the construction h times. Let c′′ be a constant to be chosen later and h =⌊
1

log(8/7) (log n− log(c log logn+ c log(1/ε)))
⌋

. This choice of h satisfies (19). In fact,

log dBh ≥ c log log n+ c log(1/ε)−O(log(h/ε))

≥ 1

c′
log(h/ε)

if c is chosen large enough. Moreover, we get

log dBh = 2− logn · 2logO(log logn+log(1/ε)) · n = O(log log n+ log(1/ε))

as stated in the theorem.
Each unitary of the obtained uncertainty relation is a product of h unitaries. The overall number of unitaries is

product of the number of unitaries for each of the h steps. As a result, we have t ≤
(
n
ε

)c logn for some constant c. t
can be taken to be a power of two as the number of unitaries at each step can be taken to be power of two.

As for the running time, each unitary of the uncertainty relation is a product ofO(log n) unitaries from Theorem
2.16. Hence, each unitary can be computed by a quantum circuit of size O(npolylog n). ut

It is of course possible to obtain a trade-off between the key size and the dimension of theB system by choosing
the number of times the construction of Theorem 2.16 is applied. In the next corollary, we show how to obtain an
explicit entropic uncertainty relation whose average entropy is (1− ε)n.

Corollary 2.18 (Explicit entropic uncertainty relations). Let n ≥ 100 be an integer, and ε ∈ (10n−1/2, 1/(2e)). Then,
there exists t ≤

(
n
ε

)c log(1/ε) (for some constant c independent of n and ε) unitary transformations U0, . . . , Ut−1 acting on n
qubits that are all computable by quantum circuits of size O(n polylog n) verifying an entropic uncertainty relation: for all
pure states |ψ〉 ∈

(
C2
)⊗n,

1

t

t−1∑

k=0

H(pUk|ψ〉) ≥ (1− 3ε)n− η(ε) (20)

where η(ε) = −2ε ln(2ε). Moreover, the mapping that takes the index k ∈ [t] and a state |ψ〉 as inputs and outputs the state
Uk|ψ〉 can be performed by a classical randomized precomputation with expected runtime O(n2 polylog n) and a quantum
circuit of size O(npolylog n). The number of unitaries t can be taken to be a power of two.

Proof The proof is basically the same as the proof of Theorem 2.17, except that we repeat the construction
h = dlog(1/ε)/ log(8/7)e times. We thus have

log dBh ≤ (7/8)
h
n ≤ εn.
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We obtain a set of t ≤
(
n
ε

)c log(1/ε) unitary transformations. Applying Proposition 2.2, we get

1

t

t−1∑

i=0

H(pUk|ψ〉) ≥ (1− 2ε)(1− ε)n− η(ε)

≥ (1− 3ε)n− η(ε).

ut

3 Locking classical information in quantum states

Outline of the section We apply the results on metric uncertainty relations of the previous section to obtain
locking schemes. After an introductory section on locking classical correlations (Section 3.1), we show how to
obtain a locking scheme using a metric uncertainty relation in Section 3.2. Using the constructions of the previous
section, this leads to locking schemes presented in Corollaries 3.4 and 3.5. In Section 3.3, we show how to construct
quantum hiding fingerprints by locking a classical fingerprint. In Section 3.4, we observe that these locking
schemes can be used to construct efficient string commitment protocols. Section 3.5 discusses the link to locking
entanglement of formation.

3.1 Background

Locking of classical correlations was first described in [DHL+04] as a violation of the incremental proportionality
of the maximal classical mutual information that can be obtained by local measurement on a bipartite state. More
precisely, for a bipartite state ωAB , the maximum classical mutual information Ic is defined by

Ic(A;B)ω = max
{MA

i },{MB
i }

I(IA; IB),

where {MA
i } and {MB

i } are measurements on A and B, and IA, IB are the (random) outcomes of these
measurements on the state ωAB . Incremental proportionality is the intuitive property that ` bits of communication
between two parties can increase their mutual information by at most ` bits. The authors of [DHL+04] considered
the states

ωXKC =
1

2d

1∑

k=0

d−1∑

x=0

|x〉〈x|X ⊗ |k〉〈k|K ⊗ (Uk|x〉〈x|U†k)C (21)

for k ∈ {0, 1} where U0 = 11 and U1 is the Hadamard transform. It was shown in [DHL+04] that the classical
mutual information Ic(XK;C)ω = 1

2 log d. However, if the holder of the C system also knows the value of k, then
we can represent the global state by the following density operator

ωXKCK
′

=
1

2d

1∑

k=0

d−1∑

x=0

|x〉〈x|X ⊗ |k〉〈k|K ⊗ (Uk|x〉〈x|U†k)C ⊗ |k〉〈k|K′ .

It is easy to see that Ic(XK;CK ′)ω = 1 + log d. This means that with only one bit of communication (represented
by the register K ′), the classical mutual information between systems XK and C jumped from 1

2 log d to 1 + log d.
In other words, it is possible to unlock 1

2 log d bits of information (about X) from the quantum system C using a
single bit.

The authors of [HLSW04] proved an even stronger locking result. They generalize the state in equation (21) to

ωXKC =
1

td

d−1∑

x=0

t−1∑

k=0

|x〉〈x|X ⊗ |k〉〈k|K ⊗ (Uk|x〉〈x|U†k)C ⊗ |k〉〈k|K′ (22)

where Uk are chosen independently at random according to the Haar measure. They show that for any ε > 0, by
taking t = (log d)3 and if d is large enough,

Ic(X;C)ω ≤ ε log d and Ic(XK;CK ′)ω = log d+ log t
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with high probability. Note that the size of the key measured in bits is only log t = O(log log d) and it should
be compared to the (1 − ε) log d bits of unlocked (classical) information. It should be noted that their argument
is probabilistic, and it does not say how to construct the unitary transformations Uk. It is worth stressing that
standard derandomization techniques are not known to work in this setting. For example, unitary t-designs use
far too many bits of randomness [DCEL09]. Moreover, using a δ-biased subset of the set of Pauli matrices fails to
produce a locking scheme unless the subset has a size of the order of the dimension d [AS04, DD10] (see Appendix
D).

Here, we view locking as a cryptographic task in which a message is encoded into a quantum state using
a key whose size is much smaller than the message. Having access to the key, one can decode the message.
However, an eavesdropper who does not have access to the key and has complete uncertainty about the message
can extract almost no classical information about the message. We should stress here that this is not a composable
cryptographic task, namely because an eavesdropper could choose to store quantum information about the
message instead of measuring. In fact, as shown in [KRBM07], using the communicated message X as a key for
a one-time pad encryption might not be secure; see also [DFHL10]. It is however strictly stronger that the notion
of entropic security [RW02, DS05, DD10] (see Appendix D for an example of an entropically secure encryption
scheme that is not ε-locking).

Definition 3.1 (ε-locking scheme). Let n be a positive integer, ` ∈ [0, n] and ε ∈ [0, 1]. An encoding E : [2n]× [t]→ S(C)
is said to be (`, ε)-locking for the quantum system C if:

• For all x 6= x′ ∈ [2n] and all k ∈ [t], ∆(E(x, k), E(x′, k)) = 1.

• Let X (the message) be a random variable on [2n] with min-entropy Hmin(X) ≥ `, and K (the key) be an independent
uniform random variable on [t]. For any measurement {Mi} on C and any outcome i,

∆
(
pX|[I=i], pX

)
≤ ε. (23)

where I is the outcome of measurement {Mi} on the (random) quantum state E(X,K).
When the min-entropy bound ` is not specified, it should be understood that ` = n meaning that X is uniformly
distributed on [2n]. The state E(x, k) for x ∈ [2n] and k ∈ [t] is referred to as the ciphertext.

Remark. The relevant parameters of a locking scheme are: the number of bits n of the (classical) message, the
dimension d of the (quantum) ciphertext, the number t of possible values of the key and the error ε. Strictly
speaking, a classical one-time pad encryption, for which t = 2n, is (0, 0)-locking according to this definition.
However, here we seek locking schemes for which t is much smaller than 2n, say t polynomial in n. This cannot
be achieved using a classical encryption scheme.

Observe that one can simply guess the key and apply the corresponding decoding. This observation shows
that the error of an ε-locking scheme satisfies ε ≥ 1

t − 1
2n [DHL+04]. ut

Note that we used the statistical distance between pX|[I=i] and pX instead of the mutual information between
X and I to measure the information gained about X from a measurement. Using the trace distance is a stronger
requirement as demonstrated by the following proposition.

Proposition 3.2. Let ε ∈ [0, 1
2e ] and E : [2n]× [t]→ S(C) be an ε-locking scheme. Define the state

ωXKCK
′

=
1

td

t−1∑

k=0

2n−1∑

x=0

|x〉〈x|X ⊗ |k〉〈k|K ⊗ E(x, k)C ⊗ |k〉〈k|K′ .

Then,
Ic(X;C)ω ≤ 2εn+ η(ε) and Ic(XK;CK ′)ω = n+ log t

where η(ε) = −2ε ln(2ε) with η(0) = 0.

Proof First, we can suppose that the measurement performed on the system X is in the basis (|x〉X)x,k. In fact,
the outcome distribution of any measurement on the X system can be simulated classically using the values of the
random variables X .

Now let I be the outcome of a measurement performed on the C system. Using Fannes’ inequality, we have
for any i

H(X)−H(X|I = i) ≤ 2∆
(
pX , pX|[I=i]

)
− η

(
∆
(
pX , pX|[I=i]

))

≤ 2εn+ η(ε)
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using the face that E defines an ε-locking scheme. Thus,

I(X; I) = H(X)−
∑

i

P {I = i}H(X|I = i)

≤ 2εn+ η(ε).

As this holds for any measurement, we get Ic(X;C)ω ≤ 2εn+ η(ε). ut

The trace distance was also used in [Dup10, DFHL10] to define a locking scheme. To measure the leakage of
information about X caused by a measurement, they used the probably more natural trace distance between the
joint distribution of p(X,I) and the product distribution pX × pI . Note that our definition is stronger, in that for all
outcomes of the measurement i, ∆

(
pX|[I=i], pX

)
≤ ε whereas the definition of [DFHL10] says that this only holds

on average over i. To the best of our knowledge, even the existence of such a strong locking scheme with small
key was unknown.

For a survey on locking classical correlations, see [Leu09].

3.2 Locking using a metric uncertainty relation

The following theorem shows that a locking scheme can easily be constructed using a metric uncertainty relation.

Theorem 3.3. Let ε ∈ (0, 1) and {U0, . . . , Ut−1} be a set of unitary transformations of A ⊗ B that satisfies an ε-metric
uncertainty relation on A, i.e., for all states |ψ〉 ∈ AB,

1

t

t−1∑

k=0

∆
(
pAUk|ψ〉, unif([dA])

)
≤ ε.

Assume dA = 2n. Then, the mapping E : [2n]× [t]→ S(AB) defined by

E(x, k) =
1

dB

dB−1∑

b=0

U†k
(
|x〉〈x|A ⊗ |b〉〈b|B

)
Uk.

is ε-locking. Moreover, for all ` ∈ [0, n] such that 2`−n > ε, it is (`, 2ε
2`−n−ε )-locking.

Remark. The state that the encoder inputs in the B system is simply private randomness. The encoder chooses a
uniformly random b ∈ [dB ] and sends the quantum state U†k |x〉A|b〉B . Note that b does not need to be part of the
key (i.e., shared with the receiver). This makes the dimension d = dAdB of the ciphertext larger than the number
of possible messages 2n. If one insists on having a ciphertext of the same size as the message, it suffices to consider
b as part of the message and apply a one-time pad encryption to b. The number of possible values taken by the key
increases to t · dB . ut
Proof First, it is clear that different messages are distinguishable. In fact, for x 6= x′ and any k,

∆(E(x, k), E(x′, k)) =
1

2
tr



√

|x〉〈x|A ⊗ 11B

dimB
− |x′〉〈x′|A ⊗ 11B

dimB


 = 1.

We now prove the locking property. Let X be the random variable representing the message. Assume that X is
uniformly distributed over some set S ⊆ [dA] of size |S| ≥ 2`. Let K be a uniformly random key in [t] that is
independent of X . Consider a POVM {Mi} on the system AB. Without loss of generality, we can suppose that
the POVM elements Mi have rank 1. Otherwise, by writing Mi in its eigenbasis, we could decompose outcome i
into more outcomes that can only reveal more information. So we can write the elements as weighted rank one
projectors: Mi = ξi|ei〉〈ei| where ξi > 0. Our objective is to show that the outcome I of this measurement on
the state E(X,K) is almost independent of X . More precisely, for a fixed measurement outcome I = i, we want
to compare the conditional distribution pX|[I=i] with pX . The trace distance between these distributions can be
written as

1

2

dA−1∑

x=0

∣∣P {X = x|I = i} −P {X = x}
∣∣. (24)
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Towards this objective, we start by computing the distribution of the measurement outcome I , given the value
of the message X = x (note that the receiver does not know the key):

P {I = i|X = x} =
ξi
tdB

t−1∑

k=0

dB−1∑

b=0

tr
[
Uk|ei〉〈ei|U†k · |x〉〈x|A ⊗ |b〉〈b|B

]

=
ξi
tdB

t−1∑

k=0

dB−1∑

b=0

〈x|A〈b|BUk|ei〉〈ei|U†k |x〉A|b〉B

=
ξi
tdB

t−1∑

k=0

dB−1∑

b=0

∣∣〈x|A〈b|BUk|ei〉
∣∣2

=
ξi
dB

1

t

t−1∑

k=0

pAUk|ei〉(x).

Since X is uniformly distributed over S, we have that for all x ∈ S

P {X = x|I = i} =
P {X = x}P {I = i|X = x}∑

x′∈S P {X = x′}P {I = i|X = x′}

=
(1/t) ·∑k p

A
Uk|ei〉(x)

(1/t) ·∑x′∈S
∑
k p

A
Uk|ei〉(x

′)
. (25)

Observe that in the case where X is uniformly distributed over [2n] (S = [2n]), it is simple to obtain directly that

∆
(
pX|[I=i], pX

)
=

1

2

dA−1∑

x=0

∣∣∣∣∣
1

t

t−1∑

k=0

pAUk|ei〉(x)− 1

2n

∣∣∣∣∣ ≤ ε

using the fact that {Uk} satisfies a metric uncertainty relation on A. Now let S be any set of size at least 2`, let
α = 1

t

∑
x′∈S

∑
k p

A
Uk|ei〉(x

′). We then bound

1

2

dA−1∑

x=0

∣∣P {X = x|I = i} −P {X = x}
∣∣ =

1

2

∑

x∈S

∣∣∣∣∣
(1/t) ·∑k p

A
Uk|ei〉(x)

α
− 1

|S|

∣∣∣∣∣

=
1

2α
·
∑

x∈S

∣∣∣∣∣
1

t

t−1∑

k=0

pAUk|ei〉(x)− α

|S|

∣∣∣∣∣

≤ 1

2α
· 1

t

∑

k

(∑

x∈S

∣∣∣∣pAUk|ei〉(x)− 1

2n

∣∣∣∣+

∣∣∣∣
1

2n
− α

|S|

∣∣∣∣

)
.

We now use the fact that {Uk} satisfies a metric uncertainty relation on A: we get

1

t

∑

k

1

2

∑

x∈S

∣∣∣∣pAUk|ei〉(x)− 1

2n

∣∣∣∣ ≤
1

t

∑

k

1

2

∑

x∈[dA]

∣∣∣∣pAUk|ei〉(x)− 1

2n

∣∣∣∣ ≤ ε

and
1

2

∣∣∣∣
|S|
2n
− α

∣∣∣∣ =
1

2

∣∣∣∣∣
|S|
2n
− 1

t

∑

x′∈S

t−1∑

k=0

pAUk|ei〉(x
′)

∣∣∣∣∣ ≤ ε. (26)

As a result, we have

∆
(
pX|[I=i], pX

)
≤ 2ε

α
.

Using (26), we have α ≥ |S|2−n − ε ≥ 2`−n − ε. If ε < 2`−n, we get

∆
(
pX|[I=i], pX

)
≤ 2ε

2`−n − ε .
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In the general case when X has min-entropy `, the distribution of X can be seen as a mixture of uniform
distributions over sets of size at least 2`. So there exist independent random variables J ∈ N and {Xj} uniformly
distributed on sets of size at least 2` such that X = XJ . One can then write

1

2

∑

x

|P {X = x|I = i} −P {X = x}| = 1

2

∑

x,j

|P {J = j} (P {Xj = x|I = i, J = j} −P {Xj = x|J = j})|

≤ 2ε

2`−n − ε .

ut

Using Theorem 3.3 together with the existence of metric uncertainty relations (Theorem 2.5), we show the
existence of ε-locking schemes whose key size depends only on ε and not on the size of the encoded message. This
result was not previously known.

Corollary 3.4 (Existence of locking schemes). Let c = 9π2, n ≥ 8 + log c and ε ∈ (0, 1). Then there exists an ε-locking
scheme encoding an n-bit message using a key of at most 2 log(1/ε) + O(log log(1/ε)) bits into at most n + 2 log(18/ε)
qubits.

Remark. Observe that in terms of number of bits, the size of the key is only a factor of two larger (up to smaller
order terms) than the lower bound of log(1/(ε + 2−n)) bits that can be obtained by guessing the key. In fact,
consider the strategy of performing the decoding operation corresponding to the key value 0. In this case, we have
P {X = i|I = i} ≥ P {K = 0} = 1/t. Thus, ∆

(
pX|I=i, pX

)
≥ 1/t− 2−n.

Recall that we can increase the size of the message to be equal to the number of qubits of the ciphertext. The
key size becomes at most 4 log(1/ε) +O(log(log(1/ε)). ut
Proof Use the construction of Theorem 2.5 with dA = 2n and dB = 2q such that 2q−1 < 9/ε2 ≤ 2q and d = dAdB .
Take t = 2p to be the power of two with 2p−1 ≤ 4·18c log(9/ε)

ε2 < 2p. ut

The following corollary gives explicit locking schemes. We mention the constructions based on Theorems 2.16
and 2.17. Of course, one could obtain a tradeoff between the key size and the dimension of the quantum system.

Corollary 3.5 (Explicit locking schemes). Let δ > 0 be a constant, n be a positive integer, ε ∈ (2−c
′n, 1) (c′ is a constant

independent of n).

• Then, there exists an efficient ε-locking scheme encoding an n-bit message in a quantum state of n′ ≤ (4 + δ)n +
O(log(1/ε)) qubits using a key of size O(log(n/ε)) bits. In fact, both the encoding and decoding operations are
computable using a classical computation with polynomial running time and a quantum circuit with only Hadamard
gates and preparations and measurements in the computational basis.

• There also exists an efficient ε-locking scheme E ′ encoding an n-bit message in a quantum state of n qubits using a key
of size O(log(n/ε) · log n) bits. E ′ is computable by a classical algorithm with expected runtime O(n2 polylog n) and
a quantum circuit of size O(npolylog(n/ε)).

Proof For the first result, we observe that the construction of Theorem 3.3 encodes the message in the
computational basis. Recall that the untaries Uk of Theorem 2.16 are of the form Uk = PkVk where Pk
is a permutation of the computational basis. Hence, it is possible to classically compute the element of the
computational basis P †k |x〉|b〉. One can then prepare the state P †k |x〉|b〉 and apply the unitary V †k to obtain the
ciphertext. The decoding is performed in a similar way. One first applies the unitary Vk, measures in the
computational basis and then applies the permutation Pk to the n-bit string corresponding to the outcome.

For the second construction, we apply Theorem 2.17 with n′ = n + c′ dlog logn+ log(1/ε)e for some large
enough constant c′. We can then use a one-time pad encryption on the input to the B system. This increases the
size of the key by only c′ dlog log n+ log(1/ε)e bits. ut

As mentioned earlier (see equation (21)), explicit states that exhibit locking behaviour have been presented in
[DHL+04]. However, this is the first explicit construction of states ω that achieves the following strong locking
behaviour: for any δ > 0, for n large enough, the state ωXCK verifies Ic(X;C)ω ≤ δ and Ic(X;CK)ω = n+ log dK
where K is a classical O(log(n/δ))-bit system. This is a direct consequence of Corollary 3.5 taking ε = δ/(20n), and
Proposition 3.2. We should also mention that the authors of [KRBM07] explicitly construct a state exhibiting some
weak locking behaviour.
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3.3 Quantum hiding fingerprints

In this section, we show that the locking scheme of Corollary 3.4 can be used to build mixed state quantum hiding
fingerprints as defined by Gavinsky and Ito [GI10]. A quantum fingerprint [BCWdW01] encodes an n-bit string
into a quantum state ρx of n′ � n qubits such that given y ∈ {0, 1}n and the fingerprint ρx, it is possible to decide
with small error probability whether x = y. The additional hiding property ensures that measuring ρx leaks very
little information about x. Gavinsky and Ito [GI10] used the accessible information2 as a measure of the hiding
property. Here, we strengthen this definition by imposing a bound on the total variation distance instead (see
Proposition 2.2).

Definition 3.6 (Quantum hiding fingerprint). Let n be a positive integer, δ, ε ∈ (0, 1) and C be a Hilbert space. An
encoding f : {0, 1}n → S(C) together with a set with a set of measurements {My, 11 −My} for each y ∈ {0, 1}n is a
(δ, ε)-hiding fingerprint if

1. (Fingerprint property) For all x ∈ {0, 1}n, tr [Mxf(x)] = 1 and for y 6= x, tr [Myf(x)] ≤ δ.

2. (Hiding property) Let X be uniformly distributed. Then, for any POVM {Ni} on the system C whose outcome on
f(X) is denoted I , we have for all possible outcomes i,

∆
(
pX|[I=i], pX

)
≤ ε.

We usually want the Hilbert space C to be composed of O(log n) qubits. Gavinsky and Ito [GI10] proved that
for any constant c, there exists efficient quantum hiding fingerprinting schemes for which the dimension of the
quantum system C is O(log n) and both the error probability δ and the accessible information are bounded by
1/nc. Here, we prove that the same result can be obtained by locking a classical fingerprint. The general structure
of our quantum hiding fingerprint for parameters n, δ and ε is as follows:

1. Choose a random prime p ∈ Pn,ε,δ uniformly from the set Pn,ε,δ .

2. Set t =
⌈
c log(1/ε)ε−2

⌉
, dA = p and dB =

⌈
c′/ε2

⌉
and generate t random unitaries Up0 , . . . , U

p
t−1 acting on

A⊗B.

3. The fingerprint consists of the random prime p and the state (Upk )†|x mod p〉A|b〉B where k ∈ [t] and
b ∈ [dB ] are chosen uniformly and independently. The density operator representing this state is denoted
f(x)

def
= 1

tdB

∑
k,b(U

p
k )†|x mod p〉〈x mod p|A|b〉〈b|BUpk .

Observe that even though this protocol is randomized because the unitaries are chosen at random, it is possible to
implement it with polynomial resources in n as the size of the message to be locked isO(log n) bits. In fact, one can
approximately sample a random unitary in dimension 2O(logn) using a polynomial number of public random bits.
The mixed state protocol of [GI10] achieves roughly the same parameters. Their construction is also randomized
but it uses random codes instead of random unitaries. For this reason, the protocol of [GI10] would probably be
more efficient in practice.

Theorem 3.7. There exists constants c, c′ and c′′, such that for all positive integer n, δ, ε ∈ (0, 1/4) if we define Pn,δ,ε to be
the set of primes in the interval [l, u] where

l =

(
c′′

δ
· log2(1/ε)

ε8

)1/0.9

+ 10n and u = l + (2n/δ)2

and provided u ≤ 2n−2, the scheme described above is a (δ, ε)-hiding fingerprint with probability 1− 2−Ω(n) over the choice
of random unitaries.

The proof of this result involves two parts. First, we need to show that the fingerprint of a uniformly distributed
X ∈ {0, 1}n does not give away much information about X . This follows easily from Theorem 2.5 and Theorem
3.3. We also need to show that for every y ∈ {0, 1}n, there is a measurement that Bob can apply to the fingerprint
to determine with high confidence whether it corresponds to a fingerprint of y or not. In order to prove this, we
use the following proposition on the Gram-Schmidt orthonormalisation of a set of almost orthogonal vectors.

2The accessible information about X in a quantum system C refers to the maximum over all measurements of the system C of I(X; I)
where I is the outcome of that measurement.
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Proposition 3.8. Let v′1, . . . , v′r be a sequence of unit length vectors in a Hilbert space. Let 0 < δ ≤ 1
16r . For any i 6= j,

suppose |〈v′i|v′j〉| ≤ δ. Let v1, . . . , vr be the corresponding sequence of vectors got by Gram-Schmidt orthonormalising
v′1, . . . , v

′
r. Then for any i, ‖vi − v′i‖2 ≤ δ

√
32(i− 1).

Proof Since |〈v′i|v′j〉| < δ < 1/r for any i 6= j, the vectors v′1, . . . , v′r are linearly independent. Define Π0 to be the
zero linear operator. For i ≥ 1, define Πi to be the orthogonal projection onto the subspace spanned by the vectors

v′1, . . . , v
′
i. Observe that for any i, v′1, . . . , v′i and v1, . . . , vi span the same space, and vi+1 =

v′i+1−Πi(v
′
i+1)

‖v′i+1−Πi(v′i+1)‖2 . We

shall prove by induction on i that ‖Πi(v
′
k)‖2 ≤ 4δ

√
i for all i and all k > i. This will prove the desired statement

since

‖vi − v′i‖22 = ‖Πi−1(v′i)‖22 + (1− ‖v′i −Πi−1(v′i)‖2)
2

= ‖Πi−1(v′i)‖22 +

(
1−

√
1− ‖Πi−1(v′i)‖22

)2

= 2− 2
√

1− ‖Πi−1(v′i)‖22 ≤ 2− 2
√

1− 16δ2(i− 1)

≤ 32δ2(i− 1).

The base case of i = 1 is trivial. Assume that the induction hypothesis holds for a particular i. Let 1 ≤ j ≤ i+ 1

and k > i+ 1. Observe that v′j = Πj−1(v′j) +
√

1− ‖Πj−1(v′j)‖22 vj . We have

|〈v′k|v′j〉| =
∣∣∣〈v′k|Πj−1(v′j)〉+

√
1− ‖Πj−1(v′j)‖22 〈v′k|vj〉

∣∣∣

=
∣∣∣〈Πj−1(v′k)|Πj−1(v′j)〉+

√
1− ‖Πj−1(v′j)‖22 〈v′k|vj〉

∣∣∣

≥
√

1− ‖Πj−1(v′j)‖22 |〈v′k|vj〉| − ‖Πj−1(v′k)‖2 ‖Πj−1(v′j)‖2,

which implies that

|〈v′k|vj〉| ≤
|〈v′k|v′j〉|+ ‖Πj−1(v′k)‖2 ‖Πj−1(v′j)‖2√

1− ‖Πj−1(v′j)‖22

≤ δ + 16δ2(j − 1)√
1− 16δ2(j − 1)

≤ δ + δ√
1− δ

≤ 4δ.

Thus, ‖Πi+1(v′k)‖22 =
∑i+1
j=1 |〈v′k|vj〉|2 ≤ 16δ2(i+ 1), which gives ‖Πi+1(v′k)‖2 ≤ 4δ

√
i+ 1 completing the induction.

ut

Using this result we can prove the following lemma.

Lemma 3.9. Let {U0, . . . , Ut−1} be a set of unitary transformations on AB that define γ-MUBs and d−γ/2 ≤ 1/(16tdB)

where d def
= dAdB . Define for y ∈ [dA] the subspace Fy = span{U†k |y〉|b〉, k ∈ [t], b ∈ [dB ]}. Then for any x ∈ [dA], y 6= x,

k0 ∈ [t] and b0 ∈ [dB ],
tr
[
ΠFyU

†
k0
|x〉|b0〉

]
≤ 2
√

32(tdB)2d−γ .

where ΠF is the projector on the subspace F .

Proof Consider the set of vector {U†k |y〉|b〉}k∈[t],b∈[dB ]. We have for all (k, b) 6= (k′, b′),

|〈y|〈b′|Uk′U†k |y〉|b〉| ≤ d−γ/2.

Picking any fixed ordering on [t] × [dB ], define {|ek,b(y)〉}k,b to be the set of vectors obtained by Gram-Schmidt
orthonormalising {U†k |y〉|b〉}k∈[t],b∈[dB ]. Using Proposition 3.8, we have ‖|ek,b(y)〉 − U†k |y〉|b〉‖2 ≤ d−γ/2

√
32tdB .
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Thus,

tr
[
ΠFyU

†
k0
|x〉|b0〉

]
=
∑

k,b

|〈ek,b(y)|U†k0 |x〉|b0〉|
2

≤
∑

k,b

∣∣∣|〈y|〈b′|Uk′U†k0 |x〉|b0〉|+ ‖|ek,b(y)〉 − U†k |y〉|b〉‖2
∣∣∣
2

≤ tdB · d−γ
(√

32tdB + 1
)2

≤ 2
√

32(tdB)2d−γ .

ut

Proof of Theorem 3.7 We start by proving the hiding property. For any fixed p, the random variable Z def
= X mod p

is almost uniformly distributed on [p]. In fact, we have for any z ∈ [p], P {Z = z} ≤ 2n/p+1
2n . In other words,

Hmin(Z) ≥ log p− log(1 + p2−n). Thus, using Theorem 2.5 and Theorem 3.3, we have that except with probability
exponentially small in n (on the choice of the random unitary), the fingerprinting scheme satisfies for any
measurement outcome i

∆
(
pZ|[I=i], pZ

)
≤ 2ε

1
1+p2−n − ε

≤ 4ε

where I denotes the outcome of a measurement on the state f(X). Recall that we are interested in the information
leakage about X not Z. For this, we note that the random variables X,Z, I form a Markov chain. Thus,

∆
(
pX|[I=i], pX

)
=

∑

x∈{0,1}n

∣∣∣∣∣∣
∑

z∈[p]

P {Z = z|I = i}P {X = x|I = i, Z = z} −P {Z = z}P {X = x|Z = z}

∣∣∣∣∣∣

=
∑

x∈{0,1}n

∣∣∣∣∣∣
∑

z∈[p]

P {Z = z|I = i}P {X = x|Z = z} −P {Z = z}P {X = x|Z = z}

∣∣∣∣∣∣

≤
∑

z∈[p]

|P {Z = z|I = i} −P {Z = z}|
∑

x∈{0,1}n
P {X = x|Z = z}

= ∆
(
pZ|[I=i], pZ

)
≤ 4ε.

This proves the hiding property.
We then analyse the fingerprint property. Let x, y ∈ [2n] and p be the random prime of the fingerprint.

We define the measurements by My = ΠFy for all y ∈ {0, 1}n where ΠFy is the projector onto the subspace
Fy = span{Upk

†|y mod p〉|b〉, k ∈ [t], b ∈ [dB ]}. If x = y, then f(x) is a mixture of states in span{Upk
†|y mod p〉|b〉, k ∈

[t], b ∈ [dB ]}. Thus tr[Myf(x)] = 1.
We now suppose that x 6= y. First, we have P {x mod p = y mod p} = P {x− y mod p = 0} ≤ δ/2 as the

number of distinct prime divisors of x− y is at most n and the number of primes in [l, u] is at least 2n/δ for n large
enough. Then, whenever x mod p 6= y mod p, Lemma 3.9 gives

tr
[
ΠFyf(x)

]
≤ 2
√

32(tdB)2(dAdB)−0.9

≤ 2
√

32 · 4c2c′2 log2(1/ε)

ε8
· δε8

c′′ log2(1/ε)

≤ δ/2

for c′′ large enough with probability 1 − 2−Ω(dAdB) = 1 − 2−Ω(n) over the choice of the random unitaries (using
Theorem 2.5). Finally, we get tr

[
ΠFyf(x)

]
≤ δ with probability 1− 2−Ω(n). ut

3.4 String commitment

In this section, we show how to use a locking scheme to obtain a weak form of bit commitment [BCH+06].
Bit commitment is an important two-party cryptographic primitive defined as follows. Consider two mutually
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distrustful parties Alice and Bob who are only allowed to communicate over some channel. The objective is to be
able to achieve the following: Alice secretly chooses a bit x and communicates with Bob to convince him that she
fixed her choice, without revealing the actual bit x. This is the commit stage. At the reveal stage, Alice reveals the
secret x and enables Bob to open the commitment. Bob can then check whether Alice was honest.

Using classical or quantum communication, unconditionally secure bit commitment is known to be impossible
[May97, LC97]. However, commitment protocols with weaker security guarantees do exist [SR01, DFSS05,
BCH+06, BCH+08]. Here, we consider the string commitment scenario studied in [BCH+08, Section III]. In a
string commitment protocol, Alice commits to an n-bit string. Alice’s ability to cheat is quantified by the number
of strings she can reveal successfully. The ability of Bob to cheat is quantified by the information he can obtain
about the string to be committed. One can formalize these notions in many ways. We use a security criterion
that is similar to the one of [BCH+08] except that we use the statistical distance between the outcome distribution
and the uniform distribution, instead of the accessible information. Our definition is slightly stronger by virtue of
Proposition 3.2. For a detailed study of string commitment in a more general setting, see [BCH+08].

Definition 3.10. An (n, α, β)-quantum bit string commitment is a quantum communication protocol between Alice (the
committer) and Bob (the receiver) which has two phases. When both players are honest the protocol takes the following form.

• (Commit phase) Alice chooses a string X ∈ {0, 1}n uniformly. Alice and Bob communicate, after which Bob holds a
state ρX .

• (Reveal phase) Alice and Bob communicate and Bob learns X .

The parameters α and β are security parameters.

• If Alice is honest, then for any measurement performed by Bob on her state ρX , we have ∆
(
pX , pX|[I=i]

)
≤ β

n where I
is the outcome of the measurement.

• If Bob is honest, then for all commitments of Alice:
∑
x∈{0,1}n px ≤ 2α, where px is the probability that Alice

successfully reveals x.

Following the strategy of [BCH+08], the following protocol for string commitment can be defined using a
locking scheme E .

• Commit phase: Alice has the string X ∈ {0, 1}n and chooses a key K ∈ [t] uniformly at random. She sends
the state E(X,K) to Bob.

• Reveal phase: Alice announces both the string X and the key K. Using the key, Bob decodes some value X ′.
He accepts if X = X ′.

A protocol is said to be efficient if both the communication (in terms of the number of qubits exchanged) is
polynomial in n and the computations performed by Alice and Bob can be done in polynomial time on a quantum
computer. The protocol presented in [BCH+08] is not efficient in terms of computation and is efficient in terms of
communication only if the cost of communicating a (random) unitary in dimension 2n is disregarded. Using the
efficient locking scheme of Corollary 3.5, we get

Corollary 3.11. Let n be a positive integer and β ∈ (n2−cn, n) (c is a constant independent of n). There exists an efficient
(n, c log(n2/β), β)-quantum bit string commitment protocol for some constant c independent of n and β.

Proof We use the first construction of Corollary 3.5 with ε = β/n. If Bob is honest, the security analysis is exactly
the same as [BCH+08]. If Alice is honest, the security follows directly from the definition of the locking scheme.

ut

3.5 Locking entanglement of formation

The entanglement of formation is a measure of the entanglement in a bipartite quantum state that attempts to
quantify the number of singlets required to produce the state in question using only local operations and classical
communication [BDSW96]. For a bipartite state ρXY , the entanglement of formation is defined as

Ef (X;Y )ρ = min
{pi,|ψi〉}

∑

i

piS(X)ψi . (27)
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where the minimization is taken over all possible ways to write ρXY =
∑
i pi|ψi〉〈ψi|with

∑
i pi = 1. Entanglement

of formation is related to the following quantity:

I←(X;Y ′)ρ = max
{Mi}

I(X; I)

where the maximization is taken over all measurements {Mi} performed on the system Y ′ and I is the outcome
of this measurement. Koashi and Winter [KW04] showed that for a pure state |ρ〉XY Y ′ , a simple identity holds:

Ef (X;Y )ρ + I←(X;Y ′)ρ = S(X)ρ. (28)

Let {U0, . . . , Ut−1} be a set of unitary transformations of A⊗B ' C and define

|ρ〉ABCA′K =
1

dAdB

∑

k∈[t],a∈[dA],b∈[dB ]

|a〉A|b〉B
(
U†k |a〉 ⊗ |b〉

)C
|a〉A′ |k〉K .

If {U0, . . . , Ut−1} satisfies an ε-metric uncertainty relation, then we get a locking effect using Theorem 3.3 and
Proposition 3.2. In fact, we have I←(A;C)ρ ≤ 2ε log dA + η(ε) and I←(A;CK) = log dA. Thus, using (28), we get

Ef (A;A′BK)ρ = S(A)ρ − I←(A;C)ρ ≥ (1− 2ε) log dA − η(ε)

and discarding the system K of dimension t we obtain a separable state

Ef (A;A′B)ρ = 0.

Explicit states exhibiting weak locking behaviour of the entanglement of formation have been presented in
[HHHO05]. Strong but non-explicit instances of locking the entanglement of formation were derived in [HLW06].
Here, using Theorem 2.16, we obtain explicit examples of strong locking behaviour.

4 Quantum identification codes

Consider the following quantum analogue of the equality testing communication problem. Alice is given an n-
qubit state |ψ〉 ∈ C and Bob is given |ϕ〉 ∈ C. Namely, Bob wants to output 1 with probability in the interval
[|〈ψ|ϕ〉|2−ε, |〈ψ|ϕ〉|2 +ε] and 0 with probability in the interval [1−|〈ψ|ϕ〉|2−ε, 1−|〈ψ|ϕ〉|2 +ε]. This task is referred
to as quantum identification [Win04]. Note that communication only goes from Alice to Bob. There are many
possible variations to this problem. One of the interesting models is when Alice receives the quantum state |ψ〉
and Bob gets a classical description of |ϕ〉. An ε-quantum-ID code is defined by an encoder, which is a quantum
operation that maps Alice’s quantum state |ψ〉 to another quantum state which is transmitted to Bob, and a family
of decoding POVMs {Dϕ, 11−Dϕ} for all |ϕ〉 that Bob performs on the state he receives from Alice.

Definition 4.1 (Quantum identification [Win04]). Let H1,H2, C be Hilbert spaces and ε ∈ (0, 1). An ε-quantum-ID
code for the space C using the channel N : S(H1) → S(H2) consists of an encoding map E : S(C) → S(H1) and a set of
POVMs {Dϕ, 11−Dϕ} acting on S(H2), one for each pure state |ϕ〉 such that

∀|ψ〉, |ϕ〉 ∈ C,
∣∣∣ tr [DϕN (E(ψ))]− |〈ϕ|ψ〉|2

∣∣∣ ≤ ε.

Here we consider channels N transmitting noiseless qubits and noiseless classical bits. We also say that ε-
quantum identification of n-qubit states can be performed using ` bits and m qubits when there exists an ε-
quantum-ID code for the space C = (C2)⊗n using the channelN = id

⊗`
2 ⊗ id⊗m2 , where id2 and id2 are the noiseless

bit and qubit channels. Hayden and Winter [HW10] showed that classical communication alone cannot be used
for quantum identification. However, a small amount of quantum communication makes classical communication
useful. Using our metric uncertainty relations, we prove better bounds on the number of qubits of communication
and give an efficient encoder for this problem.

Our protocol is based on a duality between quantum identification and geometry preservation demonstrated
in [HW10, Theorem 7]. In our particular setting, the direction we use of this duality states that if V : C → A ⊗ B
defines a low-distortion embedding of (C, `2) into (AB, `A1 (`B2 )), then the maps Γa : C → B for a ∈ [dA] defined
by |ψ〉 7→ ∑

b∈dB (〈a|〈b|V |ψ〉)|b〉 approximately preserve inner products on average. The following lemma gives a
precise statement. We give an elementary proof for completeness.
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Lemma 4.2. Let V : C → A ⊗ B be an isometry, i.e., for all |ψ〉 ∈ C, ‖V |ψ〉‖2 = ‖|ψ〉‖2. For any vector |ψ〉 ∈ C, we
define the vectors |ψa〉 ∈ B by V |ψ〉 =

∑
a∈[dA] |a〉|ψa〉. Assume that V satisfies the following property:

∀|ψ〉 ∈ C
∑

a∈[dA]

∣∣∣∣‖|ψa〉‖22 −
‖|ψ〉‖22
dA

∣∣∣∣ ≤ ε‖|ψ〉‖22. (29)

Then we have for all unit vectors |ψ〉, |ϕ〉 ∈ C with V |ψ〉 =
∑
a∈[dA] |a〉|ψa〉 and V |ϕ〉 =

∑
a∈[dA] |a〉|ϕa〉

1

dA

∑

a∈[dA]

∣∣∣∣
|〈ψa|ϕa〉|2

‖|ψa〉‖2‖|ϕa〉‖2
− |〈ψ|ϕ〉|2

∣∣∣∣ ≤ 12ε+ 4
√
ε. (30)

Proof Let |ψ〉 and |ϕ〉 be unit vectors in C. We use the triangle inequality to get

1

dA

∑

a∈[dA]

∣∣∣∣
|〈ψa|ϕa〉|2

‖|ψa〉‖2‖|ϕa〉‖2
− |〈ψ|ϕ〉|2

∣∣∣∣

≤
∑

a∈[dA]

∣∣∣∣
|〈ψ|ϕ〉|2
dA

− |〈ψa|ϕa〉|2
∣∣∣∣+

∑

a∈[dA]

∣∣∣∣|〈ψa|ϕa〉|2 −
|〈ψa|ϕa〉|2

dA‖|ψa〉‖2‖|ϕa〉‖2

∣∣∣∣ . (31)

We start by dealing with the first term in (31). Observe that
∣∣∣∣|〈ψa|ϕa〉|2 −

|〈ψ|ϕ〉|2
dA

∣∣∣∣ ≤
∣∣∣∣(Re〈ψa|ϕa〉)2 − (Re〈ψ|ϕ〉)2

dA

∣∣∣∣+

∣∣∣∣(Im〈ψa|ϕa〉)2 − (Im〈ψ|ϕ〉)2

dA

∣∣∣∣

≤ 2

∣∣∣∣Re〈ψa|ϕa〉 −
Re〈ψ|ϕ〉

dA

∣∣∣∣+ 2

∣∣∣∣Im〈ψa|ϕa〉 −
Im〈ψ|ϕ〉

dA

∣∣∣∣ . (32)

In the last inequality, we used the fact that (x − y)2 ≤ 2|x − y| whenever |x + y| ≤ 2. To bound these terms, we
apply the assumption about V (equation (29)) to the vector |ψ〉 − |ϕ〉:

∑

a∈[dA]

∣∣∣∣‖|ψa〉 − |ϕa〉‖22 −
‖|ψ〉 − |ϕ〉‖22

dA

∣∣∣∣ ≤ ε‖|ψ〉 − |ϕ〉‖22 ≤ 4ε.

By expanding ‖|ψa〉 − |ϕa〉‖22 and ‖|ψ〉 − |ϕ〉‖22, we obtain using the triangle inequality

∑

a∈[dA]

∣∣∣∣2Re〈ψa|ϕa〉 −
2Re〈ψ|ϕ〉

dA

∣∣∣∣ ≤ 4ε+
∑

a∈[dA]

∣∣∣∣‖|ψa〉‖22 −
‖|ψ〉‖22
dA

∣∣∣∣+

∣∣∣∣‖|ϕa〉‖22 −
‖|ϕ〉‖22
dA

∣∣∣∣

≤ 6ε.

In the last inequality, we used equation (29) for |ψ〉 and |ϕ〉. The same argument can be applied to i|ψ〉 and |ϕ〉 to
get

2
∑

a∈[dA]

∣∣∣∣Im〈ψa|ϕa〉 −
Im〈ψ|ϕ〉

dA

∣∣∣∣ ≤ 6ε

Thus, substituting in equation (32) we obtain
∣∣∣∣|〈ψa|ϕa〉|2 −

|〈ψ|ϕ〉|2
dA

∣∣∣∣ ≤ 12ε.
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We now consider the second term in (31). We have using the Cauchy-Schwarz inequality

∑

a∈[dA]

∣∣∣∣|〈ψa|ϕa〉|2 −
|〈ψa|ϕa〉|2

dA‖|ψa〉‖2‖|ϕa〉‖2

∣∣∣∣ ≤
∑

a∈[dA]

∣∣∣∣‖|ψa〉‖2‖|ϕa〉‖2 −
1

dA

∣∣∣∣

≤
∑

a∈[dA]

‖|ψa〉‖2
∣∣∣∣‖|ϕa〉‖2 −

1√
dA

∣∣∣∣+
∑

a∈[dA]

∣∣∣∣
‖|ψa〉‖2√

dA
− 1

dA

∣∣∣∣

≤
√ ∑

a∈[dA]

‖|ψa〉‖22

√√√√
∑

a∈[dA]

∣∣∣∣‖|ϕa〉‖2 −
1√
dA

∣∣∣∣
2

+

√√√√
∑

a∈[dA]

∣∣∣∣‖|ψa〉‖2 −
1√
dA

∣∣∣∣
2

≤
√√√√2

∑

a∈[dA]

∣∣∣∣‖|ϕa〉‖22 −
1

dA

∣∣∣∣+

√√√√2
∑

a∈[dA]

∣∣∣∣‖|ψa〉‖22 −
1

dA

∣∣∣∣

≤ 4
√
ε.

For the third inequality, we used once again the Cauchy-Schwarz inequality and for the fourth inequality, we used
the fact that

∑
a∈[dA] ‖|ψa〉‖22 = ‖V |ψ〉‖22 = 1. Plugging this bound in equation (31), we obtain the desired result.

ut

|ψ〉

1√
t

∑
k |k〉

Uk

Classical description of |ϕ〉

Dk,a
ϕ

B

A

K

k, a

Outcome

Figure 3: The system K is prepared in a uniform superposition state 1√
t

∑
k |k〉. Then, controlled by system K, the

unitary Uk is applied to C = A ⊗ B. The KA system is then measured in its computational basis. The outcome
k, a of this measurement is sent through the classical channel. The system B is sent using the noiseless quantum
channel. The receiver constructs a POVM Dk,a

ϕ based on a classical description of his state |ϕ〉 and the classical
communication k, a he receives.

Theorem 4.3 (Quantum identification using classical communication). Let n be a positive integer and ε ∈ (2−c
′n, 1) (c′

is a constant independent of n). Then for somem = O(log(1/ε)), ε-quantum identification of n-qubit states can be performed
using a single message of n bits and m qubits.

Moreover, for some m = O(log(n/ε) · log(n)), ε-quantum identification of n-qubit states can be performed using a single
message of n bits and m qubits with an encoding quantum circuit of polynomial size.

Proof Let {U0, . . . , Ut−1} be a set of unitaries on n qubits verifying an ε′- metric uncertainty relation with
ε′ = 2(ε/32)2 We start by preparing the uniform superposition 1√

t

∑t−1
k=0 |k〉K and apply the unitary Uk on system

C controlled by the register K. We get the state 1√
t

∑
k |k〉K(Uk|ψ〉)AB =

∑
k,a |k〉K |a〉A|ψk,a〉B for some not

normalized vectors |ψk,a〉 ∈ B. Alice then measures the system KA in the computational basis obtaining an
outcome k, a and sends k, a and |ψk,a〉 to Bob. Observe that

∑
k,a ‖|ψk,a〉‖22 = 1 and ‖|ψk,a〉‖22 = 1

t · pAUk|ψ〉(a) so that
the metric uncertainty relation property can be written as

1

2

∑

k,a

∣∣∣∣‖|ψk,a〉‖22 −
1

tdA

∣∣∣∣ ≤ ε′. (33)
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This shows that the isometry |ψ〉 7→ 1√
t

∑
k |k〉K(Uk|ψ〉)AB satisfies the condition (29) of Lemma 4.2.

The decoding POVMs for received classical information k, a and state |ϕ〉 are defined by Dk,a
ϕ = |ϕ̂k,a〉〈ϕ̂k,a|

where 1√
t

∑
k |k〉K(Uk|ϕ〉)AB =

∑
k,a |k〉K |a〉A|ϕk,a〉B and |ϕ̂k,a〉 = |ϕk,a〉/‖ϕk,a‖22. Hence, when performing the

POVM {Dk,a
ϕ , 11−Dk,a

ϕ } on the state |ψ̂k,a〉 def
= |ψk,a〉/‖|ψk,a〉‖22. The protocol is illustrated in Figure 3.

We now analyse the probability that Bob outputs 1. Recall that outcome 1 corresponds to the projector |ϕ〉〈ϕ|.
The probability that the protocol in Figure 3 outputs 1 is

∑

k,a

‖|ψk,a〉‖22 · tr
[
Dk,a
ϕ |ψ̂k,a〉〈ψ̂k,a|

]
=
∑

k,a

‖|ψk,a〉‖22|〈ψ̂k,a|ϕ̂k,a〉|2.

Applying Lemma 4.2, we get

1

tdA

∑

k,a

∣∣∣|〈ψ̂k,a|ϕ̂k,a〉|2 − |〈ψ|ϕ〉|2
∣∣∣ ≤ 16

√
2ε′ = ε/2 (34)

Using the triangle inequality, equations (34) and (33), we obtain

∑

k,a

‖|ψk,a〉‖22
∣∣∣|〈ψ̂k,a|ϕ̂k,a〉|2 − |〈ψ|ϕ〉|2

∣∣∣ ≤
∑

k,a

1

tdA

∣∣∣|〈ψ̂k,a|ϕ̂k,a〉|2 − |〈ψ|ϕ〉|2
∣∣∣+
∑

k,a

∣∣∣∣‖|ψk,a〉‖22 −
1

tdA

∣∣∣∣ · 2

≤ ε/2 + 4ε′ ≤ ε.

Thus, the probability of obtaining outcome 1 is in the interval [|〈ψ|ϕ〉|2 − ε, |〈ψ|ϕ〉|2 + ε]. Note that we actually
proved something stronger: by a simple application of Markov’s inequality, we get that for most values of
(k, a) ∈ [t]× [dA], the measurement {Dk,a

ϕ , 11−Dk,a
ϕ } as defined above approximately simulates the measurement

{|ϕ〉〈ϕ|, 11− |ϕ〉〈ϕ|}.
We conclude by using the metric uncertainty relations of Theorems 2.5 and 2.17. For the explicit construction,

we still need to argue that the encoding can be computed by a quantum circuit of size O(n2 polylog(n/ε)) and
depth O(npolylog(n/ε)) using classical precomputation. To obtain this running time, we actually use the 1-MUBs
of Lemma 2.11 in the construction of Theorem 2.17. The only thing we need to precompute is an irreducible
polynomial of degree n over F2[X]. Then, using the same argument as in the proof of Lemma 2.11, we can compute
the unitary operation that takes as input the state |j〉 ⊗ |ψ〉 and outputs the state |j〉 ⊗ Vj |ψ〉 using a circuit of
size O(n2 polylog n) and depth O(n polylog n). Since the permutation extractor we use can be implemented by a
quantum circuit of size O(npolylog(n/ε)), the unitary transformation |k〉 ⊗ |ψ〉 7→ |k〉 ⊗Uk|ψ〉 can be computed by
a quantum circuit of size O(n2 polylog(n/ε)) and depth O(npolylog(n/ε)). ut

This result can be thought of as an analogue of the well-known fact that the public-coin randomized
communication complexity of equality is O(log(1/ε)) for an error probability ε. Quantum communication replaces
classical communication and classical communication replaces public random bits. Classical communication can
be thought of as an extra resource because on its own it is useless for quantum identification [HW10, Theorem 11].

5 Conclusion

We have seen how the problem of finding uncertainty relations is closely related to the problem of finding large
almost Euclidean subspaces of `1(`2). Even though we did not use any norm embedding result directly, many of
the ideas presented here come from the proofs and constructions in the study of the geometry of normed spaces.
In particular, we obtained an explicit family of bases that satisfy a strong metric uncertainty relation by adapting a
construction of Indyk [Ind07]. Moreover, using standard techniques from asymptotic geometric analysis, we were
able to prove a strong result on the uncertainty relations defined by random unitaries [HLSW04].

We used these uncertainty relations to exhibit strong locking effects. In particular, we obtained the first explicit
construction of a method for encrypting a random n-bit string in an n-qubit state using a classical key of size
polylogarithmic in n. Moreover, our non-explicit results give better key sizes than previous constructions while
simultaneously meeting a stronger locking definition. In particular, we showed that an arbitrarily long message
can be encrypted with a constant-sized key. Our results on locking are summarized in Table 1. We should
emphasize that, even though we presented information locking from a cryptographic point of view, it is not a
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composable primitive because an eavesdropper could choose to store quantum information about the message
instead of measuring. For this reason, a locking scheme has to be used with great care when composed with other
cryptographic primitives.

As a cryptographic task, one could compare a locking scheme to an entropically secure encryption scheme
[RW02, DS05]. These two schemes achieve the same task of encrypting a high entropy message using a small
key. The security definition of a locking scheme is strictly stronger. In fact, for a classical eavesdropper (i.e., an
eavesdropper that can only measure) an ε-locking scheme is secure in a strong sense. This additional security
guarantee comes at the cost of upgrading classical communication to quantum communication. With respect to
quantum entropically secure encryption [Des09, DD10], the security condition of a locking scheme is also more
stringent. However, a quantum entropically secure scheme allows the encryption of quantum states.

Nonetheless, we note that an ε-locking scheme hides the message in a stronger sense if the adversary is limited
to a small quantum memory. In fact, using the same technique as [HMR+10, Corollary 2] based on [RRS09], if the
adversary is allowed to store m qubits, then the joint state of the message and the knowledge of the adversary
is (c2m/2ε)-close to a product state for some universal constant c. For example, if m = O(log n), then a key of
logarithmic size can still be used. This is especially interesting for the scheme presented in Corollary 3.5, for
which the sender and the receiver do not use any quantum memory. One could then use such a scheme for key
distribution in the bounded quantum storage model, where the adversary is only allowed to have a quantum
memory of logarithmic size in n and an arbitrarily large classical memory. Note that even though this is a strong
assumption compared to the unconditional security of BB84 [BB84], one advantage of such a protocol for key
distribution is that it only uses one-way communication between the two parties. In fact, the BB84 quantum key
distribution protocol needs interaction between the two parties.

We also used uncertainty relations to construct quantum identification codes. We proved that it is possible to
identify a quantum state of n qubits by communicating n classical bits and O(log(1/ε)) quantum bits. We also
presented an efficient encoder for this problem that uses O(log2(n/ε)) qubits of communication instead. The main
weakness of this result is that the decoder uses a classical description of the state |ϕ〉 that is in general exponential
in the number of qubits of |ϕ〉. But as shown in [Win04], if Bob was to receive a copy of the quantum state |ϕ〉, the
task of quantum identification becomes the same as the task of transmission.
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Appendices

A Existence of metric uncertainty relations

In this section, we prove the lemmas used in Theorem 2.5.

Lemma 2.6 (Average value of `A1 (`B2 ) on the sphere). Let |ϕ〉AB be a random pure state on AB. Then,

√
dAE

{
F
(
pA|ϕ〉, unif([dA])

)}
= E

{
‖|ϕ〉AB‖`A1 (`B2 )

}
=

Γ(dB + 1
2 )

Γ(dB)

Γ(dAdB)

Γ(dAdB + 1
2 )
≥
√

1− 1

dB

√
dA.

where Γ is the Gamma function Γ(z) =
∫∞

0
uz−1e−udu for z ≥ 0.

Proof The presentation uses methods described in [Bal97].

Observe that the random variable ‖|ϕ〉AB‖12 is distributed as the `dA1 (`2dB2 ) norm of a Haar-distributed real
random vector on S2dAdB−1. We define for integers n and m the norm `n1 (`m2 ) of a real n + m-dimensional vector

32



{vi,j}i∈[n],j∈[m] as for the complex case (Definition 2.3)

‖v‖`n1 (`m2 ) =
∑

i

√∑

j

|vi,j |2.

Note that we only specify the dimension of the systems as the systems themselves are not relevant here. In the
rest of the proof, we use ‖ · ‖12 as a shorthand for ‖ · ‖

`
dA
1 (`2dB )

. Our objective is to evaluate the expected value

E {‖Θ‖12} where Θ has the Haar distribution on the real sphere Ss−1 and s = 2d with d = dAdB . For this, we start
by relating the E {‖Z‖12} and E {‖Θ‖12} where Z has a standard Gaussian distribution on Rs . By changing to
polar coordinates, we get

E {‖Z‖12} =

∫

Rs
‖x‖12

e−
1
2

∑s
i=1 x

2
i

(2π)s/2
dx

=

∫ ∞

0

∫

Ss−1

‖rθ‖12
e−r

2/2

(2π)s/2
· sπ

s/2dσ(θ)

Γ( s2 + 1)
rs−1dr

where σ is the normalized Haar measure on Ss−1. The term sπs/2

Γ( s2 +1) is the surface area of the sphere in dimension

s− 1. Using the equality Γ(z + 1) = zΓ(z), we have sπs/2

Γ( s2 +1) = 2πs/2

Γ( s2 ) . Thus,

E {‖Z‖12} =
2πs/2

(2π)s/2Γ( s2 )

∫ ∞

0

rse−r
2/2dr ·

∫

Ss−1

‖θ‖12dσ(θ)

=
1

2s/2−1Γ( s2 )

∫ ∞

0

rse−r
2/2dr ·

∫

Ss−1

‖θ‖12dσ(θ)

We then perform a change of variable u = r2/2:

E {‖Z‖12} =
1

2s/2−1Γ( s2 )

∫ ∞

0

(2u)(s−1)/2e−udu ·
∫

Ss−1

‖θ‖12dσ(θ)

=
2(s−1)/2Γ( s−1

2 + 1)

2s/2−1Γ( s2 )
·
∫

Ss−1

‖θ‖12dσ(θ)

=

√
2Γ( s+1

2 )

Γ( s2 )
·E {‖Θ‖12} . (35)

Now, we compute

E {‖Z‖12} =

∫

Rs
‖x‖12

e−
1
2‖x‖22

(2π)s/2
dx

=

dA−1∑

i=0

∫

Rs
‖xi‖2

e−
1
2‖x‖22

(2π)s/2
dx

where we decomposed x = (x0, . . . , xdA−1) where xi ∈ R2dB . As all the terms of the sum are equal

E {‖Z‖12} = dA

∫

R2dB

‖x0‖2
e−

1
2‖x0‖22

(2π)dB
dx0

(∫

R2dB

e−
1
2‖x1‖22

(2π)dB
dx1

)dA−1

= dA

√
2Γ( 2dB+1

2 )

Γ(dB)

∫

S2dB−1

‖θ‖2dσ(θ)

= dA

√
2Γ( 2dB+1

2 )

Γ(dB)
.

To get the second equality, we use the same argument as for (35). We conclude using equation (35)

E
{
‖|ϕ〉‖`A1 (`B2 )

}
= E {‖Θ‖12}

= dA
Γ(dB + 1

2 )

Γ(dB)
· Γ(dAdB)

Γ(dAdB + 1
2 )
.
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We now prove the inequality in the statement of the lemma. We use the following two facts about the Γ
function: log Γ is convex and for all z > 0, Γ(z + 1) = zΓ(z). The first property can be seen by using Hölder’s
inequality for example and the second using integration by parts. Using these properties, we have

log Γ

(
x+

1

2

)
≤ 1

2
log Γ(x) +

1

2
log Γ(x+ 1)

=
1

2
log
(
xΓ(x)2

)

= log
(√
xΓ(x)

)
.

Thus, Γ(x+ 1
2 )

Γ(x) ≤ √x. Similarly, we have Γ(x)

Γ(x− 1
2 )
≤
√
x− 1

2 which implies that Γ(x+ 1
2 )

Γ(x) ≥
√
x− 1

2 when writing
Γ(x+ 1/2) = (x− 1/2)Γ(x− 1/2).

We conclude that

E
{
‖|ϕ〉‖`A1 (`B2 )

}
≥ dA ·

√
dB −

1

2

1√
dAdB

=
√
dA ·

√
1− 1

2dB
.

ut

Lemma 2.7 (Levy’s lemma). Let f : Cd → R and η > 0 be such that for all pure states |ϕ1〉, |ϕ2〉 in Cd,

|f(|ϕ1〉)− f(|ϕ2〉)| ≤ η‖|ϕ1〉 − |ϕ2〉‖2.

Let |ϕ〉 be a random pure state in dimension d. Then for all 0 ≤ δ ≤ η,

P {|f(|ϕ〉)−E {f(ϕ)} | ≥ δ} ≤ 4 exp

(
−δ

2d

cη2

)

where c is a constant. We can take c = 9π2.

Proof We can instead study the concentration of a Lipschitz function on the real sphere S2d−1. Note that the
induced function (that we also call f ) is still α-Lipschitz. Concentration on S2d−1 can be proved in a simple way
using concentration of the standard Gaussian distribution. This proof is due to Maurey and Pisier and can be
found in Appendix V of [MS86]. Specifically, using Corollary V.2 in [MS86], we get

P {|f(Z)−E {f(Z)} | ≥ t} ≤ 2 exp

(
− δ

2(2d)

18π2η2

)
+ 2 exp

(
− 2d

2π2

)

≤ 4 exp

(
− δ2d

9π2η2

)
.

In the notation of the proof of Corollary V.2 [MS86], we have set δ = 1/2. This can be done because using the
same arguments as in the proof of Lemma 2.6, we can show that the expected `2 norm of the standard Gaussian

distribution in dimension n at least
√

2
√
n− 1

2 >
√
n for n ≥ 2.

We used this version of Levy’s lemma because it has an elementary proof and it gives directly the concentration
about the expected value. Different versions involving the median of f and giving better constants can be found
in Corollary 2.3 of [MS86] or Proposition 1.3 in [Led01] for example. ut

Lemma 2.9 (δ-net). Let δ ∈ (0, 1). There exists a set N of pure states in Cd with |N | ≤ (3/δ)2d such that for every pure
state |ψ〉 ∈ Cd (i.e., ‖|ψ〉‖2 = 1), there exists |ψ̃〉 ∈ N such that

‖|ψ〉 − |ψ̃〉‖2 ≤ δ.

Proof A proof can be found in [HLSW04] as Lemma II.4. ut
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Lemma 2.8 (Concentration of the average). Let a, b ≥ 1, δ ∈ (0, 1) and t a positive integer. Suppose X is a random
variable with 0 mean satisfying the tail bounds

P {X ≥ δ} ≤ ae−bδ2 and P {X ≤ −δ} ≤ ae−bδ2 .

Let X1, . . . Xt be independent copies of X . Then if δ2b ≥ 16a2π,

P

{∣∣∣∣∣
1

t

t∑

k=1

Xk

∣∣∣∣∣ ≥ δ
}
≤ exp

(
−δ

2bt

2

)
.

Proof For any λ > 0, using Markov’s inequality

P

{
t∑

k=1

Xk ≥ tδ
}

= P

{
exp

(
λ

t∑

k=1

Xk

)
≥ exp (λtδ)

}

≤ E

{
exp

(
λ

t∑

k=1

Xk

)}
e−λtδ

= E
{
eλX

}t
e−λtδ.

We now bound the moment generating function E
{
eλX

}
of X using the tail bounds.

E
{
eλX

}
=

∫ ∞

0

P
{
eλX ≥ u

}
du

=

∫ ∞

0

P

{
X ≥ lnu

λ

}
du

=

∫ 1

0

P

{
X ≥ lnu

λ

}
du+

∫ ∞

1

P

{
X ≥ lnu

λ

}
du

≤ 1 +

∫ ∞

1

a exp

(
−b ln2 u

λ2

)
du

= 1 + a

∫ ∞

0

exp

(
−bz

2

λ2

)
ezdz

by making the change of variable z = log u.

E
{
eλX

}
≤ 1 + a

∫ ∞

0

exp

(
− b

λ2

(
z − λ2

2b

)2

+
λ2

4b

)
dz

≤ 1 + a exp

(
λ2

4b

)∫ ∞

−∞
exp

(
− b

λ2

(
z − λ2

2b

)2
)
dz

= 1 + a exp

(
λ2

4b

)
λ√
2b

∫ ∞

−∞
exp

(
−u

2

2

)
du

= 1 + a

√
2πλ√
2b
· exp

(
λ2

4b

)

≤ 2 max

(
1, a

√
πλ√
b
· exp

(
λ2

4b

))
.

We choose λ = 2δb (this is not the optimal choice but it makes expressions simpler),

P

{
t∑

k=1

Xk ≥ tδ
}
≤ max

(
2t,

(
2a

√
πλ√
b

)t
· exp

(
λ2t

4b

))
exp (−λtδ)

= max
(

exp
(
−2δ2bt+ t ln 2

)
, exp

(
δ2bt− 2δ2bt+ t ln(4a

√
πδ
√
b)
))

= max
{

exp
((
−2δ2b+ ln 2

)
t
)
, exp

((
−δ2b+ ln(4a

√
πδ
√
b)
)
t
)}

.
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Claim. For all c ≥ 1 and x ≥ c
1

2
ln(cx)− x ≤ −x

2
.

The function x 7→ x
2 − 1

2 ln(cx) is increasing for x ≥ 1. It suffices to show that it is nonnegative for x = c. To see
that, we differentiate the function y 7→ y − ln(y2) to prove that for all y ≥ 1, we have y − ln(y2) ≥ 0. This proves
the claim.

Using this inequality, we have for δ2b ≥ 16a2π,

−δ2b+ ln(4a
√
πδ
√
b) ≤ −δ

2b

2
and − 2δ2b+ ln 2 ≤ −δ

2b

2
.

Finally,

P

{
t∑

k=1

Xk ≥ tδ
}
≤ exp

(
−δ

2bt

2

)
.

ut

B Proof of Lemma 2.11

We define V0 = 11, and the remaining unitaries are indexed by binary vectors u ∈ {0, 1}n, for example the binary
representations of integers from 0 to r− 2. The construction is based on operations in the finite field F2n . The field
F2n can be seen as an n-dimensional vector space over F2. Choose θ ∈ F2n such that 1, θ, . . . , θn−1 forms a basis of
F2n . For any x, y ∈ [n], θx · θy ∈ F2n can be decomposed in our chosen basis as θx · θy =

∑n−1
`=0 m`(x, y)θ` for some

m`(x, y) ∈ F2. We can thus define the matrices M0,M1, . . . ,Mn−1 from the multiplication table



1
θ
...

θn−1


 ·

(
1 θ . . . θn−1

)
= M0 +M1θ + · · ·+Mn−1θ

n−1.

where M` = (m`(x, y))x,y∈[n]. For a given u ∈ {0, 1}n, we define the matrix

Nu =

n−1∑

`=0

u`M`.

Notice that as θx · θy = θx+y , the entry Nu(x, y) of Nu only depends on x + y, i.e., Nu(x, y) = Nu(x′, y′) if
x + y = x′ + y′. So we can represent this matrix by a vector αu(x + y) = Nu(x, y) of length 2n − 1. We then
define a quadratic form on Z4 by: for v ∈ {0, 1}n,

Tu(v) = vTNuv mod 4.

Note that the operations vTNuv are not performed in F2 but rather in Z. Using the vector αu, we can write

Tu(v) =
∑

x,y∈[n]

vxNu(x, y)vy mod 4 =

2n−2∑

z=0

(
z∑

x=0

vxvz−x

)
αu(z) mod 4

if we define vx = 0 for x ≥ n. We then define the diagonal matrix Du = diag
(
iTu(v)

)
v∈Fn2

. Finally, we define for
1 ≤ j ≤ r − 1,

Vj = Dbin(j−1)H
⊗n

where bin(j) ∈ {0, 1}n is the binary representation of length n of the integer j.
The fact that these unitaries define mutually unbiased bases was proved in [WF89]. We now analyse how fast

these unitary transformations can be implemented. Note that we want a circuit that takes as input a state |ψ〉
together with the index j of the unitary transformation and that outputs Vj |ψ〉.
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Given the index j as input, we show it is possible to compute u = bin(j − 1) and compute the vector αj
def
= αu

in time O(n2 polylog n). In fact, we start by computing a representation of the field F2n by finding an irreducible
polynomial Q of degree n in F2[X], so that F2n = F2[X]/Q. This can be done in expected time O(n2 polylog n)
(Corollary 14.43 in the book [vzGG99]). There also exists a deterministic algorithm for finding a irreducible
polynomial in time O(n4 polylog n) [Sho90]. We then take θ = X . Computing the polynomial Xx · Xy = Xx+y

mod Q can be done in time O(npolylog n) using the fast Euclidean algorithm (see Corollary 11.8 in [vzGG99]). As
x+ y ∈ [0, 2n− 2], we can explicitly represent all the polynomials Xz for 0 ≤ z ≤ 2n− 2 in time O(n2 polylog n). It
is then simple to compute the vector αu using the vector u in time O(n2).

To build the quantum circuit, we first observe that applying a Hadamard transform only takes n single-qubit
Hadamard gates. Then, to design a circuit performing the unitary transformation Dbin(j−1), we start by building a
classical circuit that computes

Tu(v) =

2n−2∑

z=0

(
z∑

x=0

vxvz−x

)
αu(z) mod 4

on inputs v and αu. Observing that
∑z
x=0 vxvz−x is the coefficient of Y z in the polynomial

(∑n−1
x=0 vxY

x
)2

, we can
use fast polynomial multiplication to compute Tu(v) in timeO(n polylog n) (Corollary 8.27 in [vzGG99]). Moreover,
computing the inner product of two vectors can easily be implemented by a circuit of depth O(log n). Thus, Tu(v)
can be computed by a circuit of size O(n polylog n) and depth O(log n). This circuit can be transformed into a
reversible circuit with the same size and depth (up to some multiplicative constant) that takes as input (v, αj , g)
where v ∈ {0, 1}n, αj ∈ {0, 1}2n−1 and g ∈ Z4, and outputs (v, αj , g + Tu(v) mod 4).

This reversible classical circuit can be readily transformed into a quantum circuit that computes the unitary
transformation defined byW : |v〉|g〉 7→ |v〉|g+Tu(v) mod 4〉. Recall that we want to implement the transformation
Du : |v〉 7→ iTu(v)|v〉 efficiently. This is simple to obtain using the quantum circuit forW . In fact, if we use a catalyst
state |φ〉 = |0〉 − i|1〉 − |2〉+ i|3〉, we have

W |v〉|φ〉 = iTu(v)|v〉|φ〉 = Dbin(j−1)|v〉|φ〉.
Finally, Dbin(j−1)H

⊗n can be implemented by a quantum circuit of size O(npolylog n) and depth O(log n).

C Permutation extractors

In order to prove the existence of strong permutation extractors with good parameters, we use the construction
of Guruswami, Umans and Vadhan [GUV09] which is inspired by list decoding. Their main construction is a
lossless condenser based on Parvaresh-Vardy codes. Using this condenser, they build an explicit extractor with
good parameters. However, this lossless condenser based on Parvaresh-Vardy codes does not seem to be easily
extended into a permutation condenser. The same paper also presents a lossy condenser based on Reed-Solomon
codes, which can indeed be transformed into a permutation condenser. This permutation condenser can then be
used in the extractor construction instead of the lossless condenser giving a strong permutation extractor. In this
section, we describe this construction. For completeness, we reproduce most of the proof here, except the results
that are used exactly as stated in [GUV09].

It is also worth mentioning that to obtain metric uncertainty relations, we want strong extractors. Even though
the extractors in [GUV09] are not directly described as strong, they are essentially strong. In this section, we
describe all the condensers and extractors as strong.

Definition C.1 (Condenser). A function C : {0, 1}n × S → {0, 1}n′ is an (n, k) →ε (n′, k′) condenser if for every X
with min-entropy at least k, C(X,US) is ε-close to a distribution with min-entropy k′ when US is uniformly distributed on
S. A condenser C is strong if (US , C(X,US)) is ε-close to (US , Z) for some random variable Z such that for all y ∈ S,
Z|US=y has min-entropy at least k.

A condenser is explicit if it is computable in polynomial time in n.

Remark. The set S is usually of the form {0, 1}d for some integer d. Here, it is convenient to take sets S not of this
form to obtain permutation extractors. Note also that an extractor is an (n, k)→ε (m,m) condenser. ut
Definition C.2 (Permutation condenser). A family {Py}y∈S of permutations of {0, 1}n is an (n, k) →ε (n′, k′) strong
permutation condenser if the function PC : (x, y) 7→ PCy (x) where PCy (x) refers to the first n′ bits of Py(x) is an
(n, k)→ε (n′, k′) strong condenser.
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A strong permutation condenser is explicit if for all y ∈ S, both Py and P−1
y are computable in polynomial time.

The following theorem describes the condenser that will be used as a building block in the extractor
construction. It is an analogue of Theorem 7.2 in [GUV09].

Theorem C.3. For all positive integers n and ` ≤ n, as well as α, ε ∈ (0, 1/2), there exists an explicit family of permutations
{RSy}y∈S of Fn2t that is an

(nt, (`+ 1)t)→ε (`t, (1− α)`t− 4)

strong permutation condenser with t =
⌈
1/α · log(24n2/ε)

⌉
and log |S| ≤ t. Moreover, the functions (x, y) 7→ RSy(x) and

(x, y) 7→ RS−1
y (x) can be computed by a circuit of size O(npolylog(n/ε)).

Remark. Note that the input space of the condenser is {0, 1}nt instead of {0, 1}n. But one can see such a condenser
as a permutation condenser (P ′y) on the smaller space {0, 1}n defined by P ′y(x) = Py(x0t) for all x ∈ {0, 1}n where
x0t is obtained by appending t zeros to x. ut
Proof Set q = 2t and ε0 = ε/6. Consider the function C ′ : Fnq × Fq → F`+1

q defined by

C ′(f, y) = [y, f(y), f(ζy), . . . , f(ζ`−1y)]

where Fnq is interpreted as the set of polynomials over Fq of degree at most n − 1 and ζ is a generator of the
multiplicative group F∗q . First, we compute the input and output sizes in terms of bits. The inputs can be described
using log |Fnq | = n log q = nt bits, the seed using log |Fq| = t bits and the output using log |F`+1

q | = (` + 1)t. Using
Theorem 7.1 in [GUV09], for any integer h, C ′ is a

(
nt, log

(
q` − 1

ε0

))
→2ε0

(
`t+ t, log

(
Ah` − 1

2ε0

))
(36)

condenser where A
def
= ε0q − (n − 1)(h − 1)`. We now choose h =

⌈
q1−α⌉. As q ≥ (4n2/ε0)1/α, we have

A ≥ ε0q − n2h ≥ ε0q − ε0qα/4 · (q1−α + 1) ≥ ε0q/2. Thus, we can compute the bounds we obtain on the condenser
C ′:

log

(
q` − 1

ε0

)
= `t+ log(1/ε0) ≤ (`+ 1)t

and

log

(
Ah` − 1

2ε0

)
= log

(
Ah`

2ε0

)
+ log

(
1− 1

Ah`

)

≥ log(q/4) + ` log h− 1

≥ t+ (1− α)`t− 3.

Plugging these values in equation (36), we get that C ′ is a

(nt, (`+ 1)t)→2ε0 (`t+ t, (1− α)`t+ t− 3)) (37)

condenser.
Observe that the seed y is part of the output of the condenser. As we want to construct a strong condenser,

we do not consider the seed as part of the output of the condenser. For this, we define C : Fnq × Fq → F`q by
C(f, y) = [f(y), . . . , f(ζ`−1y)]. Moreover, as will be clear later when we try to build a permutation condenser, we
take the seed to be uniform on S def

= F∗q instead of being uniform on the whole field Fq . Note that this increases the
error of the condenser by at most 2−t ≤ ε0 (because one can choose UF∗q = UFq with probability 1− 2−t). Here and
in the rest of this proof, we will be using Doeblin’s coupling lemma.

Equation (37) then implies that if X has min-entropy at least (` + 1)t and US is uniform on S, then the
distribution of (US , C(X,US)) is 3ε0-close to a distribution with min-entropy at least (1 − α)`t + t − 3. Let Y ∈ S
and Z ∈ {0, 1}(`+1)t be random variables such that Hmin(Y,Z) ≥ (1 − α)`t + t − 3 and (US , C(X,US)) = (Y,Z)
with probability at least 1 − 3ε0. If Y was uniformly distributed on S, then it would follow directly that for all
y ∈ S, Hmin(Z|Y = y) ≥ (1− α)`t. However, Y is not necessarily uniformly distributed. We define a new random
variable Z ′ by

Z ′ =

{
Z if Y = US
U ′ if Y 6= US
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where U ′ is uniformly distributed on {0, 1}(`+1)t and independent of all the other random variables. We have for
any z ∈ {0, 1}(`+1)t and y ∈ S,

P {Z ′ = z|US = y} =
1

P {US = y} (P {Z ′ = z, Y = y, Y = US}+ P {Z ′ = z, US = y, Y 6= Us})

≤ 1

P {US = y}

(
2−(1−α)`t−t+3 + 2−(`+1)t · 1

|S|

)

≤ 2 · 2−(1−α)`t+3.

Moreover, we have (US , C(X,US)) = (US , Z
′) with probability at least 1− 6ε0.

We conclude that C is a
(nt, (`+ 1)t)→ε (`t, (1− α)`t− 4)) (38)

strong condenser.
To define our permutation condenser, we set the first n′ = `t bits RSCy (x) of RSy(x) to be RSCy (x) = C(x, y).

We then define the remaining bits by defining RSRy (f) = [f(ζ`y), . . . , f(ζn−1y)]. As q ≥ n− 1 and ζ is a generator
of F∗q , the elements y, ζy, . . . , ζn−1y are distinct provided y 6= 0. So for y 6= 0, (RSC , RSR)y(f) is the evaluation of
the polynomial f of degree at most n − 1 in n distinct points. Thus, f 7→ Py(f) is a bijection in Fnq for all y 6= 0.
This is why the value 0 for the seed was excluded earlier.

Concerning the computation of the functions RSCy and RSRy , they only require the evaluation of a polynomial
on elements of the finite field Fq . Computations in the finite field Fq can be performed efficiently by finding an
irreducible polynomial of degree log q over F2 and doing computations modulo this polynomial. In fact, finding
an irreducible polynomial of degree log q over F2 can be done in time polynomial in log q (see for example [Sho90]
for a deterministic algorithm and Corollary 14.43 in the book [vzGG99] for a simpler randomized algorithm).
Since addition, multiplication and finding the greatest common divisor of polynomials in F2[X] can be done
using a number of operations in F2 that is polynomial in the degrees, we conclude that computations in Fq
can be implemented in time O(polylog(n/ε)). Moreover, one can efficiently find a generator ζ of the group
F∗q . For example, Theorem 1.1 in [Sho92] shows the existence of a deterministic algorithm having a runtime
O(poly(log(q))) = O(polylog(n/ε)).

To evaluate RSy at a polynomial f , we compute the field elements y, ζy, . . . , ζn−1y, and then evaluate the
polynomial f on these points. Using a fast multipoint evaluation, this step can be done in O(n polylog n) number
of operations in Fq (see Corollary 10.8 in [vzGG99]). Moreover, given a list [f(y), . . . , f(ζn−1y)] for y 6= 0, we can
find f by fast interpolation in Fq[X] (see Corollary 10.12 in [vzGG99]). As a result RS−1

y can also be computed in
O(n polylog n) operations in Fq . ut

This condenser will be composed with other extractors, the following lemma shows how to compose
condensers.

Lemma C.4 (Composition of strong permutation condensers). Let (P1,y1)y1∈S1
be an (n, k) →ε (n′, k′)

strong permutation condenser and (P2,y2)y2∈S2
be an (n′, k′) →ε (n′′, k′′) strong permutation condenser. Then

(Py)y=(y1,y2)∈S1×S2
= (PCy , P

R
y ) where PCy1y2 = PC2,y2 ◦PC1,y1 and PRy1y2 = (PR2,y2 ◦PC1,y1) ·PR1,y1 is an (n, k)→2ε (n′′, k′′)

strong permutation extractor.

Proof Py is clearly a permutation of {0, 1}n. We only need to check that PC is a strong condenser. By definition,
if Hmin(X) ≥ k, (US1

, PC1,US1
(X)) is ε-close to (US1

, Z) where Z|US1=y1 has min-entropy at least k′. Now putting Z
into the condenser PC2 , we get that for any y1, (US2

, PC2,US2
(ZUS1 ) is ε-close to (US2

, Z2) where Z2|US2=y2 has min-
entropy at least k′′ for any y2 ∈ S2. Thus, Z2|US1US2=y1y2 has min-entropy at least k′′. Moreover, by the triangle

inequality, we have ∆
(

(US1 , US2 , P
C
US1US2

(X)), (US1 , US2 , Z2)
)
≤ 2ε. ut

Next, we present one of the standard extractors that are used as a building block in many constructions.

Lemma C.5 (”Leftover Hash Lemma” extractor [ILL89]). For all positive integers n and k ≤ n, and ε > 0, there
exists an explicit family (Py)y∈S of permutations of {0, 1}n that is an (n, k) →ε m strong permutation extractor with
log |S| = log(2n − 1) and m ≥ k − 2 log(2/ε).

Proof We view {0, 1}n as the finite field F2n and the set S = F∗2n . We then define the permutation Py(x) = x · y
where the product x · y is taken in the field F2n . The family of functions Py is pairwise independent. Applying the
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Leftover Hash Lemma [ILL89], we get that if Y uniform on F2n , the distribution of the first dk − 2 log(1/ε)e bits of
PY (X) together with Y is ε-close to uniform. Now if US is only uniform in F∗2n , (US , PUS (X)) is ε+2−n-close to the
uniform distribution. The result follows from the fact that we can suppose ε ≥ 2−n (otherwise, k − 2 log(1/ε) ≤ 0
and the theorem is true). ut

The problem with this extractor is that it uses a seed that is as long as the input. Next, we introduce the notion
of a block source.

Definition C.6 (Block source). X = (X1, X2, . . . , Xs) is a (k1, k2, . . . , ks) block source if for every i ∈ {1, . . . , s} and
x1, . . . , xi−1, X|X1=x1,...,Xi−1=xi−1 is a ki-source. When k1 = · · · = ks = k, we call X a s× k source.

A block source has more structure than a general source. However, for a source of large min-entropy k (or
equivalently with small entropy deficiency ∆ = n− k), one does not lose too much entropy by viewing a general
source as a block source where each block has entropy deficiency roughly ∆. See Corollary 5.9 in [GUV09] for a
precise statement.

Lemma C.7 (Lemma 5.4 in [GUV09]). Let s be a (constant) positive integer. For all positive integers n and ` ≤ n and all
ε > 0, setting t =

⌈
8s log(24n2 · (4s+ 1)/ε)

⌉
, there is an explicit family {Ly}y∈S of permutations of {0, 1}n that is an

(n, 2`t)→ε `t

strong permutation extractor with log |S| ≤ 2`t/s+ t.

Proof As the extractor is composed of many building blocks, each generating some error, we define ε0 = ε/(4s+1)
where ε is the target error of the final extractor. The idea is to first apply the condenser RS of Theorem C.3 with
α = 1

8s to obtain a string X ′ = C(X,UF∗
2t

) of length n′ = (2`− 1)t which is ε0-close to a k′-source where

k′ =

(
1− 1

8s

)
(2`− 1)t− 4

The entropy deficiency ∆ of this k′-source can be bounded by ∆ = n′ − k′ ≤ (2`−1)t
8s + 4. Then, we partition

X ′ = (X ′1, . . . , X
′
2s) (arbitrarily) into 2s blocks of size n′′ = bn′/2sc or n′′ + 1 . Using Corollary 5.9 of [GUV09],

(X ′1, . . . , X
′
2s) is 2sε0-close to some 2s× k′′-source where k′′ = (n′′ −∆− log(1/ε0)).

We have ∆ ≤ `t/(4s) + 3 ≤ `t/(3s) for n large enough. Thus,

k′′ ≥ 2`t

2s
− `t

3s
− log(1/ε0) =

2

3s
`t− log(1/ε0).

We can then apply the extractor Lemma C.5 to all the 2s blocks using the same seed of size n′′+1. Note that we can
reuse the same seed because we have a strong extractor and the seed is independent of all the blocks. This extractor
extracts almost all the min-entropy of the sources. More precisely, if we input to this extractor a 2s×k′′-source, the
output distribution is 2sε0-close to m uniform bits where

m ≥ 2s · (k′′ − 2 log(2/ε0)) ≥ 4

3
`t− 6s log(2/ε0) ≥ `t.

Overall, the output of this extractor is ε0 + 2sε0 + 2sε0 = ε-close to the uniform distribution on m bits.
It only remains to show that the extractor we just described is strong and can be extended to a permutation.

This follows from Lemma C.4 and the fact the condensers (coming from Theorem C.3 and Lemma C.5) are strong
permutation condensers. ut

Remark. As pointed out in [GUV09], a stronger version of this lemma (i.e., with larger output) can be proved by
using the condenser of Theorem C.3 and the high min-entropy extractor in [GW97] with a Ramanujan expander
(for example, the expander of [LPS88]). This construction can also give a strong permutation extractor. However,
using this extractor would slightly complicate the exposition and does not really influence the final extractor
construction presented in Theorem 2.15. ut

The following lemma basically says that the entropy is conserved by a permutation extractor. It is an adapted
version of Lemma 26 in [RRV99].
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Lemma C.8. Let {Py}y∈S be a (n, k)→ε m strong permutation extractor. LetX be a k-source, then (US , P
E
US

(X), PRUS (X))
is 2ε-close to (US×{0,1}m ,W ) where US×{0,1}m is uniform on S × {0, 1}m and for all y ∈ S, z ∈ {0, 1}m

Hmin(W |US×{0,1}m = (y, z)) ≥ k −m− 1.

Proof As {PEy } is a strong extractor, there exists a random variable US×{0,1}m uniformly distributed on S×{0, 1}n
such that P

{
(US , P

E
US

(X)) 6= US×{0,1}m
}
≤ ε. Define Γ = {(y, z) ∈ S × {0, 1}m : P

{
PEy (X) = z

}
< 1

2 · 2−m}. We
have for every (y, z) /∈ Γ and x ∈ {0, 1}n−m,

P
{
PRy (X) = x|PEy (X) = z

}
≤ P

{
PRy (X) = x, PEy (X) = z

}

2−m−1

≤ 2m+1P
{
X = P−1

y (x, z)
}

≤ 2−(k−m−1).

We then show that P
{

(US , P
E
US

) ∈ Γ
}
≤ ε. Using the fact that {PEy } is a strong extractor, we have

∣∣P
{
US , U{0,1}m ∈ Γ

}
−P

{
(US , P

E
US ) ∈ Γ

}∣∣ ≤ ε.

But recall that, by definition of Γ, P
{

(US , P
E
US

) ∈ Γ
}
< 1

2P
{
US , U{0,1}m ∈ Γ

}
, so we get

P
{

(US , P
E
US ) ∈ Γ

}
≤ ε.

Finally we define

W =

{
PRUS (X) if (US , P

E
US

(X)) /∈ Γ
U ′ if (US , P

E
US

(X)) ∈ Γ

where U ′ is uniform on {0, 1}n−m and independent of all other random variables. We conclude by observing that
with probability at least 1− 2ε, we have (US , P

E
US

(X)) = US×{0,1}m and PRUS (X) = W . ut

We then combine these results to obtain the desired extractor. The proof of the following theorem closely
follows Theorem 5.10 in [GUV09] but using the lossy condenser presented in Theorem C.3 and making small
modifications to obtain a permutation extractor.

Theorem C.9. For all integers n ≥ 1, all ε ∈ (0, 1/2), and all k ∈
[
200

⌈
200 log(24n2/ε)

⌉
, n
]

there is an explicit
(n, k) →ε bk/4c strong permutation extractor {Py}y∈S with log |S| ≤ 200

⌈
200 log(24n2/ε)

⌉
. Moreover, the function

(x, y) 7→ Py(x) can be computed by circuit of size O(n polylog(n/ε)).

Proof If n ≤ 2 · 106, we can use the extractor of Lemma C.7 with s = 200 and ` ≥ 1 such that 2`t ≤ k ≤ 2(`+ 1)t.
This gives an extractor whose seed has size k

200 ≤ 104 ≤ 200
⌈
200 log(24n2/ε)

⌉
and that extracts `t ≥ 1

4 ·2(`+1)t ≥ k
4

bits, so the statement still holds true. In the rest of the proof, we assume n > 2 · 106.
The idea of the construction is to build for an integer i ≥ 0 an explicit (n, 2i ·8d)→ε 2i−1 ·8d using d bits of seed

by induction on i. Fix t(ε) =
⌈
200 log(24n2/ε)

⌉
and d(ε) = 200t(ε). The induction hypothesis for an integer i ≥ 0 is

as follows: For all integers i′ ≤ i and n and ε > 0, there is an explicit

(n, 2i
′ · 8d(ε))→ε 2i

′−1 · 8d(ε)

strong permutation extractor with seed size d(ε). This extractor is called {P (i)
y }y∈Si .

For both i = 0 and i = 1 we can use the extractor of Lemma C.7 with s = 20. For i ∈ {0, 1}, we obtain an
(n, 2i · 8d(ε/(4s + 1))) →ε 2i−18d strong permutation extractor with Let ε0 = ε

4s+1 . For i ∈ {0, 1}, this gives an

extractor with seed 2i·8d(ε/81)
20 + t ≤ 16

20d(ε) + 16
20200 d200 log(81)e ≤ d(ε).

We now show for i ≥ −1 how to build the extractor {P (i)
y } using the extractors {P (i′)

y } for i′ < i. Using
the induction hypothesis, we construct the following extractor, which will be applied four times to extract the
necessary random bits to prove the induction step. The choice of the form of the min-entropy values will become
clear later. Set ε0 = ε/20.
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Figure 4: The extractor Q is obtained by first applying the condenser of Theorem C.3 and decomposing the output
into two parts. The Leftover Hash Lemma extractor (Lemma C.7) is applied to the first half and its output is used
as a seed for the extractor {P (i−2)

y } coming from the induction hypothesis.

Claim. There exists an
(n, 2i · 4.5d(ε0))→5ε0 2i · d(ε0)

strong permutation extractor {Qy}y∈T with seed size log |T | ≤ d(ε0)
8 .

To prove the claim, we start by applying the condenser of Theorem C.3 with α = 1/200 and ε = ε0 (so we use
a seed of size t(ε0)). The output X ′ of size at most 2i · 4.5d(ε0) is then ε0-close to having min-entropy is at least
(1− α)2i · 4.5d(ε0)− t(ε0). The entropy deficiency of this distribution is α2i · 4.5d(ε0) + d(ε0)

200 ≤
2i·4.5d(ε0)

100 . We then
divide X ′ into two equal blocks X ′ = (X ′1, X

′
2), and we know that it is 2ε0 close to being a 2× k′-source for

k′ =
2i · 4.5d(ε0)

2
− 2i · 4.5d(ε0)

100
− log(1/ε0) ≥

(
49

100
· 2i · 4.5− 1

200

)
d(ε0)

as log(1/ε0) ≤ t(ε0) = d(ε0)
200 . For the extractors we will apply next to this source, we should note that k′ ≥ 2d(ε0)

and that 2i · 4d(ε0) ≤ k′ < 2i · 8d(ε0).

We now apply the extractor of Lemma C.7 to X ′1 (viewed as a 2d(ε0)-source) using a seed of size 2d(ε0)
20 and

obtaining X ′′ that is ε0 close to uniform on d(ε0) bits. We then use the extractor {P (i−2)
y } obtained by induction

for i − 2 to the X ′2 (of size 2i · 4.5d(ε0) ≤ n) with seed X ′′ (of size d(ε0)): it is an (n, 2i−2 · 8d(ε0)) →ε0 2i · d(ε0)
permutation extractor.

The construction is illustrated in Figure 4. Note that the number of bits of the seed is log |T | ≤ t(ε0) + 2d(ε0)
20 ≤

d(ε0)
8 . This concludes the proof of the claim.
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Figure 5: The permutation extractor {Qy} described in the claim is applied four times with independent seeds in
order to extract 2i−1 · 8d(ε) random bits.

The sourceX we begin with is a 2i·8d(ε)-source. But we have 2i·8d(ε) ≥ 2i·8d(ε0)−2i·8·2002 log 20 ≥ 2i·4.5d(ε0)
so that we can apply the permutation extractor (Qy)y∈T of the claim. We obtainQEUT (X) which is ε0-close to 2i·d(ε0)

random bits. As QE is part of a permutation extractor, the remaining entropy is not lost: it is in QRUT (X). More
precisely, applying Lemma C.8, we getQRUT (X) is ε0-close to a source of min-entropy at least 2i ·8d(ε)−2i ·d(ε0)−1.
As 2i · 8d(ε) − 2i · d(ε0) − 1 ≥ 2i · 4.5d(ε0), we can apply the extractor (Q)y∈T of the claim to this source. Note
that the input size has decreased but as mentioned earlier this only makes it easier to extract random bits as one
can always encode in part of the input space. To apply Q, we use a fresh new seed that outputs a bit string that
is close to uniform on 2i−3 · 8d(ε0) bits and the remaining entropy can be found in the R register. We apply this
procedure four times in total as shown in Figure 5. Note that the reason we can apply it four times is that at the
last application 2i · 8d(ε) − 3 · 2i−3 · 8d(ε0) − 3 ≥ 2i · 4.5d(ε0). As the extractor (Qy)y∈T has error at most 5ε0, the
total error is bounded by 20ε0 = ε.

We thus obtain an
(n, 2i · 8d(ε))→ε 4 · 2i−3 · 8d(ε0)

strong permutation extractor with seed set S = T 4 so that log |S| ≤ 4 · d(ε0)
8 ≤ d(ε).

ut

By a repeated application of the previous theorem, we can extract a larger fraction of the min-entropy.

Theorem 2.15. For all (constant) δ ∈ (0, 1), there exists c > 0, such that for all positive integers n, all k ∈ [c log(n/ε), n],
and all ε ∈ (0, 1/2), there is an explicit (n, k) →ε (1 − δ)k strong permutation extractor {Py}y∈S with log |S| =
O(log(n/ε)). Moreover, the functions (x, y) 7→ Py(x) and (x, y) 7→ P−1

y (x) can be computed by circuits of size
O(n polylog(n/ε)).

Proof We start by applying the extractor of Theorem C.9. We extract part of the min-entropy of the source and
the remaining min-entropy is in the R system (Lemma C.8). This min-enrtopy can be extracted using once again
the extractor of Theorem C.9. After O(log(1/δ)) applications of the extractor, we obtain the desired result. ut

D Impossibility of locking using Pauli operators

The objective of this section is to give an example of a construction that is not a locking scheme to illustrate what
is needed to obtain a locking scheme. The 2× 2 Pauli matrices are the four matrices {11, σx, σz, σxσz}where

σx =

(
0 1
1 0

)
and σz =

(
1 0
0 −1

)
.
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For bit strings u, v ∈ {0, 1}n, we define the unitary operation σuxσvz on
(
C2
)⊗n by

σuxσ
v
z = σu1

x σv1z ⊗ · · · ⊗ σunx σvnz .

It was shown in [AMTdW00] that one can encrypt an n-qubits state |ψ〉 perfectly using a key (U, V ) of 2n bits.
To encrypt |ψ〉, one simply applies σUx σVz to |ψ〉. This can be thought of as a quantum version of one-time pad
encryption. Of course, this encryption scheme also defines a (0, 0)-locking scheme, but the size of the key is 2n
bits. Recall that we want to use the assumption that the message is random to reduce the key size to something
like O(polylog(n)) bits.

Ambainis and Smith [AS04] showed that to achieve approximate encryption, it is sufficient to choose the key
uniformly at random from a subset S ⊆ {0, 1}2n of size only O(n22n). Such pseudorandom subsets are called
δ-biased sets and have also been used to construct entropically secure encryption schemes [DS05, DD10]. For
example, [DD10] showed that it is possible to encrypt a uniformly random state by applying σUx σVz where (U, V )
is chosen uniformly from a set S ⊂ {0, 1}n of size O(n2) (see [DS05, DD10] for a precise definition of entropic
security). Such a scheme can seem like a good candidate for a locking scheme. The following proposition shows
that this encyption scheme is far from being ε-locking. Note that this also shows that the notion of entropic security
defined in [Des09, DD10] is weaker than the definition of locking.

Proposition D.1. Consider an ε-locking scheme E of the form E(x, k = (u, v)) = σuxσ
v
y |x〉 where the message x ∈ {0, 1}n

and the key u, v ∈ {0, 1}n (see Definition 3.1). Suppose the key K is chosen uniformly from a set S ⊆ {0, 1}2n. Then
|S| ≥ (1− ε)2n.

Proof LetX be the message (recallX is uniform on {0, 1}n) and (U, V ) be the key. The key is uniformly distributed
on S. We show that a measurement in the computational basis gives a lot of information about X . Let I be the
outcome of measuring E(X,K) in the computational basis. We have for x, i ∈ {0, 1}n,

P {X = x|I = i} = P {I = i|X = x}

=
1

|S|
∑

(u,v)∈S
|〈i|σuxσvz |x〉|2 .

Observing that the term |〈i|σuxσvz |x〉|2 ∈ {0, 1}, we have that for any fixed i, there are at most |S| different values of
x for which P {X = x|I = i} > 0. Thus, defining T = {x ∈ {0, 1}n : P {X = x|I = i} = 0}, we have

∆
(
pX|[I=i], pX

)
≥ P {X ∈ T} −P {X ∈ T |I = i} =

|T |
2n

= 1− |S|
2n
.

By the definition of a locking scheme, we should have

∆
(
pX|[I=i], pX

)
≤ ε

which concludes the proof. ut
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