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1 Introduction

In numerous fields, one needs to get samples of a set of objects according to a given distribution. Sometimes,
the structure of this set is complicated so one cannot enumerate the objects efficiently. In these cases, an ergodic
Markov chain is devised with the wanted distribution as a stationary distribution, the state space of these chains
is usually huge but it is easy to compute transitions. Monte Carlo Markov Chain simulation consists on beginning
in an arbitrary state and running the transition a sufficiently long time so that we get close enough to the limit
distribution, in this way we get an approximate sampling technique.

Propp and Wilson in [12] devise a way to get a perfect sample from the stationary distribution of a generic
finite ergodic Markov chain in expected finite time, this method is known as coupling from the past (CFTP).

In this report, we will be using this method to get exact samples from particular distributions given as a solution
of a stochastic equation. We will begin with the distribution of a random variable X for which

XEa+x)U (1)

where U is a uniform independent of X. This distribution is known as the Dickman distribution and it appears for
example in analytic number theory and in the analysis of the Quickselect algorithm ([6] and [7]). For example, in
[7], it is shown that the Dickman function is the limit distribution of W provided m = o(n) where C,, ,,, is the
(random) number of comparisons done by Hoare’s selection algorithm to find the m-th smallest element in a list of
n elements.

We will try to develop a general way for getting samples from distributions defined by a stochastic equation

using coupling from the past. Technically speaking, we will begin with equations X £ U“(1+ X) which are called

Vervaat perpetuities, and then more general perpetuities X £ Ax + B, with some constraints on random variables
A and B. Devroye in [3] developed methods for sampling from Vervaat perpetuities using rejection sampling, but
these methods are quite complicated so our objective is to develop easier techniques that are more efficient and
easier to generalize to different fixed-point equations. Also Kendall and Thoénnes in [9] and Fill and Huber in [4]
have developed methods using coupling from the past but we haven’t seen a published paper discussing the problem
in detail.

The two main problems we have to tackle to achieve our goal is the fact that the state spaces of the chains we
are considering are unbounded and the fact that we have to find appropriate coalescing couplings.

2 Preliminaries

2.1 Notations

The set, of integers will be denoted by Z, and the set of reals R. For the set of nonnegative integers we write Z
and R for the set of nonnegative reals. The indicator function of a set A, that is the function whose value is 1 on
A and 0 everywhere else will be denote I 4.

We will be writing P{A} for the probability of an event A, and E{X } for the expected value of a random variable
X. The law of a random variable X will be denoted by £(X). Also, when we have a probability measure P having
a distribution function F', and a random variable X having distribution P, we will write X ~ P or X ~ F. If two

random variables X and Y follow the same law, we write X £y,
Here are some of the standard probability distributions we will be using:



The Geometric distribution with parameter 0 < p < 1, is a distribution on Z; defined by P{X = n} = (1—p)p"
for n > 0.

e The Poisson distribution is the distribution on Z, defined by P{X =n} = e;—,l for n > 0.

e The Uniform distribution is the distribution on [0, 1] having distribution function = +— zljj, and density
X — 1]1[0’1]

The Exponential distribution is the distribution on Ry with distribution function z +— Ig, (1 —e™*), and
density function x — Ig e™".

And about the convergence of random variables, we say that X, converges to X in distribution when the
sequence of distribution functions F,, of X,, converges to the distribution function F' of X for every point. We say
that X, converges to X almost surely when X,,(w) converges to X (w) for every w € A where A is an event with
probability 1.

2.2 Sampling

In our context, we suppose we have access to a random number generator that produces independent uniform
random variables, and we also suppose we do the calculations with infinite precision. Provided we have this kind
of random number generator, the samples that our procedure will output will have the correct distribution.

Of course this is not true in practice. The random number generator are not actually ideally random, and we
cannot calculate with infinite precision, but our focus is to build random variables with complicated distributions
from basic building blocks, we have to suppose the random number generators are perfect if our objective is exact
sampling. Constructing efficient pseudo-random number generators is another subject.

2.3 Markov chains

We will be using Markov chains, so let us have a quick review. A Markov chain is a sequence X, of random variables
taking values in a set of states S, and such that X, 1 depends only on X, and not on Xg,...X,_1. This means
that

P{Xpt1 =2 X1 =21,... Xpn =2} = P{Xp41 = 2| X, =z, }.

A Markov chain is defined by giving an initial distribution on S (the distribution of Xj) and a transition matrix

P, whose elements p;; represent the probability of going from state ¢ to state j. We will be writing pl(-;l) the
probability of going from state i to state j in n steps.

We will also be representing the transition function as a random mapping, for z € S, ¢(z) is the random next
state. And when we need to highlight the randomness used in the mapping, we will represent the next state by a
deterministic function z — ¢(z, U) taking as an argument a random variable (that will often be a uniform random
variable). Here are some basic definitions about Markov chains

DEFINITION 1. e An irreducible chain is a chain such that for all pairs of states ¢ and j, starting a walk from
i, there is a positive probability of reaching j i.e., there exists n such that P{X,, = j|Xo =14} > 0.

e An aperiodic chain is a chain such that for all states 4, j ged{n : P{X,, = j|Xo =i} > 0} = 1.
e An ergodic chain is one that is both irreducible and aperiodic.

e A stationary distribution 7 for a Markov chain is a distribution that is invariant after a move of the chain. If
Xo ~ 7 then X1 ~ Tr.

e The mean recurrence time of state i is E{7;} where T; is the random variable T; = min{n : X,, = i| Xy = ¢}.
Ergodic chains are important because they have the following property:

PROPERTY 1. An ergodic chain has a unique stationary distribution w, and for any initial distribution, X,
converges in distribution to w. This means that for every state i, P{X, = i} —— m(i). Moreover, the mean
n—oo

recurrence time E{T;} = ﬁ



Markov chains are very useful in sampling, in fact, when we need to get a random combinatorial object, it is
often easy to construct a Markov chain that makes moves between such objects. For example, consider we want
to generate a random matching of a graph. We see that it is not easy to have an enumeration of the matchings
from which we could sample, as if they were only numbers. But it turns out it is easy to build a Markov chain
whose state space is the space of matchings and whose stationary distribution is uniform on all the matchings of
this graph. The transition from a matching M is basically to choose an edge e of the graph randomly, to remove it
if it’s already in M, to add it to our matching M if we can, or else to stay with M. Now that we have our Markov
chain, we can get approximate samples by running the Markov chain long enough, and one can calculate this time
depending on the desired approximation by studying the mixing time of this chain.

This technique is called Monte Carlo Markov Chain and it has a lot of applications, not only in computer
science but also in statistical physics. The technique was originally conceived to approximate integrals (viewed as
expectations), by using the law of large numbers. An important example is the Gibbs sampler which is heavily
used in probabilistic inference. Sampling is also related to approximate counting, if we can sample the matchings
in a graph, then we can approximate the number of matchings in this graph. Sampling is also very important in
statistical physics simulations.

2.4 Rejection sampling

Another sampling method we will be using is based on the density of our distribution. Suppose we have a distribution
with density function f. Then it is known that the distribution of X has density f if (X,Y") is uniform on the surface
Sy = {(z,y) € R?|0 < y < f(x)}. Reciprocally, if X has density f, and Y = U f(X) where U is an independent
uniform random variable, then (X,Y") is uniform on the same surface. Suppose now we have a complicated density
function f that we want to sample from. It is not easy to get a uniform random variable on S;. Now consider
another function g that verifies f(z) < g(x) and is equal to g(x) = ¢ x h(x) where c is a constant and h is an "easy"
density function, i.e. a density function from which we can sample (for example an exponential or a uniform). Note
that it is easy to get a sample uniform on the surface S, defined by g = ¢ x h, in fact just get X from the density
handY = Uec x h(X), U being a uniform on [0, 1].

We get two possible cases, either (X,Y) € Sy and we output (X,Y) or (X,Y) ¢ Sy and we reject the point
(X,Y). Using this procedure, called rejection sampling, we get a uniform point on S, and by taking the x-coordinate
we get a sample with distribution having density f.

A

\J

Figure 1: Rejection sampling

2.5 Coupling from the past

Coupling from the past (CFTP) is a method for getting an exact sample from the stationary distribution of a
Markov chain. Consider starting chains at time —7 from all the states of the chain, and whenever two of them
end up in the same state, they stay together. Suppose that when we reach time 0, all the chains have reached the
same state s. This means that if we use the same randomness, and we start from any state from time —t for any
—t < —T, then we will end up in that same state s, simply because at time —1 we have to encounter one of the
states of the Markov chain, and then we will follow the same route. The idea of CFTP is to start from an arbitrary
time in the past —t and run all the chains until time 0, if we have coalescence, then the single state reached at time
0 by all the chains is our sample. Else, we go back say by one starting at —¢ — 1 and again check for coalescence at
time 0. Note that it is very important to do the same transitions as the ones we did in the previous unsuccessful
step, that is keep the randomness used at each time.



Now let us make things more formal. Suppose we have a finite set of states S, and random maps f; describing
the transitions at time ¢. Instead of going forward as in MCMC for example, we will at each step go backwards one
step more, and always look at the state at time 0. We denote by F°, the mapping corresponding to the transition
from time —t to time 0, that is

FO =f 10-0f,

For example F, () is a random state we get at step 0 when we start with state  at time —1. Note that calculating
FO,(z) for a certain z is harder than simply going forwards, in fact we cannot compute F,(z) from F°, ().
Instead we have to keep F°, . (y), for all states y, so that we calculate f(x), and then apply F°, , to fi(z). But
we’ll get the reward later. To get a sample from the stationary distribution of our Markov chain, we can calculate
for any state z, F°__(z) which will be well distributed. The idea of couping from the past is that we do not need
to go to time —oo to get this value. In fact suppose that for some T, the mapping F°, is a constant mapping.
This means that if we start from time —7 in any state, we will end up in a single same state s. But then consider
FO. (z) = F°L(f-r—1(z)) = s, and thus we get FO_(z) = s.

So it is now clear how we will proceed, compute the mapping F, for increasing values of ¢ until it is constant
and then output this constant. The question now is how we can be sure our mapping will ever be constant (we will
be calling this event coalescence). This depends on the coupling used. Note that we did not mention anything about
the relations between fi(x) and fi(y), we know that both of them have a distribution described by the Markov
chain but how are they related. Are they independent or dependent ? Actually this does not matter, we can couple
these two random variables as we want. Let us show that in the case of independent choices we have coalescence
with probability one.

In fact because the chain is ergodic, for all states x,y there exists an M, , such that n > Mz,y,p(zz) > 0. Let

M = max M,_,, so the probability that FY,, is constant is greater than [lecs p%) and hence positive. The same

holds for F__QAJ@, and F__(’Zj\fl) - Now because each of these mappings are independent, then the probability that
there does not exist a 7" such that F°,. is constant is 0.

Let us illustrate CFTP with a simple example. The standard example given to illustrate this method is a
random walk on n points. Consider we have n states numbered from 1 to n. When we are at state k& we move to
max(k — 1,1) with probability % or min(k 4+ 1,n) with probability % To define our update, the most natural idea,

is to flip a coin that will be the same for all states i.e., either everybody goes up, or everybody goes down.

_f max(k—-1,1) ifU<
ok, U) = { min(k+1,n) ifU >

It is clear that the uniform distribution on the states is the stationary distribution of this Markov chain. Fig. 2
shows a sample run of the procedure on this Markov chain.

Note that the algorithm as stated needs a lot of memory. In fact we need to store functions over the set of states,
and often the state space is very large, and that is why we use MCMC methods to get samples. A possible solution
is to ensure that we have a monotone coupling. This means that if < y then fi;(x) < fi(y) with probability 1.
In our example, the coupling was monotone, graphically this means two arrows never cross each other. In this case
it is possible to keep track only of the maximum state $,,,, and the minimum state s,,;,, because we know that if
FO, (8min) = F°,(Smaz), then FO, is a constant function.

Monotonicity is all the more important for us because our state space will not only be big, it will be infinite, in
fact our state space is R.

For more details on CFTP, see the original paper [12] and Wilson’s web site on perfect sampling [15].

N[O

2.6 Stochastic equations

We are interested in a type of distributions that are described by an equation. For example, we know that if X has
distribution u, and if A and B are independent of X with some fixed distribution then AX 4+ B has distribution
1. We assume that A and B are positive random variables and in all the case we will consider X will be positive.

Which conditions on A and B ensure the existence and uniqueness of the solution to equation X £Ax+B?
This kind of problem is solved using fixed point arguments. As in [13] we introduce a metric (Mallow metric) on
distribution functions that have finite second moment E{X?} < oco:

. _ _ y\2y1/2
BFG) = inf IX-Yib= inf E(X-Y))

X~F Y ~G



Step (3) Step (6)

Figure 2: A run of CFTP procedure, the output is 3.

This defines a metric space My which turns out to be a complete space. To show the existence and uniqueness
of a solution of a stochastic equation we can show that it is a fixed point of a function that is a contraction. For

the case of equation 1 we show that a T : F' — E((l + X)U), with X ~ F and U an independent uniform, is a

contraction for ds. To show this we consider variable X and Y with distributions F' and G, we then construct the
random variables (1+ X)U and (1+Y)U with the same U. These random variables respectively have distributions
T(F) and T(G).

do(T(F), T(G)) < [[(X =Y)Ull2 = \/%II(X —Y)ll2

Then by taking the infimum on all possible couplings of X and Y, we get

1
do(T(F), T(G)) < \/ng(F,G)

Then we consider the following sequence X, 11 = (1+ X,,)Up+1, we have £L(X,,4+1) = T(L(X,,)), the fact that T
is a contraction shows that £(X,,) is a Cauchy sequence in M> which is a complete space so £(X,,) has a limit and
it is a fixed point of T'. So the distribution we are studying is the limit distribution of the sequence X,. For more
general theorems on the solutions of stochastic equations, see [13].

These distributions that verify stochastic equations often arise in the study of the limit laws, for example in the
Quickselect algorithm in [6], [7] and [1] but also as limit distributions in other structures as in [11]. In [2], Devroye
and Neininger give properties and methods for approximating the densities of such distributions.

2.7 Problems to face

The straightforward application of coupling from the past for our sequence X,,+1 = U, 41(X,, + 1) would be to start
a chain from every possible x € R, and for the coupling, use the same U,,;1 for every one of these chains. We see



there are two main problems : we do not have a maximal state and this coupling never gives coalescence, simply
because the function z — (1 4 x)u is injective.

The first problem is really intrinsic to the CFTP method. In fact applying CFTP requires that the convergence
speed of the Markov chain be "the same" for all the starting points, and if we consider our unbounded space, chains
beginning at 1,000 will take longer to approach equilibrium than chains beginning at 1, we say that the chain is
not uniformly ergodic. For a precise description of this fact, see [5]. So it is impossible to get complete coalescence
of all the chains. Meanwhile one can use the idea of dominated CFTP, introduced by Kendall in [8]. The idea is to
use a "simple" Markov chain D coupled to our Markov chain X such that D dominates X. Here simple means that
the Markov chain has a stationary distribution that we can sample from, and also that we can simulate the chain
backwards. The dominating chain basically says that a chain starting at time —oo that is under D will always stay
under D, and in this way we only have to check the coalescence of chains beginning at a state under the dominating
chain.

The second problem can be solved by using more appropriate couplings. For this we have to write the update
functions in a different way, or we use ideas like layered multishift coupling as in [16].

First we study the Dickman distribution defined by equation 1, then we try to generalize the method. Then
combining ideas from this method and [9], we present an even more general method. Then we consider different
cases where the random variable B is unbounded.

3 The procedure

3.1 Introduction

We want to sample from the limit distribution of the sequence of random variables defined by X,,11 = (1+X,,)Up41-
Instead of using the natural update function (z,u) — u(14+z), we will use a different coupling, we define the following
mapping
| v if |u(e+1)] <[]
[ (@u,v) = [u(r+1)] + { o(z— |z]) else
Note that this is just another way of coupling the chains for every z, in fact we have
v, f(2, U, V) £ (1+2)W

if U and V are independent uniform random variables and W is a uniform random variable. The chains with update
f will be called Y. The reason we choose such an update will appear later, it is mainly to obtain coalescence.

3.2 Domination

And now we say

[z u,0) < u(lz] +2)) +0

Now let us call

g: (nu) = lu(n+2)]

So we can define an update that dominates f as we have f(z,u,v) < g(|z],u) + v. The idea is to build
a dominating chain D,,, having update D, 11 = ¢(|Dn],Un+1) + Vay1 so that we do not have to care about
chains that are above D_,,. We will be denoting the main chains Y having update Y, 11 = f(Ya,Un,Va), and
Znt1 = 9(Zn,Uy,) the integer part of the dominating chain D,, 1. Note now that g has a very nice property, in fact

if Z is a Poisson random variable, Z verifies
Z £4(2,0)

where U is a uniform independent of Z.
In fact if Z is a Poisson random variable with parameter 1,



oo

P{g(Z,U)=n}= Y P{Z=kP{n<u(k+2)<n+1}

k=n—1
_lilL
_ekzn_lk!k+2
N
ekzn_l(kJrl)! (k+2)!

The objective now is to construct a stationary chain Z_,, respecting the update that we can extend arbitrarily
back into the past, so that if we do not get coalescence we go back one step further. Generating Z; is easy, because
it is a Poisson random variable, then we must construct Z_; so that when we look at the transition Z_1, Zj it
follows the wanted transition g(.,U).

3.3 Time-reversal of the dominating chain
Now that we have Z; we want to calculate Z_1, and Uy such that
e 7/_; is a Poisson random variable
e Uy knowing Z_; is uniform
P{Zo = k|Z_1 = n}P{Z_, = n}
P{Zy = k}

1 K
— 2
n+2n! @)
This equation defines the time reversal of the chain Z. We will be using this distribution to simulate Z backwards.
It is useful to see that

P{Z_l == n|ZQ == k} =

P{Z_l = anO == k’} == HnZk—l

k! 1 1
P21 =0l = b} = Tuzia (0 ) oy = ank,l(k!)((n il 2)!)
Now we can see that by taking
U — Zo+U*
Tz 12

with U* an independent uniform variable, Uy has the desired distribution.

3.3.1 Coalescence

Note that if the dominating process reaches D_,, < 1 at step —n, then we are assured that all chains using update
f beginning at time —m before —n (m > n) will coalesce at time —n. This is because the update f is built in
such a way that its image has only one point in intervals [k, k + 1), so if D_,, < 1, the paths have no choice ! So
the algorithm will consist on waiting until D_,, < 1 that is Z_,, = 0, and then we just simulate the chain Y™ that
begins at a uniform point in [0, 1] that we called V_,,, and that represents the range of the update function when
applied to points between 0 and D_,,_;.



3.3.2 The algorithm
Let us sum up the algorithm :
e Generate Z; as a Poisson random variable
e Update Z backwards until Z_r =0, we have for all n < T, Z_,,11 = |U-p41(Z-r + 2)].

e Now we say Y7, = V_p, where V_r is a uniform, and update the process Y7 using f, using the same
uniforms U_,, as the ones used for updating Z, and new independent uniform variables V_,,

e Return Yj
An implementation in C of this algorithm can be found in the appendix.

THEOREM 1. The algorithm terminates with probability one, with an expected running number of steps to the past

equal to 1 + fol et;ldt < 2.32. The Yy returned by the algorithm has the wanted distribution.

Proof. For the analysis of the running time, see the next section.

We construct the sequence of random variables defined by : X is a uniform, and X, 11 is defined by X, 11 =
W41 (X, +1) with W, being independent uniforms. Let us define Y™, by Y”, is a uniform and is updated forwards
using f with the same Uy’s as for the process Z and with independent Vj’s (that are the same for all the Y™’s).

Then we have Y’ £ X, for all n, so Yy' converges in distribution to the Dickman distribution because X,, does so.

Now, consider 7" such that Z_p = 0, and consider Y. for n > T, i.e. chains that begin before —7". Because
the process Z 4+ V dominates Y", as we mentioned we know we have coalescence at time —7', so we have Y, =
YT, = V_p for all n > T. And hence YJ* = Y because we use the same randomness. And because T < oo
with probability one, the sequence of random variables YJ* converges almost surely to Y . But we know that
Y converges in distribution to the Dickman distribution, as a consequence the random variable Yl has Dickman
distribution. (]

3.3.3 Analysis of running time

We take as a measure of the running time the number of steps to the past needed. In this way the running time is
the time taken by the time reversal of the dominating chain to reach 0. The transition probabilities for this chain
are given in equation 2. So let us calculate the expected time T},¢ to go from state n to state 0, for this, we begin
by calculating E{T}_1)}, the expected time to go from state & to k& — 1.

If we write

Nup
>k
Tk(k—l) = ZTk—k,(z) + ].
=1

where Ny, is the number of excursions made from state & before going to state £ — 1, and Tkzkk is the length of
one such excursion, and because N,; and Tkzkk(i) are independent we get

E{Ty(—1)} = 1+ E{Nup}E{T7"}

Remember that when we are at state & with k¥ > 1, we go to state k — 1 with probability kiﬂ as we can see from
equation 2. So

k+1
E{Ny, +1} = %
As a consequence
1
E{Nup} = %

Now we consider E{Tlik}. To evaluate this quantity, we consider the chain from which we remove the states
k — 1 and below. The quantity we are looking for is the mean recurrence time for state k in this chain. So the only
thing we have to do is get the stationary distribution of this Markov chain. Note that for state k, we remove the
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Figure 3: Some transitions of the time reversal of Z

transition going to k — 1, so the probabilities for other transitions departing from & should be divided by k—}rl If

(pi)i> is the stationary probability distribution then we show by induction that p;+1 = Z.J%lpi for all i > k.
In fact

k+1
=(k+1) x ——
pe=(k+1) TPk T P
which means 1
pk+1:k+1pk-
And for i > k
1 & L1 g i+1
i = (k+1) X ——— 5 Py i
pi=(k+1) k+22!pk+4§r1]+2“p]+l+2p+1
k+1k!. . i+ 1
:iJrQE x (k+1)p; + Z x (74 Dp; + - Jr2117z+1
j= k+1
k+1 Lo i+1
=—7=Di Z - Pi + ——DPi+1
1+ 2 j:k+12+2 1+ 2
pz+1*i+1pz~

Remember what we wanted from this distribution is the mean recurrence time for state k, that is pik, we can
calculate this by saying that the sum of p;’s is 1, that is

o0

- =1
> k+1 <tk
z=k



So

using Taylor’s formula. So going back to E{T}_1)}, we get

11
E{T =14+ -——
{Tke—1)} +k:pk

1
=1 +/ ef(1—t)*tat
0

and as a consequence
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Finally we get the expected running time

E{T} = i P{Z = n}E{Tno}

n=0
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< 2.32.

Note that we could also take the number of "elementary" operations as a measure of the running time. In fact
at each step we sample from a distribution with infinite tail, and to do this we use the inversion method : we take

10



a uniform random variable U and get the minimal n such that > | p; < U, and thus we have a random time for
each step, and the expected time is the expectation of the random variable, more precisely it is E{Z_1 — (k — 2)},
which does not exceed e — 1. In fact for & > 1,

E{Z,lf(kf2)}:i]P’{Z,1 >j+k—2}

=0
> 1
Zk!,i
= (j+k)!
o

1

IN

We also have to add to this a deterministic time 1 for applying the forward update.

So by using Wald’s lemma we can see that the expected number of computational operations performed is 1 for
time 0 and the expected number of steps back in the past times the expected number of operations per step which
is less that 1 + e? < 8.39. This quantity has actually no real meaning because we did not precisely define what, an
elementary operation was, but this was just to show that the random computation times for each step are not too
large.

Note also that the expected memory used for keeping the uniforms is the expected number of steps taken into
the past which is less than 2.32 (this is only the memory for the "reusing randomness" part of CETP, of course we
have to add the memory for current computation).

3.4 Generalization

Let us now consider the distribution that is a solution of
X £U°1+ X)

Note that, in general, we don’t have a nice coalescing mapping separating the integer and the fractional part
like f because the distribution of U%*(1 4 z) conditioned on n < U*(xz + 1) < n + 1 depends on n and on x now.
But it does not depend on x for n = 0, so we choose an update f, that coalesces only on [0, 1)

w142z ifur(l4x)>1
Sl u,v) = { v ifur(l+2) <1

And we have, if U is a uniform and V, W are independent uniforms, then
falz, V,W) £U(1 + 2)

3.4.1 Vervaat with o >1

Let us start with o > 1. We also define the sequence Z, 11 = |Un+1(Z, +2)]. We still have that Z,, + 1 dominates
a process Y, that uses update f,. In fact if |V, | < Z, then [Yo11] < [Upg1([Yn] +2)| < Zp11.

The procedure is the same: we wait until Z_7 = 0, and then we simulate a chain Y7 starting with Y7,
a uniform to the power «, and having update f,. And by using the same arguments, we get that Yy has the
wanted distribution. Because we use the exact same dominating process and the dominating process determines
the coalescence, we have the same expected number of steps.

3.4.2 Vervaat with oo < 1

The problem now is that we have to change the dominating process. The analog of the update g used for the process
Z would be here

ga(n,u) = [u(n +2)]

11



But now we don’t have a simple distribution for a random variable Z that would verify Z £ 9a(Z,U). What
we do is find P{Z = k} as a function of P{Z = 0}, but calculating the normalization constant is hard so we use
rejection sampling techniques to draw from such a distribution.

Let us begin with the calculation of the values of P{Z = k}. We can verify by calculation that the probability
distribution defined by

1 ,G+1)° —i
(k1)?

with 8 = 1 verifies Z £ 4o(Z,U). We can determine the distribution with

P{Z =k} = ﬁ]P’{Z:O}

1

oo [E,(i+1D)f—if
k=0 (k)P

P{Z =0} =

but this sum is hard to evaluate. To draw a sample from this distribution, we will bound this sum with an
M5, (i+1)7 =i

L , our objective is to draw a sample from the distribution that is

easy sum. We will introduce py =
proportional to (pg).

Using a Taylor inequality we get (i + 1) — 4 < 8(i + 1)#~!, because 3 > 1.

i, i+ 1) =i _ (ke 1)°
CDE = k!

s 5
Now by introducing cg = %, a bound of the sequence U;;’“_Pl , we get

(k+1)7 < cpprtt

and hence

[y + 1% = () ey

(kD)7 =BT I
And now this sum can be calculated,
oo
3 g = cpe”
k=0

The idea, is to draw a uniform between 0 and Cg62652 = R and to reject the sample if we get something bigger
than S = > pi. Even though we don’t know S, we have a increasing sequence converging to S, (3 ,_, Pk)n, and
also a decreasing sequence (3, _ Pk + > pep,41 Gk)n that we can calculate and that converges to S. So if our
sample U < S, there will exist a finite n for which U < >_}'_,px, and if U > S there will be an n such that
U>3 i opr+ Z;o:n-i-l k-

After this, we apply the same idea of taking the time reversal of the chain with update go, and we wait till
the dominating process reaches 1, i.e. Z reaches 0 to make forwards simulations, using update function f,. The
transition probabilities for calculating Z backwards are

_P{Zy=k|Z_y =n}P{Z_; =n}

- P{Zy = k}

- k+1\5 koA TT, i+ 1)P —if (k)P
= Lz [(nJr 2) B <n+ 2) } Hf:i(l +1)8 — 46 (nh)?

P{Z,1 = 77,|Zo = k}

Note here that determining the innovations U_,, from Z_, and Z_,_; is not as straightforward as in the
case @ = 1, so we just generate independent uniform variables and we take U_,, to be the first one such that
Zon=|U% 1(Zn1+2)].

This generalization is not practical at all, in fact even for a = 0.1, it takes more than a minute to get one
sample, compared to more than 50,000 samples for « = 1 for the same time. We now introduce another method
which solves more general cases and is significantly faster for small values of «.

12



4 A general method

We now present, a general method for X £ Ax + B with 0 < A <1 and with B positive and bounded B < c¢. We

show that this case comes down to finding a method for X £ A(X 4 1). First consider X £AX + ¢, by introducing
Y=X—-cwegetY =AY +c¢) and Z =Y/c we get Z = A(Z +1). So we can just simulate Z and then take

X = ¢Z + c. But if we can get a dominating chain to sample from the solution of X £ AXx + ¢, then using the
exact same domination we can sample from X £ Ax + B.

Now let us consider X = A(X + 1), and the sequence X, 41 = An41(X, + 1). Note that | X,,+1] can be either
| X,n|+1, | X,] orless than | X,,|. These three events will be what drives our dominating process. Let us calculate
the probability of these events, for a fixed x, we have

lz] +1
rz+1 }

Recall the objective is to obtain a dominating process, so we want the dominating process to go up with more

P{lA(z+1)] = |z|+1} =P{A(x+1) > |z| + 1} =P{A >

probability. For this we can have a lower bound on the value of LiJ—jll, by supposing z > k for some positive integer
. This idea of separating the cases © > x and = < & is due to Kendall and Thonnes in [9].

r+1 — k+1

Now the event UP = {A>1— %-H} has a probability greater than event |A(x +1)| = |z + 1, for x > k. We
also define the events EQ = {1 — %4_1 <A<L1-—- %_H}, and DOWN ={A<1- %_H}
Now let us define the following update for our dominating process:

L:cj+1>1 1

Z K,

n+1 iflf%QqSAél
max(k,n — 1) ifogAgl—%H

So the sequence defined by Z,,+1 = ¢(Z,, An+1) is a candidate dominating process for | X,, |, and so, D,, = Z,,+1
would dominate the sequence X,,.
Now Z has some nice properties:

e Simple random walk on Z .

e If we choose x big enough such that P{DOWN} > P{UP} then the chain has limit distribution x +

Geom(spgiry)- In fact P{Z = ki +n} = (1 - 5560y 5oomay -

e 7 is time reversible, this means that P{Z_1 = n|Zy = k} = P{Zy = n|Z_1 = k}, so it is really easy to simulate
backwards.

For Vervaat perpetuities, we can check that taking x = L%J works fine.

It remains to find a good way of coupling the chains so that coalescence can happen. In fact, if we apply the
trivial coupling of applying the same A for all chains, we will never get the chains to couple. But note that it is
important that the coupling we choose be monotone, i.e. if z <y then N(x) < N(y) where N is our random update
function.

We use multishift coupling as described in [16]. We will introduce a monotone coupling but the image of the
set of all the states lying in an interval will be discrete. Let us first consider a simple case, we want to construct
a coupling for the transition ¢ : s — s+ Vs, where V; is a uniform for every s. By generating a uniform V{ and
considering the mapping ¢ : s — [s — Vo] + Vj, it verifies the wanted property that is for all s, ¢(s) — s has a
uniform distribution. The idea is that we build a line grid with length 1, and the image of our mapping must lie in
one of the points in Z 4 Uy. So each point s is mapped to the first point in this grid that is greater than s.

Now let us complicate things a little bit more and suppose V' has a general distribution having a density function
f. For simplicity we suppose that f is unimodal, that is there is an m such that f increasing for x < m and decreasing
for x > m. To do this, we observe that : if (X,Y") is a uniform point on the surface Sy = {(z,y) € R?*|0 <y < f(z)},
and X; and Xs is such that f(X;) = f(X2) =Y, then choosing a Z uniformly on [X;, X5] yields another point

13



Figure 4: Layered multishift coupling

(Z,Y) that is also distributed uniformly on Sy. In this way, we get back to the case of V being a uniform. Here is
how to do it.

e Choose X having density f.

Let Y = U f(X) with U a uniform, so that (X,Y’) is uniform on Sy.

Calculate X7 and Xo, such that f(X;) = f(X2) =Y, X7 < Xo.
e The unit of the grid is now L = X5 — X7, the range of the mapping is LZ + (X — X1).

Finally ¢(s) = min{z € LZ+ (X — X1),z > s}.
Remember our update is ¢ : 5 — A(s+1) = e A6+ We know we can sample from 1) : s+ In(s+1) +1n A
provided A has a density that we know. Then we take ¢(s) = e¥().

Suppose we are at time —n, we have a method that generates one random variable In A and use it for all the
chains. And because our coupling is monotone, we can only simulate one lower chain and one upper chain. The
lower chain will begin at state 0 and the upper chain at state D_,. The problem is that when simulating the
dominating chain, we already produced the random variable A_,, ;1 and we have to use the same one so that our
domination argument remains valid. In fact, when we make the calculations, we suppose the randomness is the
same for both chains. But if we use the same A_,, 1 for all the chains we will never get coalescence.

To solve this problem, notice that the coupling we defined earlier has some kind of origin at point 0 (as an origin
for the grid). But we can choose this origin arbitrarily. This means we are free to choose one point and define
its image. Remember the important thing is to preserve the domination of the dominating chain. So if, for the
upper chain, we use the random variable A_,, ;1 for the update so that D_,, gets mapped to A_,,41(D—, + 1) and
depending on this we create the grid described by multishift coupling, we will know the state 0 gets mapped to a
state lower that A_,1(D_,, + 1) and thus is dominated by Z_, ;.

Let us sum up the procedure by giving an overview, we suppose we have a valid &, such that P{DOWN} >
P{UP} :

P{UP} p{UP} "
_IP{DOWN})IF’{DOWN} :

1. Generate Zy with distribution P{Z =k +n} = (1
2. Generate a random variable A{j with the distribution of A and let Z_1 = ¢(Zo, A})-

3. Generate Ag such that Zy = ¢(Z_1, A) (we can do this by generating Ag’s until getting a valid one).
4. Let Y2 ™' = Z ) 41, and Y = Ag(YP ! 4 1).

5. Let Y% ~1 = 0, and Y/°"""! is calculated using multishift coupling.

6. If we get Y7~ = Yolow’_1 then we return this value, else we go back one step with Z, and then do simulations
forward.

Note that we must keep the randomness used at each step so that the mapping for each time be always the
same. This applies also for the random variables involved in the multishift coupling. We do not give the detailed
steps of the algorithms to avoid introducing too much notations.
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What remains to show is that coalescence happens with probability 1. For this, we try to bound the expected
time until coalescence. We give a sketch of a proof that the expected time is finite in the case of perpetuities, i.e.
A = U*“. For this suppose that the dominating chain has value x+ 1, then the probability that the upper chain and
the lower chain coalesce in one step is a positive constant p > 0, in fact if the grid unit L is big enough, x 4+ 1 and

0 get mapped to the same value. This does not finish the proof since the dominating chain is not always at x + 1.
1
1_ _B{UP}
P{DOW N}
value k + 1, we have a probability at least p of coalescence. So, as these events at different steps are independent,

the expected time in the past until coalescence is finite.
This method has been implemented in MATLAB and tested on Vervaat perpetuities and works roughly as fast
as the method presented in section 3 for & = 1 but significantly faster for o < 1.

But the state x4+ 1 of the chain has mean recurrence time . At each time the dominating chain has

5 Other types of perpetuities

We have not yet considered the case where one of the two random variable A or B is unbounded. We consider the
following equation

X£¢x+B (3)

with 0 < ¢ < 1 and B a positive random variable.

Let us first consider the existence of such a distribution. If we suppose that E{B?} < oo, the function T': F
L(gX + B) with X ~ F is well defined from M5 into itself. Moreover for two random variables X and Y having
distribution functions F' and G, by tacking random variables with distributions T'(F") and T'(G) with the same value
B, we get

d2(T(F), T(G)) < (E{(a(X = Y))*H'? = ql|(X = Y)|2

And by taking the infimum on all the possible couplings of X and Y, we get that T is a contraction and hence
the existence and uniqueness of such a distribution. We can also construct a sequence that converges in law to this
distribution as follows

Xnt+1=qXn+ By

with B,, a sequence of independent random variables distributed like B, in other words,

n
X, =Y ¢"By.
k=1

The objective is to simulate this distribution perfectly in finite time. As usual, for this, we introduce a dominating
chain. Note that if B is bounded by M, then we can define a dominating chain to be the constant ﬁM. In the
general case we take

B
Zn, 1:max( L Zn).
+ 1— \/a \/_
We can easily verify that the mapping for a fixed B, f : * — gz + B is dominated by the mapping g : =z —

max ( 1_B o /). We need to look now for the stationary distribution of this chain. We can write it as follows

oo

1 .
= 1= g XV B

with B/, distributed as B. We see immediately that Z £ max (1——5:/6’ \/ﬁZoo).
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5.1 Simulation of the stationary distribution of the dominating chain

We will use rejection sampling method, by finding an upper bound of the density function. We write the distribution
function F of Z,, as a function of the distribution function G of B. We make the full calculations only for B having
exponential distribution.

T

Thus, the density function can be written if we denote by ¢ the density function of B

F(z) = P{Zs < 2} = [[ P{Va"B, <z} = [[ G(—

oo

Lg\/_k)
&V Gl

LEMMA 1 (Dominating the density). We define p : x — gg((m)), if p is a decreasing function, and the distribution

function F of Z, verifies F(x) < x then we have the bound

F(z)

*\

) < p(x) — In(G(x
2 ) £ (0) ~ = 0(G)
and when B is exponential, the conditions are met and we get
ze 1 x
fr.(@) S 7=~ 1_\/aln(lfe ).

Proof. If we suppose F(x) < x then,

= 9(7F)

ono (1’) < Z Tk T
o Va G(W)

then by definition of p,

3 o).

fz.(z) <
im0 V4
Now because p is decreasing, we have
z) < ZP(—k)
im0 V4

and we are going to bound this function by an integral, because p is decreasing, we have

T 1 Wozal
Pl—g) S —— / p(y)dy
\/a \/ak+1 \/ak —Z_

but we also have

1 T 1 Noa ply
K5 P( k+1)§ T T / ( )dy
Woiaal NG T U Y

And thus

x 1

( - ) < /fk+1 PY) d
P Y.
k+1 k+1

\/a \/;C+1 \/a 1 \/6 \/%’“ y

As a consequence

o) < pte) + 7=z [ By = plo) - == ()

In the exponential case we have :
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o Flz)<l—e*<z
e We see that p(z) = % is decreasing by calculating the derivative
Hence, we can apply the bound

re * 1

fz.(x) < T—e=r 1= \/aln(l —e?)

O

For the rest, we will only consider the case where B is exponential. We need to do some more work to get to
simple densities that we can simulate. Near 0 it is In(1 — e™*) that is important, we bound it for < 1 as follows

In <#> “n <1L>
1—e " rl—e %
but for z < 1, =2 < —— and thus
1 1 e
- )< il — ).
ln(lel’) _ln<z)+ln<el>

And for > 1, we bound the term 1—;1 < 1_—i,1, and we write In (#) =1In (1 + %) < 15—
get

SO we

LEMMA 2 (Domination of the density fz__ with a weighted sum of easy densities). If B has exponential distribution,
then . . .
- e+ 1—\/5111(@—%) + = ln(;) forz <1
ono(x) = e —x 4 1 € % fOT r>1
— 1—-\/q e—1

This bound is convenient because each term is the density function of a well-known random variable. So to
draw a sample uniformly under the surface defined by this function, we first determine from which one of the five
components we will get our sample and then simulate according to it.

The five components can be obtained as follows :

€

e exponential E with weight %

(we group with part of z > 1)

uniform U with weight 7 In(%)

1
1-vq

product of independent uniforms U x U’ with weight

shifted exponential 1 + E weight e—%(l——l\/a —-1)

e sum of independent exponentials E + E’ restricted to [1,00) with weight ;1%

It remains to approximate the density of the target distribution, to decide if we reject or accept a sample from
the dominating density.
Remember

= x F(x
fr ()= p <ﬁ) 3(0 )

k=0

LEMMA 3. For an exponentially distributed B, there exists functions g, and h, that we can calculate, such that
both g, (x) and h,(z) tend to fz__(x) when n goes to co. Moreover for all n, g,(x) < fz_ (z) < h,(x).
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Proof. First we define the partial product F,,(z) = H?zo(l - eﬁ), we have F,(z) tends to F(z) from above, now
let us bound the error :

Fu@)-F@)=1- [[ (1—ev),
=n+

j=n+1

So we consider the product

© — 0 —
H (1—ev@)>1-— Z eva
j=n+1 j=n+1
As a consequence we get
1 1 n
F,(x) — < e */Va
o)~ Fl@) € o
SO
n eiﬁ 1 m =z

gn() = kZ=O W(Fn(fﬂ) 1o va

Now for the upper sequence we have to evaluate,

e v > e
= E — =
=n

k=n+1 ﬁk(l - @_ﬁ) k

o0

IA
NE
o)
ol
8

k=n-+1
1 — 1
—zIn(—=)k
< — e M
S
k=n-+1
_ w1
T 1— ewln\/ﬁ

So if we take

n — e (n+1)zIn /g

e Va e

hy, = —— + F(x)
' (goﬁ’%l—e ) f<1e“"“”>> '

we get fz__(x) < hp(x).
O

To sum up the procedure for sampling from Z,, we first get a uniform sample on the surface under the function
dominating the density fz_ defined in lemma 2 by choosing one of the five components, each one with probability
proportional to its weight, and then sampling from the chosen component. After this, we have to decide whether
this sample point (z,y) should be rejected or not, this is done by calculating the two approximations of fz_ (z),
gn(z) and h,(z) for increasing values of n. If for some n, we reach y < g,(z), then we can accept the sample z,
and if for some n, we get h,(x) < y, the sample z is rejected and we restart the whole process.
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5.2 Simulating 7 backwards

Remember that we need to be able to simulate the dominating chain backwards, so we have a value for Z,,;; and
we need to compute Z,, that is well distributed. Recall the update for Z is

B
D1 = max(l 7%,\/_Zn>.

To calculate Z,, we first calculate the probability that Z,, 11 = \/qZ,,

IEJJ{ZnJrl = \@Zm Zn+1 € [sz + dZ]}
P{Z,11 = /92| Z, , dz|} =
{ +1 \/a | +1€[z Z+ Z]} P{Zn_HE[Z,Z-i-dZ]}
- P{\qZ, € 2,2+ d2], Zni11 = \/qZn}
N P{Zy € [z,2 + dz]}
_ P{\/qZ,, € [z,2 + dz], —fnﬁ < V@Z,}
Vafz.(2)dz

P{\/4Zn € |2,z + dz], 11_3”@ <z}

Vafz..(2)dz
he(3)
= Vi (900 - v?)

=D

So suppose we can toss a coin with heads having this probability, then, knowing the value z of Z,,;1 we toss
the coin, if we get heads we just assign Z,, = ﬁ and we assign B,, to be an exponential restricted to [0, z]. In the

other case, we know that 7,11 = lf—%, so we assign B,, = z(1 — ,/g), and for Z,,, we draw a sample distributed

like Z restricted to [0, ﬁ]
It remains to show how to toss a coin with this probability. We simply generate a uniform random variable U
on [0, 1] and we have sequences that converge p from above and from below (using functions g,, and h,, introduced

in the previous section), so we can decide if U < p or not, and hence make our decision.

5.3 Coupling

The dominating process is now all set up, we can simulate it in the past as far as we want. We have already computed
the random variables when simulating the dominating chain. Now we use this randomness for the forward chain
X defined by X, 4+1 = ¢X,, + B,. We actually simulate two chains, the lower chain beginning at 0 and the other
beginning at Z_,,. We couple this chain using multishift coupling as described in section 4. The global algorithm
is basically the same, except that here the dominating chain is more complicated.
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Code for sampling from Dickman distribution

This is an implementation of the algorithm for sampling from a Dickman distribution. The uniforms used for the
updates are stored in a stack while we are going backwards, then when the chain Z reaches 0, we know we have
coalescence so we use these uniforms for our forward updates.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

/* Returns a uniform on [0,1] */
double rand_uniform() {

}

return ((double) rand())/((double) RAND_MAX + 1);

/* Returns an integer with Poisson distribution */
int rand_poisson() {

double u = rand_uniform();
int n = 0, t = 1;
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double p = 1;
for(n=0; ;n++) {
if (uxexp(1) <= p) {

return n;
}
p=p + 1.0/( (double) t*(n+1));
t = tx(n+l);

/* Stack for reusing the u’s */
struct node {

double data;

struct node *next;

3
struct node *top;

void push(double y) {
struct node *x;
x=malloc(sizeof (struct node));
x->data = y;
X->next = top;
top = X3

double pop() {
double x;
struct node *temp;
if (top==NULL) {
printf ("error, stack empty");

return O;

X

else {
x=top->data;
temp = top->next;
free(top);
top=temp;
return x;

X

/* Returns a double with Dickman distribution */
double rand_dickman() {

// some variables

int z, new_z;

double u;

top = NULL; // the stack holds the u’s
double y;

int n=0;

int k, a;

int N;

double F;
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double v, p;
z = rand_poisson();

while(1) {
if(z == 0) {
y = rand_uniform();
for(k=(n-1); k >= 0 ; k--) {

u = pop(Q);
N = floor(y);
F=y-N;

if (floor (ux (N+1+F)) > N) {
y = floor (u*x(N+1+F)) + Fxrand_uniform();

}
else {
y = floor(u*x(N+1+F)) + rand_uniform();
}
}
return y;

}
// applying backward update
v = rand_uniform();
p = 1/((double) z+1); a = z-1;
for(k=0 ; k<100;k++) {
if( 1-p>v) {
new_z = a;
break;

}
a =atl; p = p/(at2);

}

push((z + rand_uniform())/(new_z+2));
Z = new_z;

n = n+l;

}
int main() {

srand (1) ;
r = rand_dickman();
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