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ient sampling from perpetuities using 
oupling from the pastOmar FawziSeptember 3, 20071 Introdu
tionIn numerous �elds, one needs to get samples of a set of obje
ts a

ording to a given distribution. Sometimes,the stru
ture of this set is 
ompli
ated so one 
annot enumerate the obje
ts e�
iently. In these 
ases, an ergodi
Markov 
hain is devised with the wanted distribution as a stationary distribution, the state spa
e of these 
hainsis usually huge but it is easy to 
ompute transitions. Monte Carlo Markov Chain simulation 
onsists on beginningin an arbitrary state and running the transition a su�
iently long time so that we get 
lose enough to the limitdistribution, in this way we get an approximate sampling te
hnique.Propp and Wilson in [12℄ devise a way to get a perfe
t sample from the stationary distribution of a generi
�nite ergodi
 Markov 
hain in expe
ted �nite time, this method is known as 
oupling from the past (CFTP).In this report, we will be using this method to get exa
t samples from parti
ular distributions given as a solutionof a sto
hasti
 equation. We will begin with the distribution of a random variable X for whi
h
X

L
= (1 +X)U (1)where U is a uniform independent of X . This distribution is known as the Di
kman distribution and it appears forexample in analyti
 number theory and in the analysis of the Qui
ksele
t algorithm ([6℄ and [7℄). For example, in[7℄, it is shown that the Di
kman fun
tion is the limit distribution of Cn,m−n

n provided m = o(n) where Cn,m is the(random) number of 
omparisons done by Hoare's sele
tion algorithm to �nd the m-th smallest element in a list of
n elements.We will try to develop a general way for getting samples from distributions de�ned by a sto
hasti
 equationusing 
oupling from the past. Te
hni
ally speaking, we will begin with equations X L

= Uα(1 +X) whi
h are 
alledVervaat perpetuities, and then more general perpetuities X L
= AX +B, with some 
onstraints on random variables

A and B. Devroye in [3℄ developed methods for sampling from Vervaat perpetuities using reje
tion sampling, butthese methods are quite 
ompli
ated so our obje
tive is to develop easier te
hniques that are more e�
ient andeasier to generalize to di�erent �xed-point equations. Also Kendall and Thönnes in [9℄ and Fill and Huber in [4℄have developed methods using 
oupling from the past but we haven't seen a published paper dis
ussing the problemin detail.The two main problems we have to ta
kle to a
hieve our goal is the fa
t that the state spa
es of the 
hains weare 
onsidering are unbounded and the fa
t that we have to �nd appropriate 
oales
ing 
ouplings.2 Preliminaries2.1 NotationsThe set of integers will be denoted by Z, and the set of reals R. For the set of nonnegative integers we write Z+and R+ for the set of nonnegative reals. The indi
ator fun
tion of a set A, that is the fun
tion whose value is 1 on
A and 0 everywhere else will be denote IA.We will be writing P{A} for the probability of an event A, and E{X} for the expe
ted value of a random variable
X . The law of a random variable X will be denoted by L(X). Also, when we have a probability measure P havinga distribution fun
tion F , and a random variable X having distribution P , we will write X ∼ P or X ∼ F . If tworandom variables X and Y follow the same law, we write X L

= Y .Here are some of the standard probability distributions we will be using:1



• The Geometri
 distribution with parameter 0 < p < 1, is a distribution on Z+ de�ned by P{X = n} = (1−p)pnfor n ≥ 0.
• The Poisson distribution is the distribution on Z+ de�ned by P{X = n} = e−1

n! for n ≥ 0.
• The Uniform distribution is the distribution on [0, 1] having distribution fun
tion x 7→ xI[0,1], and density
x 7→ 1I[0,1]

• The Exponential distribution is the distribution on R+ with distribution fun
tion x 7→ IR+
(1 − e−x), anddensity fun
tion x 7→ IR+

e−x.And about the 
onvergen
e of random variables, we say that Xn 
onverges to X in distribution when thesequen
e of distribution fun
tions Fn of Xn 
onverges to the distribution fun
tion F of X for every point. We saythat Xn 
onverges to X almost surely when Xn(ω) 
onverges to X(ω) for every ω ∈ A where A is an event withprobability 1.2.2 SamplingIn our 
ontext, we suppose we have a

ess to a random number generator that produ
es independent uniformrandom variables, and we also suppose we do the 
al
ulations with in�nite pre
ision. Provided we have this kindof random number generator, the samples that our pro
edure will output will have the 
orre
t distribution.Of 
ourse this is not true in pra
ti
e. The random number generator are not a
tually ideally random, and we
annot 
al
ulate with in�nite pre
ision, but our fo
us is to build random variables with 
ompli
ated distributionsfrom basi
 building blo
ks, we have to suppose the random number generators are perfe
t if our obje
tive is exa
tsampling. Constru
ting e�
ient pseudo-random number generators is another subje
t.2.3 Markov 
hainsWe will be using Markov 
hains, so let us have a qui
k review. A Markov 
hain is a sequen
e Xn of random variablestaking values in a set of states S, and su
h that Xn+1 depends only on Xn and not on X0, . . . Xn−1. This meansthat
P{Xn+1 = x|X1 = x1, . . . Xn = xn} = P{Xn+1 = x|Xn = xn}.A Markov 
hain is de�ned by giving an initial distribution on S (the distribution of X0) and a transition matrix

P , whose elements pij represent the probability of going from state i to state j. We will be writing p
(n)
ij theprobability of going from state i to state j in n steps.We will also be representing the transition fun
tion as a random mapping, for x ∈ S, φ(x) is the random nextstate. And when we need to highlight the randomness used in the mapping, we will represent the next state by adeterministi
 fun
tion x 7→ φ(x, U) taking as an argument a random variable (that will often be a uniform randomvariable). Here are some basi
 de�nitions about Markov 
hainsDefinition 1. • An irredu
ible 
hain is a 
hain su
h that for all pairs of states i and j, starting a walk from

i, there is a positive probability of rea
hing j i.e., there exists n su
h that P{Xn = j|X0 = i} > 0.
• An aperiodi
 
hain is a 
hain su
h that for all states i, j gcd{n : P{Xn = j|X0 = i} > 0} = 1.
• An ergodi
 
hain is one that is both irredu
ible and aperiodi
.
• A stationary distribution π for a Markov 
hain is a distribution that is invariant after a move of the 
hain. If
X0 ∼ π then X1 ∼ π.

• The mean re
urren
e time of state i is E{Ti} where Ti is the random variable Ti = min{n : Xn = i|X0 = i}.Ergodi
 
hains are important be
ause they have the following property:Property 1. An ergodi
 
hain has a unique stationary distribution π, and for any initial distribution, Xn
onverges in distribution to π. This means that for every state i, P{Xn = i} −−−−→
n→∞

π(i). Moreover, the meanre
urren
e time E{Ti} = 1
π(i) . 2



Markov 
hains are very useful in sampling, in fa
t, when we need to get a random 
ombinatorial obje
t, it isoften easy to 
onstru
t a Markov 
hain that makes moves between su
h obje
ts. For example, 
onsider we wantto generate a random mat
hing of a graph. We see that it is not easy to have an enumeration of the mat
hingsfrom whi
h we 
ould sample, as if they were only numbers. But it turns out it is easy to build a Markov 
hainwhose state spa
e is the spa
e of mat
hings and whose stationary distribution is uniform on all the mat
hings ofthis graph. The transition from a mat
hing M is basi
ally to 
hoose an edge e of the graph randomly, to remove itif it's already in M , to add it to our mat
hing M if we 
an, or else to stay with M . Now that we have our Markov
hain, we 
an get approximate samples by running the Markov 
hain long enough, and one 
an 
al
ulate this timedepending on the desired approximation by studying the mixing time of this 
hain.This te
hnique is 
alled Monte Carlo Markov Chain and it has a lot of appli
ations, not only in 
omputers
ien
e but also in statisti
al physi
s. The te
hnique was originally 
on
eived to approximate integrals (viewed asexpe
tations), by using the law of large numbers. An important example is the Gibbs sampler whi
h is heavilyused in probabilisti
 inferen
e. Sampling is also related to approximate 
ounting, if we 
an sample the mat
hingsin a graph, then we 
an approximate the number of mat
hings in this graph. Sampling is also very important instatisti
al physi
s simulations.2.4 Reje
tion samplingAnother sampling method we will be using is based on the density of our distribution. Suppose we have a distributionwith density fun
tion f . Then it is known that the distribution of X has density f if (X,Y ) is uniform on the surfa
e
Sf = {(x, y) ∈ R

2|0 ≤ y ≤ f(x)}. Re
ipro
ally, if X has density f , and Y = Uf(X) where U is an independentuniform random variable, then (X,Y ) is uniform on the same surfa
e. Suppose now we have a 
ompli
ated densityfun
tion f that we want to sample from. It is not easy to get a uniform random variable on Sf . Now 
onsideranother fun
tion g that veri�es f(x) ≤ g(x) and is equal to g(x) = c×h(x) where c is a 
onstant and h is an "easy"density fun
tion, i.e. a density fun
tion from whi
h we 
an sample (for example an exponential or a uniform). Notethat it is easy to get a sample uniform on the surfa
e Sg de�ned by g = c× h, in fa
t just get X from the density
h and Y = Uc× h(X), U being a uniform on [0, 1].We get two possible 
ases, either (X,Y ) ∈ Sf and we output (X,Y ) or (X,Y ) /∈ Sf and we reje
t the point
(X,Y ). Using this pro
edure, 
alled reje
tion sampling, we get a uniform point on Sf , and by taking the x-
oordinatewe get a sample with distribution having density f .

f(x)

g(x)

Figure 1: Reje
tion sampling2.5 Coupling from the pastCoupling from the past (CFTP) is a method for getting an exa
t sample from the stationary distribution of aMarkov 
hain. Consider starting 
hains at time −T from all the states of the 
hain, and whenever two of themend up in the same state, they stay together. Suppose that when we rea
h time 0, all the 
hains have rea
hed thesame state s. This means that if we use the same randomness, and we start from any state from time −t for any
−t ≤ −T , then we will end up in that same state s, simply be
ause at time −T we have to en
ounter one of thestates of the Markov 
hain, and then we will follow the same route. The idea of CFTP is to start from an arbitrarytime in the past −t and run all the 
hains until time 0, if we have 
oales
en
e, then the single state rea
hed at time
0 by all the 
hains is our sample. Else, we go ba
k say by one starting at −t− 1 and again 
he
k for 
oales
en
e attime 0. Note that it is very important to do the same transitions as the ones we did in the previous unsu

essfulstep, that is keep the randomness used at ea
h time. 3



Now let us make things more formal. Suppose we have a �nite set of states S, and random maps ft des
ribingthe transitions at time t. Instead of going forward as in MCMC for example, we will at ea
h step go ba
kwards onestep more, and always look at the state at time 0. We denote by F 0
−t the mapping 
orresponding to the transitionfrom time −t to time 0, that is

F 0
−t = f−1 ◦ · · · ◦ f−t.For example F 0

−1(x) is a random state we get at step 0 when we start with state x at time −1. Note that 
al
ulating
F 0
−t(x) for a 
ertain x is harder than simply going forwards, in fa
t we 
annot 
ompute F 0

−t(x) from F 0
−t+1(x).Instead we have to keep F 0

−t+1(y), for all states y, so that we 
al
ulate ft(x), and then apply F 0
−t+1 to ft(x). Butwe'll get the reward later. To get a sample from the stationary distribution of our Markov 
hain, we 
an 
al
ulatefor any state x, F 0

−∞(x) whi
h will be well distributed. The idea of 
ouping from the past is that we do not needto go to time −∞ to get this value. In fa
t suppose that for some T , the mapping F 0
−T is a 
onstant mapping.This means that if we start from time −T in any state, we will end up in a single same state s. But then 
onsider

F 0
−T−1(x) = F 0

−T (f−T−1(x)) = s, and thus we get F 0
−∞(x) = s.So it is now 
lear how we will pro
eed, 
ompute the mapping F 0

−t for in
reasing values of t until it is 
onstantand then output this 
onstant. The question now is how we 
an be sure our mapping will ever be 
onstant (we willbe 
alling this event 
oales
en
e). This depends on the 
oupling used. Note that we did not mention anything aboutthe relations between ft(x) and ft(y), we know that both of them have a distribution des
ribed by the Markov
hain but how are they related. Are they independent or dependent ? A
tually this does not matter, we 
an 
ouplethese two random variables as we want. Let us show that in the 
ase of independent 
hoi
es we have 
oales
en
ewith probability one.In fa
t be
ause the 
hain is ergodi
, for all states x, y there exists an Mx,y su
h that n ≥ Mx,y, p
(n)
xy > 0. Let

M = maxMx,y, so the probability that F 0
−M is 
onstant is greater than ∏s∈S p

(M)
sx and hen
e positive. The sameholds for F−M

−2M , and F−kM
−(k+1)M . Now be
ause ea
h of these mappings are independent, then the probability thatthere does not exist a T su
h that F 0

−T is 
onstant is 0.Let us illustrate CFTP with a simple example. The standard example given to illustrate this method is arandom walk on n points. Consider we have n states numbered from 1 to n. When we are at state k we move to
max(k − 1, 1) with probability 1

2 or min(k + 1, n) with probability 1
2 . To de�ne our update, the most natural idea,is to �ip a 
oin that will be the same for all states i.e., either everybody goes up, or everybody goes down.

φ(k, U) =

{

max(k − 1, 1) if U ≤ 1
2

min(k + 1, n) if U > 1
2It is 
lear that the uniform distribution on the states is the stationary distribution of this Markov 
hain. Fig. 2shows a sample run of the pro
edure on this Markov 
hain.Note that the algorithm as stated needs a lot of memory. In fa
t we need to store fun
tions over the set of states,and often the state spa
e is very large, and that is why we use MCMC methods to get samples. A possible solutionis to ensure that we have a monotone 
oupling. This means that if x ≤ y then ft(x) ≤ ft(y) with probability 1.In our example, the 
oupling was monotone, graphi
ally this means two arrows never 
ross ea
h other. In this 
aseit is possible to keep tra
k only of the maximum state smax and the minimum state smin, be
ause we know that if

F 0
−t(smin) = F 0

−t(smax), then F 0
−t is a 
onstant fun
tion.Monotoni
ity is all the more important for us be
ause our state spa
e will not only be big, it will be in�nite, infa
t our state spa
e is R+.For more details on CFTP, see the original paper [12℄ and Wilson's web site on perfe
t sampling [15℄.2.6 Sto
hasti
 equationsWe are interested in a type of distributions that are des
ribed by an equation. For example, we know that if X hasdistribution µ, and if A and B are independent of X with some �xed distribution then AX + B has distribution

µ. We assume that A and B are positive random variables and in all the 
ase we will 
onsider X will be positive.Whi
h 
onditions on A and B ensure the existen
e and uniqueness of the solution to equation X
L
= AX + B ?This kind of problem is solved using �xed point arguments. As in [13℄ we introdu
e a metri
 (Mallow metri
) ondistribution fun
tions that have �nite se
ond moment E{X2} <∞:

d2(F,G) = inf
X∼F,Y∼G

||X − Y ||2 = inf
X∼F,Y∼G

E((X − Y )2)1/24
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edure, the output is 3.This de�nes a metri
 spa
e M2 whi
h turns out to be a 
omplete spa
e. To show the existen
e and uniquenessof a solution of a sto
hasti
 equation we 
an show that it is a �xed point of a fun
tion that is a 
ontra
tion. Forthe 
ase of equation 1 we show that a T : F 7→ L
(

(1 + X)U
), with X ∼ F and U an independent uniform, is a
ontra
tion for d2. To show this we 
onsider variable X and Y with distributions F and G, we then 
onstru
t therandom variables (1+X)U and (1+Y )U with the same U . These random variables respe
tively have distributions

T (F ) and T (G).
d2(T (F ), T (G)) ≤ ||(X − Y )U ||2 =

√

1

3
||(X − Y )||2Then by taking the in�mum on all possible 
ouplings of X and Y , we get

d2(T (F ), T (G)) ≤ 1√
3
d2(F,G)Then we 
onsider the following sequen
e Xn+1 = (1+Xn)Un+1, we have L(Xn+1) = T (L(Xn)), the fa
t that Tis a 
ontra
tion shows that L(Xn) is a Cau
hy sequen
e in M2 whi
h is a 
omplete spa
e so L(Xn) has a limit andit is a �xed point of T . So the distribution we are studying is the limit distribution of the sequen
e Xn. For moregeneral theorems on the solutions of sto
hasti
 equations, see [13℄.These distributions that verify sto
hasti
 equations often arise in the study of the limit laws, for example in theQui
ksele
t algorithm in [6℄, [7℄ and [1℄ but also as limit distributions in other stru
tures as in [11℄. In [2℄, Devroyeand Neininger give properties and methods for approximating the densities of su
h distributions.2.7 Problems to fa
eThe straightforward appli
ation of 
oupling from the past for our sequen
e Xn+1 = Un+1(Xn+1) would be to starta 
hain from every possible x ∈ R+ and for the 
oupling, use the same Un+1 for every one of these 
hains. We see5



there are two main problems : we do not have a maximal state and this 
oupling never gives 
oales
en
e, simplybe
ause the fun
tion x 7→ (1 + x)u is inje
tive.The �rst problem is really intrinsi
 to the CFTP method. In fa
t applying CFTP requires that the 
onvergen
espeed of the Markov 
hain be "the same" for all the starting points, and if we 
onsider our unbounded spa
e, 
hainsbeginning at 1, 000 will take longer to approa
h equilibrium than 
hains beginning at 1, we say that the 
hain isnot uniformly ergodi
. For a pre
ise des
ription of this fa
t, see [5℄. So it is impossible to get 
omplete 
oales
en
eof all the 
hains. Meanwhile one 
an use the idea of dominated CFTP, introdu
ed by Kendall in [8℄. The idea is touse a "simple" Markov 
hain D 
oupled to our Markov 
hain X su
h that D dominates X . Here simple means thatthe Markov 
hain has a stationary distribution that we 
an sample from, and also that we 
an simulate the 
hainba
kwards. The dominating 
hain basi
ally says that a 
hain starting at time −∞ that is under D will always stayunder D, and in this way we only have to 
he
k the 
oales
en
e of 
hains beginning at a state under the dominating
hain.The se
ond problem 
an be solved by using more appropriate 
ouplings. For this we have to write the updatefun
tions in a di�erent way, or we use ideas like layered multishift 
oupling as in [16℄.First we study the Di
kman distribution de�ned by equation 1, then we try to generalize the method. Then
ombining ideas from this method and [9℄, we present an even more general method. Then we 
onsider di�erent
ases where the random variable B is unbounded.3 The pro
edure3.1 Introdu
tionWe want to sample from the limit distribution of the sequen
e of random variables de�ned by Xn+1 = (1+Xn)Un+1.Instead of using the natural update fun
tion (x, u) 7→ u(1+x), we will use a di�erent 
oupling, we de�ne the followingmapping
f : (x, u, v) 7→ ⌊u(x+ 1)⌋ +

{

v if ⌊u(x+ 1)⌋ ≤ ⌊x⌋
v(x− ⌊x⌋) elseNote that this is just another way of 
oupling the 
hains for every x, in fa
t we have

∀x, f(x, U, V )
L
= (1 + x)Wif U and V are independent uniform random variables andW is a uniform random variable. The 
hains with update

f will be 
alled Y . The reason we 
hoose su
h an update will appear later, it is mainly to obtain 
oales
en
e.3.2 DominationAnd now we say
f(x, u, v) ≤ ⌊u(⌊x⌋ + 2)⌋ + vNow let us 
all
g : (n, u) 7→ ⌊u(n+ 2)⌋So we 
an de�ne an update that dominates f as we have f(x, u, v) ≤ g(⌊x⌋, u) + v. The idea is to builda dominating 
hain Dn, having update Dn+1 = g(⌊Dn⌋, Un+1) + Vn+1 so that we do not have to 
are about
hains that are above D−n. We will be denoting the main 
hains Y having update Yn+1 = f(Yn, Un, Vn), and

Zn+1 = g(Zn, Un) the integer part of the dominating 
hain Dn+1. Note now that g has a very ni
e property, in fa
tif Z is a Poisson random variable, Z veri�es
Z

L
= g(Z,U)where U is a uniform independent of Z.In fa
t if Z is a Poisson random variable with parameter 1,6



P{g(Z,U) = n} =

∞
∑

k=n−1

P{Z = k}P{n ≤ u(k + 2) < n+ 1}

=
1

e

∞
∑

k=n−1

1

k!

1

k + 2

=
1

e

∞
∑

k=n−1

1

(k + 1)!
− 1

(k + 2)!

= P{Z = n}The obje
tive now is to 
onstru
t a stationary 
hain Z−n respe
ting the update that we 
an extend arbitrarilyba
k into the past, so that if we do not get 
oales
en
e we go ba
k one step further. Generating Z0 is easy, be
auseit is a Poisson random variable, then we must 
onstru
t Z−1 so that when we look at the transition Z−1, Z0 itfollows the wanted transition g(., U).3.3 Time-reversal of the dominating 
hainNow that we have Z0 we want to 
al
ulate Z−1, and U0 su
h that
• Z−1 is a Poisson random variable
• U0 knowing Z−1 is uniform

P{Z−1 = n|Z0 = k} =
P{Z0 = k|Z−1 = n}P{Z−1 = n}

P{Z0 = k}

P{Z−1 = n|Z0 = k} = In≥k−1
1

n+ 2

k!

n!
(2)This equation de�nes the time reversal of the 
hain Z. We will be using this distribution to simulate Z ba
kwards.It is useful to see that

P{Z−1 = n|Z0 = k} = In≥k−1(n+ 1)
k!

(n+ 2)!
= In≥k−1(k!)

( 1

(n+ 1)!
− 1

(n+ 2)!

)Now we 
an see that by taking
U0 =

Z0 + U∗

Z−1 + 2with U∗ an independent uniform variable, U0 has the desired distribution.3.3.1 Coales
en
eNote that if the dominating pro
ess rea
hes D−n < 1 at step −n, then we are assured that all 
hains using update
f beginning at time −m before −n (m > n) will 
oales
e at time −n. This is be
ause the update f is built insu
h a way that its image has only one point in intervals [k, k + 1), so if D−n < 1, the paths have no 
hoi
e ! Sothe algorithm will 
onsist on waiting until D−n < 1 that is Z−n = 0, and then we just simulate the 
hain Y n thatbegins at a uniform point in [0, 1] that we 
alled V−n, and that represents the range of the update fun
tion whenapplied to points between 0 and D−n−1.

7



3.3.2 The algorithmLet us sum up the algorithm :
• Generate Z0 as a Poisson random variable
• Update Z ba
kwards until Z−T = 0, we have for all n ≤ T , Z−n+1 = ⌊U−n+1(Z−n + 2)⌋.
• Now we say Y T−T = V−T , where V−T is a uniform, and update the pro
ess Y T using f , using the sameuniforms U−n as the ones used for updating Z, and new independent uniform variables V−n
• Return Y0An implementation in C of this algorithm 
an be found in the appendix.Theorem 1. The algorithm terminates with probability one, with an expe
ted running number of steps to the pastequal to 1 +

∫ 1

0
et−1
t dt < 2.32. The Y0 returned by the algorithm has the wanted distribution.Proof. For the analysis of the running time, see the next se
tion.We 
onstru
t the sequen
e of random variables de�ned by : X0 is a uniform, and Xn+1 is de�ned by Xn+1 =

Wn+1(Xn+1) withWn being independent uniforms. Let us de�ne Y n, by Y n−n is a uniform and is updated forwardsusing f with the same Uk's as for the pro
ess Z and with independent Vk's (that are the same for all the Y n's).Then we have Y n0 L
= Xn for all n, so Y n0 
onverges in distribution to the Di
kman distribution be
ause Xn does so.Now, 
onsider T su
h that Z−T = 0, and 
onsider Y n−T for n ≥ T , i.e. 
hains that begin before −T . Be
ausethe pro
ess Z + V dominates Y n, as we mentioned we know we have 
oales
en
e at time −T , so we have Y n−T =

Y T−T = V−T for all n ≥ T . And hen
e Y n0 = Y T0 be
ause we use the same randomness. And be
ause T < ∞with probability one, the sequen
e of random variables Y n0 
onverges almost surely to Y T0 . But we know that
Y n0 
onverges in distribution to the Di
kman distribution, as a 
onsequen
e the random variable Y T0 has Di
kmandistribution.3.3.3 Analysis of running timeWe take as a measure of the running time the number of steps to the past needed. In this way the running time isthe time taken by the time reversal of the dominating 
hain to rea
h 0. The transition probabilities for this 
hainare given in equation 2. So let us 
al
ulate the expe
ted time Tn0 to go from state n to state 0, for this, we beginby 
al
ulating E{Tk(k−1)}, the expe
ted time to go from state k to k − 1.If we write

Tk(k−1) =

Nup
∑

i=1

T≥k
kk,(i) + 1where Nup is the number of ex
ursions made from state k before going to state k − 1, and T≥k

kk is the length ofone su
h ex
ursion, and be
ause Nup and T≥k
kk,(i) are independent we get

E{Tk(k−1)} = 1 + E{Nup}E{T≥k
kk }Remember that when we are at state k with k ≥ 1, we go to state k− 1 with probability k

k+1 as we 
an see fromequation 2. So
E{Nup + 1} =

k + 1

kAs a 
onsequen
e
E{Nup} =

1

kNow we 
onsider E{T≥k
kk }. To evaluate this quantity, we 
onsider the 
hain from whi
h we remove the states

k− 1 and below. The quantity we are looking for is the mean re
urren
e time for state k in this 
hain. So the onlything we have to do is get the stationary distribution of this Markov 
hain. Note that for state k, we remove the8



k + 1

k

k − 1

k+1
k+2

1
(k+1)(k+2)

k

k+1

1
k+2

Figure 3: Some transitions of the time reversal of Ztransition going to k − 1, so the probabilities for other transitions departing from k should be divided by 1
k+1 . If

(pi)i≥k is the stationary probability distribution then we show by indu
tion that pi+1 = 1
i+1pi for all i ≥ k.In fa
t

pk = (k + 1) × 1

k + 2
pk +

k + 1

k + 2
pk+1whi
h means

pk+1 =
1

k + 1
pk.And for i ≥ k

pi = (k + 1) × 1

k + 2

k!

i!
pk +

i
∑

j=k+1

1

j + 2

j!

i!
pj +

i+ 1

i+ 2
pi+1

=
k + 1

i+ 2

k!

i!
i× · · · × (k + 1)pi +

i
∑

j=k+1

1

i+ 2

j!

i!
i× · · · × (j + 1)pi +

i+ 1

i+ 2
pi+1

=
k + 1

i+ 2
pi +

i
∑

j=k+1

1

i+ 2
pi +

i+ 1

i+ 2
pi+1

pi+1 =
1

i+ 1
pi.Remember what we wanted from this distribution is the mean re
urren
e time for state k, that is 1

pk
, we 
an
al
ulate this by saying that the sum of pi's is 1, that is

∞
∑

i=k

1

(k + 1) × · · · × i
pk = 1.

9



So
1

pk
= k!

∞
∑

i=k

1

i!

= k!

∫ 1

0

et
(1 − t)k−1

(k − 1)!
dt

= k

∫ 1

0

et(1 − t)k−1dtusing Taylor's formula. So going ba
k to E{Tk(k−1)}, we get
E{Tk(k−1)} = 1 +

1

k

1

pk

= 1 +

∫ 1

0

et(1 − t)k−1dtand as a 
onsequen
e
E{Tn0} =

n
∑

k=1

E{Tk(k−1)}

=

n
∑

k=1

1 +

∫ 1

0

et(1 − t)k−1dt

= n+

∫ 1

0

et
1 − (1 − t)n

t
dt.Finally we get the expe
ted running time

E{T } =

∞
∑

n=0

P{Z = n}E{Tn0}

=
1

e

∞
∑

n=0

1

n!

(

n+

∫ 1

0

et
1 − (1 − t)n

t
dt
)

= 1 +
1

e

∞
∑

n=1

∫ 1

0
et 1−(1−t)n

t dt

n!

= 1 +
1

e

∫ 1

0

et
∞
∑

n=1

1 − (1 − t)n

n!t
dt

= 1 +
1

e

∫ 1

0

et
1

t
(e− e1−t)dt

= 1 +

∫ 1

0

et − 1

t
dt

< 2.32.Note that we 
ould also take the number of "elementary" operations as a measure of the running time. In fa
tat ea
h step we sample from a distribution with in�nite tail, and to do this we use the inversion method : we take10



a uniform random variable U and get the minimal n su
h that ∑n
i=1 pi < U , and thus we have a random time forea
h step, and the expe
ted time is the expe
tation of the random variable, more pre
isely it is E{Z−1 − (k − 2)},whi
h does not ex
eed e− 1. In fa
t for k ≥ 1,

E{Z−1 − (k − 2)} =

∞
∑

j=0

P{Z−1 > j + k − 2}

=
∞
∑

j=0

k!
1

(j + k)!

≤ e− 1We also have to add to this a deterministi
 time 1 for applying the forward update.So by using Wald's lemma we 
an see that the expe
ted number of 
omputational operations performed is 1 fortime 0 and the expe
ted number of steps ba
k in the past times the expe
ted number of operations per step whi
his less that 1 + e2 < 8.39. This quantity has a
tually no real meaning be
ause we did not pre
isely de�ne what anelementary operation was, but this was just to show that the random 
omputation times for ea
h step are not toolarge.Note also that the expe
ted memory used for keeping the uniforms is the expe
ted number of steps taken intothe past whi
h is less than 2.32 (this is only the memory for the "reusing randomness" part of CFTP, of 
ourse wehave to add the memory for 
urrent 
omputation).3.4 GeneralizationLet us now 
onsider the distribution that is a solution of
X

L
= Uα(1 +X)Note that, in general, we don't have a ni
e 
oales
ing mapping separating the integer and the fra
tional partlike f be
ause the distribution of Uα(1 + x) 
onditioned on n ≤ Uα(x + 1) < n + 1 depends on n and on x now.But it does not depend on x for n = 0, so we 
hoose an update fα that 
oales
es only on [0, 1)

fα(x, u, v) =

{

uα(1 + x) if uα(1 + x) ≥ 1
vα if uα(1 + x) < 1And we have, if U is a uniform and V,W are independent uniforms, then

fα(x, V,W )
L
= Uα(1 + x)3.4.1 Vervaat with α ≥ 1Let us start with α ≥ 1. We also de�ne the sequen
e Zn+1 = ⌊Un+1(Zn + 2)⌋. We still have that Zn + 1 dominatesa pro
ess Yn that uses update fα. In fa
t if ⌊Yn⌋ ≤ Zn then ⌊Yn+1⌋ ≤ ⌊Un+1(⌊Yn⌋ + 2)⌋ ≤ Zn+1.The pro
edure is the same: we wait until Z−T = 0, and then we simulate a 
hain Y T starting with Y T−T ,a uniform to the power α, and having update fα. And by using the same arguments, we get that Y T0 has thewanted distribution. Be
ause we use the exa
t same dominating pro
ess and the dominating pro
ess determinesthe 
oales
en
e, we have the same expe
ted number of steps.3.4.2 Vervaat with α < 1The problem now is that we have to 
hange the dominating pro
ess. The analog of the update g used for the pro
ess

Z would be here
gα(n, u) = ⌊uα(n+ 2)⌋11



But now we don't have a simple distribution for a random variable Z that would verify Z L
= gα(Z,U). Whatwe do is �nd P{Z = k} as a fun
tion of P{Z = 0}, but 
al
ulating the normalization 
onstant is hard so we usereje
tion sampling te
hniques to draw from su
h a distribution.Let us begin with the 
al
ulation of the values of P{Z = k}. We 
an verify by 
al
ulation that the probabilitydistribution de�ned by

P{Z = k} =

∏k
i=1(i+ 1)β − iβ

(k!)β
P{Z = 0}with β = 1

α veri�es Z L
= gα(Z,U). We 
an determine the distribution with

P{Z = 0} =
1

∑∞
k=0

Q
k
i=1

(i+1)β−iβ
(k!)βbut this sum is hard to evaluate. To draw a sample from this distribution, we will bound this sum with aneasy sum. We will introdu
e pk =

Qk
i=1

(i+1)β−iβ
(k!)β , our obje
tive is to draw a sample from the distribution that isproportional to (pk).Using a Taylor inequality we get (i+ 1)β − iβ ≤ β(i+ 1)β−1, be
ause β > 1.
∏k
i=1(i+ 1)β − iβ

(k!)β
≤ βk

(k + 1)β

k!Now by introdu
ing cβ = (β/ lnβ)β

ββ/ ln β , a bound of the sequen
e (k+1)β

βk+1 , we get
(k + 1)β ≤ cββ

k+1and hen
e
∏k
i=1(i+ 1)β − iβ

(k!)β
≤ cβ

(β2)k+1

k!

def
= qkAnd now this sum 
an be 
al
ulated,

∞
∑

k=0

qk = cββ
2eβ

2The idea, is to draw a uniform between 0 and cββ2eβ
2

= R and to reje
t the sample if we get something biggerthan S =
∑

pk. Even though we don't know S, we have a in
reasing sequen
e 
onverging to S, (
∑n

k=0 pk)n, andalso a de
reasing sequen
e (
∑n

k=0 pk +
∑∞

k=n+1 qk)n that we 
an 
al
ulate and that 
onverges to S. So if oursample U < S, there will exist a �nite n for whi
h U <
∑n

k=0 pk, and if U > S there will be an n su
h that
U >

∑n
k=0 pk +

∑∞
k=n+1 qk.After this, we apply the same idea of taking the time reversal of the 
hain with update gα, and we wait tillthe dominating pro
ess rea
hes 1, i.e. Z rea
hes 0 to make forwards simulations, using update fun
tion fα. Thetransition probabilities for 
al
ulating Z ba
kwards are
P{Z−1 = n|Z0 = k} =

P{Z0 = k|Z−1 = n}P{Z−1 = n}
P{Z0 = k}

= In≥k−1

[

(k + 1

n+ 2

)β

−
( k

n+ 2

)β
]∏n

i=1(i+ 1)β − iβ
∏k
i=1(i+ 1)β − iβ

(k!)β

(n!)βNote here that determining the innovations U−n from Z−n and Z−n−1 is not as straightforward as in the
ase α = 1, so we just generate independent uniform variables and we take U−n to be the �rst one su
h that
Z−n = ⌊Uα−n+1(Z−n−1 + 2)⌋.This generalization is not pra
ti
al at all, in fa
t even for α = 0.1, it takes more than a minute to get onesample, 
ompared to more than 50,000 samples for α = 1 for the same time. We now introdu
e another methodwhi
h solves more general 
ases and is signi�
antly faster for small values of α.12



4 A general methodWe now present a general method for X L
= AX + B with 0 ≤ A ≤ 1 and with B positive and bounded B ≤ c. Weshow that this 
ase 
omes down to �nding a method for X L

= A(X+1). First 
onsider X L
= AX+ c, by introdu
ing

Y = X − c we get Y = A(Y + c) and Z = Y/c we get Z = A(Z + 1). So we 
an just simulate Z and then take
X = cZ + c. But if we 
an get a dominating 
hain to sample from the solution of X L

= AX + c, then using theexa
t same domination we 
an sample from X
L
= AX +B.Now let us 
onsider X L

= A(X + 1), and the sequen
e Xn+1 = An+1(Xn + 1). Note that ⌊Xn+1⌋ 
an be either
⌊Xn⌋+ 1, ⌊Xn⌋ or less than ⌊Xn⌋. These three events will be what drives our dominating pro
ess. Let us 
al
ulatethe probability of these events, for a �xed x, we have

P{⌊A(x+ 1)⌋ = ⌊x⌋ + 1} = P{A(x+ 1) ≥ ⌊x⌋ + 1} = P{A ≥ ⌊x⌋ + 1

x+ 1
}Re
all the obje
tive is to obtain a dominating pro
ess, so we want the dominating pro
ess to go up with moreprobability. For this we 
an have a lower bound on the value of ⌊x⌋+1

x+1 , by supposing x ≥ κ for some positive integer
κ. This idea of separating the 
ases x ≥ κ and x ≤ κ is due to Kendall and Thönnes in [9℄.

x ≥ κ,
⌊x⌋ + 1

x+ 1
≥ 1 − 1

κ+ 1Now the event UP = {A ≥ 1 − 1
κ+1} has a probability greater than event ⌊A(x + 1)⌋ = ⌊x⌋ + 1, for x ≥ κ. Wealso de�ne the events EQ = {1 − 2

κ+1 ≤ A ≤ 1 − 1
κ+1}, and DOWN = {A ≤ 1 − 2

κ+1}.Now let us de�ne the following update for our dominating pro
ess:
φ(n,A) =







n+ 1 if 1 − 1
κ+1 ≤ A ≤ 1

n if 1 − 2
κ+1 ≤ A ≤ 1 − 1

κ+1

max(κ, n− 1) if 0 ≤ A ≤ 1 − 2
κ+1So the sequen
e de�ned by Zn+1 = φ(Zn, An+1) is a 
andidate dominating pro
ess for ⌊Xn⌋, and so, Dn = Zn+1would dominate the sequen
e Xn.Now Z has some ni
e properties:

• Simple random walk on Z+.
• If we 
hoose κ big enough su
h that P{DOWN} > P{UP} then the 
hain has limit distribution κ +

Geom( P{UP}
P{DOWN} ). In fa
t P{Z = κ+ n} = (1 − P{UP}

P{DOWN} ) P{UP}
P{DOWN}

n.
• Z is time reversible, this means that P{Z−1 = n|Z0 = k} = P{Z0 = n|Z−1 = k}, so it is really easy to simulateba
kwards.For Vervaat perpetuities, we 
an 
he
k that taking κ = ⌊ 2

1−(1/2)α ⌋ works �ne.It remains to �nd a good way of 
oupling the 
hains so that 
oales
en
e 
an happen. In fa
t, if we apply thetrivial 
oupling of applying the same A for all 
hains, we will never get the 
hains to 
ouple. But note that it isimportant that the 
oupling we 
hoose be monotone, i.e. if x ≤ y then N(x) ≤ N(y) where N is our random updatefun
tion.We use multishift 
oupling as des
ribed in [16℄. We will introdu
e a monotone 
oupling but the image of theset of all the states lying in an interval will be dis
rete. Let us �rst 
onsider a simple 
ase, we want to 
onstru
ta 
oupling for the transition φ : s 7→ s + Vs, where Vs is a uniform for every s. By generating a uniform V0 and
onsidering the mapping φ : s 7→ ⌈s − V0⌉ + V0, it veri�es the wanted property that is for all s, φ(s) − s has auniform distribution. The idea is that we build a line grid with length 1, and the image of our mapping must lie inone of the points in Z + U0. So ea
h point s is mapped to the �rst point in this grid that is greater than s.Now let us 
ompli
ate things a little bit more and suppose V has a general distribution having a density fun
tion
f . For simpli
ity we suppose that f is unimodal, that is there is anm su
h that f in
reasing for x ≤ m and de
reasingfor x ≥ m. To do this, we observe that : if (X,Y ) is a uniform point on the surfa
e Sf = {(x, y) ∈ R

2|0 ≤ y ≤ f(x)},and X1 and X2 is su
h that f(X1) = f(X2) = Y , then 
hoosing a Z uniformly on [X1, X2] yields another point13



X1 X2X

Y = Uf(X)

Figure 4: Layered multishift 
oupling
(Z, Y ) that is also distributed uniformly on Sf . In this way, we get ba
k to the 
ase of V being a uniform. Here ishow to do it.

• Choose X having density f .
• Let Y = Uf(X) with U a uniform, so that (X,Y ) is uniform on Sf .
• Cal
ulate X1 and X2, su
h that f(X1) = f(X2) = Y , X1 < X2.
• The unit of the grid is now L = X2 −X1, the range of the mapping is LZ + (X −X1).
• Finally φ(s) = min{x ∈ LZ + (X −X1), x ≥ s}.Remember our update is φ : s 7→ A(s+1) = elnA+ln(s+1). We know we 
an sample from ψ : s 7→ ln(s+1)+ lnAprovided A has a density that we know. Then we take φ(s) = eψ(s).Suppose we are at time −n, we have a method that generates one random variable lnA and use it for all the
hains. And be
ause our 
oupling is monotone, we 
an only simulate one lower 
hain and one upper 
hain. Thelower 
hain will begin at state 0 and the upper 
hain at state D−n. The problem is that when simulating thedominating 
hain, we already produ
ed the random variable A−n+1 and we have to use the same one so that ourdomination argument remains valid. In fa
t, when we make the 
al
ulations, we suppose the randomness is thesame for both 
hains. But if we use the same A−n+1 for all the 
hains we will never get 
oales
en
e.To solve this problem, noti
e that the 
oupling we de�ned earlier has some kind of origin at point 0 (as an originfor the grid). But we 
an 
hoose this origin arbitrarily. This means we are free to 
hoose one point and de�neits image. Remember the important thing is to preserve the domination of the dominating 
hain. So if, for theupper 
hain, we use the random variable A−n+1 for the update so that D−n gets mapped to A−n+1(D−n + 1) anddepending on this we 
reate the grid des
ribed by multishift 
oupling, we will know the state 0 gets mapped to astate lower that A−n+1(D−n + 1) and thus is dominated by Z−n+1.Let us sum up the pro
edure by giving an overview, we suppose we have a valid κ, su
h that P{DOWN} >

P{UP} :1. Generate Z0 with distribution P{Z = κ+ n} = (1 − P{UP}
P{DOWN} ) P{UP}

P{DOWN}
n.2. Generate a random variable A′

0 with the distribution of A and let Z−1 = φ(Z0, A
′
0).3. Generate A0 su
h that Z0 = φ(Z−1, A) (we 
an do this by generating A0's until getting a valid one).4. Let Y up,−1

−1 = Z−1 + 1, and Y up,−1
0 = A0(Y

up,−1
−1 + 1).5. Let Y low,−1

−1 = 0, and Y low,−1
0 is 
al
ulated using multishift 
oupling.6. If we get Y up,−1

0 = Y low,−1
0 then we return this value, else we go ba
k one step with Z, and then do simulationsforward.Note that we must keep the randomness used at ea
h step so that the mapping for ea
h time be always thesame. This applies also for the random variables involved in the multishift 
oupling. We do not give the detailedsteps of the algorithms to avoid introdu
ing too mu
h notations.14



What remains to show is that 
oales
en
e happens with probability 1. For this, we try to bound the expe
tedtime until 
oales
en
e. We give a sket
h of a proof that the expe
ted time is �nite in the 
ase of perpetuities, i.e.
A = Uα. For this suppose that the dominating 
hain has value κ+1, then the probability that the upper 
hain andthe lower 
hain 
oales
e in one step is a positive 
onstant p > 0, in fa
t if the grid unit L is big enough, κ+ 1 and
0 get mapped to the same value. This does not �nish the proof sin
e the dominating 
hain is not always at κ+ 1.But the state κ+1 of the 
hain has mean re
urren
e time 1

(1 − P{UP}
P{DOWN} )

. At ea
h time the dominating 
hain hasvalue κ+ 1, we have a probability at least p of 
oales
en
e. So, as these events at di�erent steps are independent,the expe
ted time in the past until 
oales
en
e is �nite.This method has been implemented in MATLAB and tested on Vervaat perpetuities and works roughly as fastas the method presented in se
tion 3 for α = 1 but signi�
antly faster for α < 1.5 Other types of perpetuitiesWe have not yet 
onsidered the 
ase where one of the two random variable A or B is unbounded. We 
onsider thefollowing equation
X

L
= qX +B (3)with 0 < q < 1 and B a positive random variable.Let us �rst 
onsider the existen
e of su
h a distribution. If we suppose that E{B2} <∞, the fun
tion T : F 7→

L(qX + B) with X ∼ F is well de�ned from M2 into itself. Moreover for two random variables X and Y havingdistribution fun
tions F and G, by ta
king random variables with distributions T (F ) and T (G) with the same value
B, we get

d2(T (F ), T (G)) ≤ (E{(q(X − Y ))2})1/2 = q||(X − Y )||2And by taking the in�mum on all the possible 
ouplings of X and Y , we get that T is a 
ontra
tion and hen
ethe existen
e and uniqueness of su
h a distribution. We 
an also 
onstru
t a sequen
e that 
onverges in law to thisdistribution as follows
Xn+1 = qXn +Bnwith Bn a sequen
e of independent random variables distributed like B, in other words,
Xn =

n
∑

k=1

qkBk.The obje
tive is to simulate this distribution perfe
tly in �nite time. As usual, for this, we introdu
e a dominating
hain. Note that if B is bounded by M , then we 
an de�ne a dominating 
hain to be the 
onstant 1
1−qM . In thegeneral 
ase we take

Zn+1 = max
( Bn

1 −√
q
,
√
qZn

)

.We 
an easily verify that the mapping for a �xed B, f : x 7→ qx + B is dominated by the mapping g : x 7→
max( B

1−√
q ,
√
qx). We need to look now for the stationary distribution of this 
hain. We 
an write it as follows

Z∞ =
1

1 −√
q

max
n≥0

√
q
n
B′
nwith B′

n distributed as B. We see immediately that Z∞
L
= max

(

B
1−√

q ,
√
qZ∞

).
15



5.1 Simulation of the stationary distribution of the dominating 
hainWe will use reje
tion sampling method, by �nding an upper bound of the density fun
tion. We write the distributionfun
tion F of Z∞, as a fun
tion of the distribution fun
tion G of B. We make the full 
al
ulations only for B havingexponential distribution.
F (x) = P{Z∞ ≤ x} =

∞
∏

n=0

P{√qnB′
n ≤ x} =

∞
∏

n=0

G(
x√
qn

)Thus, the density fun
tion 
an be written if we denote by g the density fun
tion of B
fZ∞

(x) =

∞
∑

k=0

1
√
qk

g( x√
qk )

G( x√
qk )

F (x)Lemma 1 (Dominating the density). We de�ne ρ : x 7→ xg(x)
G(x) , if ρ is a de
reasing fun
tion, and the distributionfun
tion F of Z∞ veri�es F (x) ≤ x then we have the bound

fZ∞
(x) ≤ ρ(x) − 1

1 −√
q

ln(G(x))and when B is exponential, the 
onditions are met and we get
fZ∞

(x) ≤ xe−x

1 − e−x
− 1

1 −√
q

ln(1 − e−x).Proof. If we suppose F (x) ≤ x then,
fZ∞

(x) ≤
∞
∑

k=0

x
√
qk

g( x√
qk )

G( x√
qk )then by de�nition of ρ,

fZ∞
(x) ≤

∞
∑

k=0

ρ(
x

√
qk

).Now be
ause ρ is de
reasing, we have
fZ∞

(x) ≤
∞
∑

k=0

ρ(
x

√
qk

)and we are going to bound this fun
tion by an integral, be
ause ρ is de
reasing, we have
ρ(

x
√
qk+1

) ≤ 1
x√
qk+1 − x√

qk

∫ x
√

qk+1

x
√

qk

ρ(y)dybut we also have
1
x√
qk+1

ρ(
x

√
qk+1

) ≤ 1
x√
qk+1 − x√

qk

∫ x
√

qk+1

x
√

qk

ρ(y)

y
dy.And thus

x
√
qk+1

1
x√
qk+1

ρ(
x

√
qk+1

) ≤ 1

1 −√
q

∫ x
√

qk+1

x
√

qk

ρ(y)

y
dy.As a 
onsequen
e

fZ∞
(x) ≤ ρ(x) +

1

1 −√
q

∫ ∞

x

ρ(y)

y
dy = ρ(x) − 1

1 −√
q

ln(G(x))In the exponential 
ase we have : 16



• F (x) ≤ 1 − e−x ≤ x

• We see that ρ(x) = xe−x

1−e−x is de
reasing by 
al
ulating the derivativeHen
e, we 
an apply the bound
fZ∞

(x) ≤ xe−x

1 − e−x
− 1

1 −√
q

ln(1 − e−x)For the rest, we will only 
onsider the 
ase where B is exponential. We need to do some more work to get tosimple densities that we 
an simulate. Near 0 it is ln(1 − e−x) that is important, we bound it for x ≤ 1 as follows
ln

(

1

1 − e−x

)

= ln

(

1

x

x

1 − e−x

)but for x ≤ 1, x
1−e−x ≤ 1

1−e−1 and thus
ln

(

1

1 − e−x

)

≤ ln

(

1

x

)

+ ln

(

e

e− 1

)

.And for x ≥ 1, we bound the term 1
1−e−x ≤ 1

1−e−1 , and we write ln
(

1
1−e−x

)

= ln
(

1 + e−x

1−e−x

)

≤ e−x

1−e−x so wegetLemma 2 (Domination of the density fZ∞
with a weighted sum of easy densities). If B has exponential distribution,then

fZ∞
(x) ≤

{

e
e−1e

−x + 1
1−√

q ln( e
e−1 ) + 1

1−√
q ln( 1

x ) for x ≤ 1
e
e−1xe

−x + 1
1−√

q
e
e−1e

−x for x > 1This bound is 
onvenient be
ause ea
h term is the density fun
tion of a well-known random variable. So todraw a sample uniformly under the surfa
e de�ned by this fun
tion, we �rst determine from whi
h one of the �ve
omponents we will get our sample and then simulate a

ording to it.The �ve 
omponents 
an be obtained as follows :
• exponential E with weight e

e−1 (we group with part of x > 1)
• uniform U with weight 1

1−√
q ln( e

e−1 )

• produ
t of independent uniforms U × U ′ with weight 1
1−√

q

• shifted exponential 1 + E weight e
e−1 ( 1

1−√
q − 1)

• sum of independent exponentials E + E′ restri
ted to [1,∞) with weight e
e−1

2
eIt remains to approximate the density of the target distribution, to de
ide if we reje
t or a

ept a sample fromthe dominating density.Remember

fZ∞
(x) =

∞
∑

k=0

ρ

(

x
√
qk

)

F (x)

xLemma 3. For an exponentially distributed B, there exists fun
tions gn and hn that we 
an 
al
ulate, su
h thatboth gn(x) and hn(x) tend to fZ∞
(x) when n goes to ∞. Moreover for all n, gn(x) ≤ fZ∞

(x) ≤ hn(x).
17



Proof. First we de�ne the partial produ
t Fn(x) =
∏n
j=0(1− e

−x
√

qj ), we have Fn(x) tends to F (x) from above, nowlet us bound the error :
Fn(x) − F (x) = 1 −

∞
∏

j=n+1

(1 − e
−x
√

qj ).So we 
onsider the produ
t
∞
∏

j=n+1

(1 − e
−x
√

qj ) ≥ 1 −
∞
∑

j=n+1

e
−x
√

qj .As a 
onsequen
e we get
Fn(x) − F (x) ≤ 1

1 −√
q

1

x/
√
qn
e−x/

√
qnso

gn(x) =
n
∑

k=0

e
− x

√
qk

√
qk(1 − e

− x
√

qk )

(

Fn(x) − 1

1 −√
q

√
qn

x
e
− x√

qn

)

≤ fZ∞
(x).Now for the upper sequen
e we have to evaluate,

∞
∑

k=n+1

e
− x

√
qk

√
qk(1 − e

− x
√

qk )
=

∞
∑

k=n+1

e
− x

√
qk

√
qk(1 − e

− x
√

qk )

≤
∞
∑

k=n+1

e
− x

√
qk

√
qk x√

qk

=
1

x

∞
∑

k=n+1

e
− x

√
qk

≤ 1

x

∞
∑

k=n+1

e
−x ln( 1√

q )k

=
1

x
ex ln

√
q(n+1) 1

1 − ex ln
√
qSo if we take

hn =

(

n
∑

k=0

e
− x

√
qk

√
qk(1 − e

− x
√

qk )
+

e(n+1)x ln
√
q

x(1 − ex ln
√
q)

)

Fn(x)we get fZ∞
(x) ≤ hn(x).To sum up the pro
edure for sampling from Z∞, we �rst get a uniform sample on the surfa
e under the fun
tiondominating the density fZ∞

de�ned in lemma 2 by 
hoosing one of the �ve 
omponents, ea
h one with probabilityproportional to its weight, and then sampling from the 
hosen 
omponent. After this, we have to de
ide whetherthis sample point (x, y) should be reje
ted or not, this is done by 
al
ulating the two approximations of fZ∞
(x),

gn(x) and hn(x) for in
reasing values of n. If for some n, we rea
h y ≤ gn(x), then we 
an a

ept the sample x,and if for some n, we get hn(x) < y, the sample x is reje
ted and we restart the whole pro
ess.
18



5.2 Simulating Z ba
kwardsRemember that we need to be able to simulate the dominating 
hain ba
kwards, so we have a value for Zn+1 andwe need to 
ompute Zn that is well distributed. Re
all the update for Z is
Zn+1 = max

( Bn
1 −√

q
,
√
qZn

)

.To 
al
ulate Zn, we �rst 
al
ulate the probability that Zn+1 =
√
qZn,

P{Zn+1 =
√
qZn|Zn+1 ∈ [z, z + dz]} =

P{Zn+1 =
√
qZn, Zn+1 ∈ [z, z + dz]}

P{Zn+1 ∈ [z, z + dz]}

=
P{√qZn ∈ [z, z + dz], Zn+1 =

√
qZn}

P{Z∞ ∈ [z, z + dz]}

=
P{√qZn ∈ [z, z + dz], Bn

1−√
q ≤ √

qZn}
√
qfZ∞

(z)dz

=
P{√qZn ∈ [z, z + dz], Bn

1−√
q ≤ z}

√
qfZ∞

(z)dz

=
fZ∞

( z√
q )√

qfZ∞
(z)

G
(

(1 −√
q)z
)

= pSo suppose we 
an toss a 
oin with heads having this probability, then, knowing the value z of Zn+1 we tossthe 
oin, if we get heads we just assign Zn = z√
q and we assign Bn to be an exponential restri
ted to [0, z]. In theother 
ase, we know that Zn+1 = Bn

1−√
q , so we assign Bn = z(1 − √

q), and for Zn, we draw a sample distributedlike Z∞ restri
ted to [0, z√
q ].It remains to show how to toss a 
oin with this probability. We simply generate a uniform random variable Uon [0, 1] and we have sequen
es that 
onverge p from above and from below (using fun
tions gn and hn introdu
edin the previous se
tion), so we 
an de
ide if U < p or not, and hen
e make our de
ision.5.3 CouplingThe dominating pro
ess is now all set up, we 
an simulate it in the past as far as we want. We have already 
omputedthe random variables when simulating the dominating 
hain. Now we use this randomness for the forward 
hain

X de�ned by Xn+1 = qXn + Bn. We a
tually simulate two 
hains, the lower 
hain beginning at 0 and the otherbeginning at Z−n. We 
ouple this 
hain using multishift 
oupling as des
ribed in se
tion 4. The global algorithmis basi
ally the same, ex
ept that here the dominating 
hain is more 
ompli
ated.A
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iety, 2000.Code for sampling from Di
kman distributionThis is an implementation of the algorithm for sampling from a Di
kman distribution. The uniforms used for theupdates are stored in a sta
k while we are going ba
kwards, then when the 
hain Z rea
hes 0, we know we have
oales
en
e so we use these uniforms for our forward updates.#in
lude <stdio.h>#in
lude <stdlib.h>#in
lude <math.h>/* Returns a uniform on [0,1℄ */double rand_uniform() {return ((double) rand())/((double) RAND_MAX + 1);}/* Returns an integer with Poisson distribution */int rand_poisson() {double u = rand_uniform();int n = 0, t = 1; 20



double p = 1;for(n=0; ;n++) {if(u*exp(1) <= p) {return n;}p = p + 1.0/( (double) t*(n+1));t = t*(n+1);}}/* Sta
k for reusing the u's */stru
t node {double data;stru
t node *next;};stru
t node *top;void push(double y) {stru
t node *x;x=mallo
(sizeof(stru
t node));x->data = y;x->next = top;top = x;}double pop() {double x;stru
t node *temp;if(top==NULL) {printf("error, sta
k empty");return 0;}else {x=top->data;temp = top->next;free(top);top=temp;return x;}}/* Returns a double with Di
kman distribution */double rand_di
kman() {// some variablesint z, new_z;double u;top = NULL; // the sta
k holds the u'sdouble y;int n=0;int k, a;int N;double F; 21



double v, p;z = rand_poisson();while(1) {if(z == 0) {y = rand_uniform();for(k=(n-1); k >= 0 ; k--) {u = pop();N = floor(y);F = y - N;if(floor(u*(N+1+F)) > N) {y = floor(u*(N+1+F)) + F*rand_uniform();}else {y = floor(u*(N+1+F)) + rand_uniform();}}return y;}// applying ba
kward updatev = rand_uniform();p = 1/((double) z+1); a = z-1;for(k=0 ; k<100;k++) {if( 1-p > v ) {new_z = a;break;}a = a+1; p = p/(a+2);}push((z + rand_uniform())/(new_z+2));z = new_z;n = n+1;}}int main() {srand(1);r = rand_di
kman();}
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