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Abstract. The rapid growth of Internet-based applications in terms of users, data size, and physical
resources, raises a great challenge to service providers and system administrators to maintain a certain
level of Quality of Service (QoS) while at the same time maximizing resource utilization. In addition, web-
enterprise emerging technologies, such as cloud computing and virtual machines, require a new trend of
hosting several applications within the same super machine, which, in turn, needs an insightful analysis of
the existing applications’ behaviours to accommodate each of them with sufficient resource to work properly.
Also, such growth still needs to exploit legacy technologies, specifically data caching, to enhance system
performance and achieve customer satisfaction. This survey presents the latest research and industry work
that has been carried out in the areas of system adaptability and data caching in distributed systems. More
specifically, system adaptability answers the question of how a system reacts to a fluctuating workload it
receives so as to maintain its QoS. Another aspect is to do autonomic provisioning for a certain system
by figuring out the resources it needs to handle different workload situations. Caching, on the other hand,
works by storing data that was previously served in main memory with a faster access time than that of
the hard drive. Thus, physically caching the data and partitioning the cache between different coupled
applications are important issues. Lastly, in talking about both technologies (i.e. adaptability and caching)
we have to consider large scale database processing in a cloud environment.
Keywords: Distributed Systems, Autonomic Provisioning, Caching, Transactions.

1 Introduction

In the past few years, use of the Internet has changed dramatically because of the technology
integration in almost every aspect of human life. This use includes on-line shopping, social
networking, gaming, medical treatments, and email. As an effect, both researchers and industry
pioneers have started to accommodate new technologies such as cloud computing and virtual
machines (VM) to host the large numbers of enterprise applications in order to provide reliable
service to users. However, for the service provider, the challenge becomes how to manage these
applications while maintaining a certain level of Quality of Service (QoS).

The above challenge of managing the applications can be treated in different ways according
to the distribution of the system components; if there are several machines dedicated to host
one system component, then the adaptation could be to allocate extra machines in the peak
workload time while deallocating some machines in the low demand time [8, 18, 17, 6]. Alterna-
tively, several applications could be hosted by a super capacity server. In this case, the question
becomes how to distribute the physical resources among the different applications according to



their workload variations [15, 10, 14, 16]. Even within each application, there is a space to con-
trol the service level according to the workload against different resources (CPU, memory).[13,
5].

A common and efficient way of enhancing the system service and reducing the response
time is caching, where the objects are accessed locally at a front-end server instead of querying
the back-end server which is more costly. Several caching architectures and techniques have
been discussed in the literature [7, 12, 2, 3], including query cache where the result of a previous
query is stored in the cache. However, when considering a replicated system, the consistency
between different cache locations as well as between the cache and the database has to be taken
into account. Also, in a shared physical resources environment that is enabled to host several
applications together, it is important to partition the cache memory among different shared
applications to achieve optimal performance[16].

Furthermore, due to emerging cloud computing, several cloud database systems have been
presented [1, 19, 11, 4], which can provide database as a platform for cloud customers. Some
of these newly database systems, have customized the traditional transaction management to
adopt to the cloud nature and to maintain the ACID properties in the underlying storage
system.

In general, this survey covers a broad area of distributing systems, ranging from system
self-adaptation to data caching to large scale database platforms for cloud. The rest of this pa-
per is organised as follows: Section 2 provides the background in component-based systems and
introduces some terminology that is frequently used throughout the paper. Section 3 presents
adaptability in distributed systems and how the system is tuned to the different variations
of workload. Section 4 examines caching and distributing caching memory among several ap-
plications. Section 5 discusses database platforms as a service in cloud computing. Section 6
concludes the paper.

2 Background

Since this survey contains several topics on distributed systems, it becomes important to provide
an overview about the technologies that are used, in addition to some vital definitions of the
terminology that are mentioned frequently throughout this report.

2.1 Enterprise Application

Most businesses nowadays are using technologies and software to automate the entire process
of their work, store the data, and manage it in an efficient and accurate manner. Moreover,
several businesses are marketing and selling their products through the Web, which is known as
e-commerce. The way these enterprise systems are organized and function follows distributed
system convention, in which the system components are distributed logically and physically
through different tiers to achieve scalability, availability, and robustness against failures. It
is also worth mentioning that although enterprise applications are the major sector of Web
residents, there are also plenty of other domains hosting their applications and software on the
Web to provide easier accessibility for their users. Such applications include portal systems,
news, and scientific data.
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2.2 Multi-tier Architecture

Enterprise software applications are divided into the following tiers: presentation tier, logic tier,
and data tier. The presentation tier handles the client requests and generates the reply, while
the logic tier deals with processing the information and managing the interactions between
the presentation tier and the data tier. The data tier normally hosts the application data,
provides the logic tier with the requested data, and processes data updates. Each tier is logically
separated from the others; and, in most scenarios, each tier is hosted on a dedicated server or
cluster of servers. Therefore, this architecture facilitates deployment and gives more flexibility
in designing each tier without affecting the other tiers. Also, it provides more robustness against
failure by replicating each tier in more than one machine.

2.3 Transactions

A transaction is used to describe the process of user interactions with the system. Generally,
a transaction is defined as a set of operations in which all are treated as a one logical unit.
Transaction execution is described by four properties: Atomicity, Consistency, Isolation, Dura-
bility or ACID in short. Atomicity requires each transaction to be executed as one unit. At the
end, all of its operations succeed or the transaction does not leave any effect in the database.
Consistency states that the transaction execution will move the system from one stable state
to another stable state. Isolation guarantees the separation of concurrent executing. Durabil-
ity means that a committed transaction cannot be rolled back. Thus, the changes done by a
transaction become permanent.

Monitoring the Quality of Service (QoS) of transaction execution is an important factor
to evaluate the system’s performance. Most work in a distributed system uses two metrics to
express the system’s QoS: response time and throughput. Response time defines the time needed
for a transaction to be executed. It starts when the client issues a request to the system until
the response is received back. Throughput express the transaction execution rate, or simply the
number of transactions the system can process per time unit.

2.4 Concurrency Control

To achieve the isolation property of transactions, a concurrency control mechanism is used. One
widely known mechanism is snapshot isolation, which is a multi-version database concurrency
control model. When a transaction begins, it receives a logical copy (snapshot) of the database
that is the last committed state. This version is not affected by other transactions and all the
changes the transaction performs on that snapshot are visible only to the current transaction
before commit. A read-only transaction can commit directly after finishing read from its snap-
shot. However, an update transaction commits only if there is no write-write conflict with any
other concurrent committed transactions. Once the transaction commits, it produces a new
version of the database and all the changes made become visible to newly started transactions.

2.5 Cloud Computing and Virtual Machines

Traditionally, cloud computing was used to refer to the Internet. Nowadays it defines the com-
puting resources which are being deployed over the Internet in order to enable the application’s

3



owners to exploit these resources and pay for their use. This technology enables the computing
consumers to invest in their applications by adding new capacities on demand, without invest-
ing in new hardware, software platforms, or training new stuff. Cloud computing consists of a
hardware layer which is a set of server clusters that run a virtual operating system on top of
them. Thus, these clusters are logically divided through virtual machines (VM).

A VM is the lowest level software abstraction that runs on top of a minimal operating system.
It is a software that can deploy and run programs like any standalone operating system. Several
VMs can be installed on the same server with a solid isolation between each of them, where the
underlying physical resources have to be managed and allocated to each VM depending either
on demand or as a fixed quota.

The cloud customers are offered any of the following services:

– Infrastructure as a Service (IaaS), where a unit of computer hardware is offered as a virtual
machine.

– Platform as a Service (PaaS), where not only hardware resources but also a development
and runtime environment is offered, such as programming language execution environment,
database, and Web server.

– Software as a Service (SaaS); by allowing the customers to consume an application over
the Internet instead of installing it locally and eliminating the need to install and run the
application as well as simplifying system support.

In general, the cloud providers use data centres to host their resources and provide easy
access to them. A data centre is a facility that houses computer machines and associated
components, such as storage system, backup devices, and routers. Normally, a data centre
contains racks of servers where each can run a standalone operating system and is dedicated to
one resource-hungry application or, at the other extreme, hosts several VMs and each VM will
be allocated to one small to medium application.

2.6 Replication

Replication is a widely used approach for data-intensive applications to distribute the workload
equally among different replicas in order to achieve higher performance and at the same time
provide a robustness against failure by letting other replicas take over once a replica fails.

In a multi-tier architecture, any tier could be replicated. However, database replication is
a widely known approach that consists of a set of database servers each having a copy of the
full database. database replication can be classified based on whether all replicas are able to
accept update transactions that change the database state. In a multi-master approach, every
replica is able to perform any read or write operation and is responsible for propagating any
write operation to the other replicas. On the other hand, a single-master approach requires the
write operations to be submitted and executed exclusively in the master replica, which then
propagates them to other replicas, while any replica can process the read operation. In general,
the multi-master approach is more flexible, but it needs a solid concurrency control mechanism
to isolate concurrent transactions on different replicas. In a single master approach concurrency
control is easier, since all concurrent update transactions can be detected at the single master.
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2.7 Distributed Systems’ Adaptability

Distributed system performance is heavily affected by the workload the system handles. While
the service providers aim to maintain a certain level of QoS, it becomes a non-trivial task
to guarantee such a level at peak service demand times. Adaptability is a new concept that
aims to enable the system to dynamically manage itself, continuously optimize its performance,
detect failures and try to fix them [18]. Thus, the goal of adaptability is to minimize human
involvement in managing the system as well as to enhance its performance.

2.8 Caching

Caching increases the level of system performance by storing the data that was previously
accessed by clients in the front-end server. So, for subsequent requests, the local cache will be
checked to see if the associated data exists; if the data is stored in the cache, then the front-end
server returns it back to the client; otherwise, the request will be sent to the back-end server.
Caching enhances the performance by lowering the client response time and minimizing the
back-end bottleneck probability on peak demand.

3 Adaptability

Research on distributed systems’ adaptability tries to enhance system performance and pro-
vides the system with the capability to take necessary ad-hoc actions in order to maintain
its availability and scalability. Such actions include distributing load between different servers,
allocating or deallocating physical resources, and upgrading or degrading their service. At the
beginning, we will discuss load balancing, then resource allocation, and finally service level
controlling.

3.1 Load Balancing in Replicated Database

In a replicated database, the load balancer routes the transactions to the different replicas in a
way that reduces the replica overload and at the same time achieves a faster query execution
than a standalone database. Different load balancing strategies can be used, such as round
robin or least active connections(route the request to the server which has least number of
connection), which are able to balance the load well, but they can lead to poor performance by
causing memory contention.

Elnikety et al [9] develop a memory-aware load balancing which works by distributing the
transactions among replicated databases in a way that avoids memory overhead and reduces
disk I/O. To achieve this goal, the authors assume a database application with a predefined
set of transaction types; the goal becomes how to group different transaction types and then
allocate each group to a set of database replicas in a way that allows transaction processing to
occur in the local memory and, hence, reduce the disk I/O operations.

Transaction grouping can be done based on their database working set (tables and indices
accessed by a particular transaction). Several grouping techniques were introduced that exploit
the transaction information:
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1. Transaction type, like placingOrder, browseCategories, browseRegions
2. Working set size, which represents the size of the tables and indexes used by a particular

transaction type
3. Working set content, by knowing which tables and indexes are used by a specific transaction

type.
4. Working set access pattern, which takes into account the access pattern of query execution.

After getting the estimated working set information, transaction types can be grouped using
different methods:

1. Memory Aware Load Balancing-Size only (MALB-S), which groups transaction types so
that the sum of all working set sizes fits into the memory of one replica. Overlap of working
sets is not considered. For example, suppose there are two transaction types T1 and T2. T1
uses tables A and B, while transaction T2 uses tables B and C. Then the estimated memory
size needed for both transactions is A+B+B+C.

2. MALB-SC (Size+Content), the same as MALB-S but it avoids re-counting the shared (over-
lapped) content. So in the previous example, the total table size is A+B+C.

3. MALP-SCAP(Size +Content Access Pattern), the same as MALB-SC but it has extra knowl-
edge of linearly scanned tables.

At the start of execution, each group gets allocated a set of replicas that will process trans-
actions of this group. To dynamically reallocate, the loadbalancer calculates the load for each
group by averaging the CPU and disk utilization for all replicas assigned to that group. Then it
compares the loads of the different groups and allocates extra replicas to the most loaded group
by borrowing them from the least loaded one. Moreover, there is a possibility to re-allocate
more than one replica at a time in order to avoid poor performance.

To further enhance the performance, an update filter approach was used. The update filtering
allows the tables that were not used by a certain replica to be outdated. Only replicas that
access a certain table will receive all updates on this table as they occur. Hence, the overhead
of immediately reflecting updates on all replicas is reduced.

3.2 Dynamic Physical Resources Allocation

In a dynamic Web system with fluctuating workloads, the static provisioning of allocating ma-
chines to each application scales poorly and causes underutilization of resources, since the load
varies over time. Thus dynamic resource allocation aims at dynamic reallocation of machines to
each application over time according to the current workloads of the different applications. The
task of allocating or deallocating machines to a certain application is done by a Resource Man-
ager (RM) that receives performance feedback periodically from different machines; and based
on it, it makes the proper resource allocation decision and multicasts it to the participated
machines.

3.2.1 Dynamic Machines Allocation In [17, 18], the authors exploit a Reinforcement
Learning (RL) approach to adapt the system to the optimal resource allocation decision. RL
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can be defined as the process of learning in an arbitrary environment by taking an action and
noticing the consequences of that action. The intention is to generate a policy that will optimize
the long term goal.

In particular, the problem was treated as a Markovian Decision Process (MDP), which is
a mathematical optimization framework. MDP represents a system that consists of different
states and, at a certain time, chooses to move to the next state by taking a certain action and
getting an immediate reward. To learn the MDP policy, the authors utilize the SARSA method
that runs in association with each application.

Once the system starts, each application receives the number of allocated machines from
the RM and registers the average request demand. In turn, the application monitors the aver-
age response time, which is used to express the reward value. Therefore, a low response time
receives a high reward, while a high response time receives a negative reward. At each step, the
application updates its own value function table, which is a two-dimensional array; each entry
on it represents the result of a SARSA function with different configurations of the number of
machines and average request demand.

Periodically, the RM requests the value function from each application, and uses it to com-
pute the optimal resource allocation. The RM simply maximises the summation of value func-
tions by joining all possible allocations and picking the allocation policy that achieves the
highest global reward, and sends it back to the different applications.

3.2.2 Dynamic Backend Database Provisioning Not unlike dynamic resource allocation,
dynamic service provisioning aims to determine the systems’ physical needs to maintain a
certain level of QoS according to fluctuating workloads. An analytical model to predict the
response time as well as the system throughput for a replicated database from a stand-alone
database is presented in [8].

Basically, the model assumes that a given number of clients submit a given number of
transactions per second to a given number of replicas. The transactions are a mixture of read
and write operations with a fixed ratio between them. Furthermore, the system is modelled as a
closed-queueing network in which the CPU and disk of each database replica are considered as
a service centre with a queue. The service times are taken by measurements from a standalone
database. Other tasks such as communication, load-balancing, and certification are modelled
as a constant delay.

Since the replicated database could be either a single master approach or a multi-master
approach, a solution for each of them is proposed based on a snapshot isolation concurrency
control. The model first estimates the time needed for each transaction in a standalone database
system by finding the required service time for both transaction types: read-only and update
transactions. For update transaction, there is a probability to abort if conflict occurs. Thus,
the model takes into consideration the abortion probability and finds the average service time.

After that, the model is extended to cover a multi-master replicated database. The cost
model is the same as the standalone approach, except it considers the cost for propagating
write sets between replicas. Also, the single master model is almost the same as the multi-
master but it is more complex, since all read transactions have to be executed in the slave
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nodes while the update transactions have to be forwarded to the master node, and then the
changes have to be propagated to the slaves.

Instead of predicting the database scalability in advance as described in [8], the authors in
[6] describe a dynamic provisioning of database replicas depending on the application demand.

There are two ways to determine the number of replicas needed. One is reactive provisioning
where the RM allocates or removes replicas from the system depending on the previous system
performance.

The other is proactive, where the RM dynamically predicts the future state of the system and
determines whether to add or remove replicas. More specifically, the RM predicts the status of
the application for the next time period and classifies it into two categories: the status is within
an acceptable response time range or the range is violated. If the predicted future response time
is going to be above a certain threshold, then another replica will be added. Otherwise, if the
response time is below a certain threshold, the RM triggers a replica removal.

Since replica addition is costly owing to data migration and system instability, the RM enters
a tentative removal state after removing some replicas. In such a state, the replica continues to
be updated but it is not used for load balancing read quires. After a certain time, if the average
response time is still under the low threshold, then the replica is removed.

Another way of stabilizing the Web enterprise servers’ performance under a heavy workload
is by controlling the service level on the resource-intensive components. The service level adap-
tation can be found in many Web applications; for example, limiting the size and precision of
a search result, approximating sort result, and resolution of video streaming.

In [13], Philippe et al introduce a dynamic approach where an RM controls the level of
service by upgrading it when there is low load and degrading it in an over load. After the
adaptation has been applied, the RM measures the impact of adaptation on resource usage for
improving decision making in the future.

3.3 Dynamic VMs’ configuration

VMs enable multiple operating systems to share resources on the same machine. Each VM
hosts a different application. In such an environment, distributing the physical resources, such
as CPU and memory, among different VMs can be done statically in advance, which might
cause poor performance and reduced resource utilization. Therefore, dynamic VM configuration,
which automatically redistributes the resources between different VMs based on their workload
variation, can enhance the system’s performance and cause better overall resource utilization.

In the cloud environment, some customers might have small to medium-size applications
which do not require a standalone machine to host each of them. Therefore, the cloud in-
frastructure is designed in such a way that all the hardware resources are pooled in a shared
infrastructure and applications share these resources as their demands are changing over time.
Considering the previous scenario, where a certain cloud provider hosts multi-tier applications,
the challenge becomes to propose an adaptive RM that has the ability to dynamically adjust
the resource share in different tiers in order to meet the QoS and achieve maximum resource
utilization.
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The authors in [10] implement a testbed where multiple multi-tier applications share a
common pool of physical resources. Basically, two tiers were considered for each application,
the application tier and the database tier. Each tier is hosted in a separate VM and all the
VMs of the same tier reside on the same physical machine.

The RM design, which acts as a feed-back loop, considers the system as an input-output
model. The system inputs consist of entitlement (CPU share), which represents the CPU per-
centages for both the application tier and the database tier. The output contains the CPU
utilization, which represents the ratio between the entitlement and the actual CPU usage in
addition to the QoS metrics, such as response time and throughput.

To find the relation between the input and output parameters, an experimental testbed is
set up which models a single mutli-tier application and multiple mutli-tier applications. For
a single mutli-tier application, a single testbed node or RUBiS benchmark was used, which
generates a certain workload of clients against the application. At the same time, the CPU
entitlement was changed during the experiment for both the application and database tiers.
After several experiments, a model that governs the relation between the given entitlement and
the desired response time was formulated.

The same problem of VM auto-configuration is examined in [14]. The authors exploit a RL
approach to automatically adjust a shared resource among several VMs during runtime.

To formulate the VM configuration problem as a RL task, the authors match the RL learning
parameters into a VM problem as follows: the reward function is measured by a score that
represents the ratio between the current throughput to a reference predefined throughput plus
some penalties when the response time violates a predefined value. The state space is defined by
the set of configuration parameters that affect the performance of each VM. Those parameters
are memory size, scheduler credits, CPU time. For each of the three previous configurable
parameters, there are three possible actions: increase, decrease, nop (no action).

The RM manages the VM configuration by monitoring the system feedback, which is sent
to it in regular periods. After receiving feedback, the RM chooses an action that maximizes the
total amount of reward and sends it to the different VMs.

Instead of adapting VMs that host application servers, Soror et al [15] posit different DBMS.
Each runs on a single virtual machine and handles a varying workload. In this scenario, the
RM design objective is to reduce the total resource consumption.

The cost model for each database server is challenging for two reasons. First, different
database servers use different cost models. So, for example, one could define the cost model as
the query execution time, while another could assume total resource consumption. Therefore
its assumed that all database servers define the cost as total resource consumption. Second,
the cost estimation problem depends on the database server configurations’ parameters, but
the suggested RM is given a candidate resource allocation. Therefore a mapping technique was
used which maps a candidate resource allocation to a set of DBMS configuration parameter
values.
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4 Caching in Web Enterprise Systems

Caching is a widely known technique for enhancing system performance by decreasing client
response time and reducing the number of quires accessing a back-end server. Recent research
on caching is extended to cover cloud computing and partitioning the cache objects among
several machines. However, the main concern is still data consistency between different front-
end servers as well as between the front-end server and the back-end data server.

4.1 Caching Architecture and Protocols

In [2], Attar and Ozsu present three alternative caching architectures for a two-tier architecture
with application server and database server. The proposed architectures are the following:

1. No caching or replication, in this scenario there is only one application server, and therefore,
there is no caching or consistency problem.

2. Replicating static data and application code, where a proxy is composed in each site that
contains the code and the static data and all the dynamic requests are served in the database
server. Thus, strong consistency is automatically provided.

3. Replicating static data, application code and dynamic data. This is similar to the second
case except that the dynamic content is also cached in each application server. Whenever
a requested query result is cached in the local front-end server, then the query is answered
without having to access the back-end server. Otherwise, the query is sent to the back-end
server and the answered result is cached in the local server.

In case 3, each application has a local database that acts as cache storage for the local server
and, at the same time, contains the same tables as the original DBMS in addition to two extra
columns in each table: validity to indicate if the specified row is valid, or it has been invalidated
by an update operation. The second column includes counters which keep track of each row’s
access frequency.

The query result is decomposed and stored in its corresponding local table. If the row already
exists, its counter increases by one, otherwise the counter is set to 1.

Query result caching is done by maintaining two data structures in the memory of each
application server:

1. Proxy-Side Cache Descriptor (PCD): list of elements containing pairs of query types and the
parameter values and corresponding read locks that represent the read lock in that query

2. Server-Side Cache Descriptor (SCD): the same as the above; but instead of the read lock
element, this structure contains the others server’s cache elements.

There are several choices of where to place the cache location. One is to locate it in the
application front-end server, or it can be in the database back-end server, or it could reside in
a separate machine. It is obvious that the more upfront the cache is, the shorter latency the hit
will take. However, if the cache resides in the application server, the throughput may suffer in
case of server bottleneck.
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4.2 Transparent Caching

In [3], Amza et al. study transparent caching, which presents a logical way of placing the cache
between the application server and the back-end database server. Thus, the cache will appear
to the application as a database whereas it looks an application to the database server.

The cache data structure is composed of a large hash table of cache entries. Each entry
contains basically the SQL query string and the corresponding result. Once a Web application
receives a client read requests, it checks the cache. If the result is present in the hash table,
it sends it back. Otherwise, it forwards the request to the database and caches the returned
results. In case of a write request, the cache invalidates all the cache entries related to that
query and forwards the request directly to the database to be executed.

4.2.1 Partial Scheme To increase caching efficiency, the authors in [3] propose a partitioning
scheme for insert queries. In this case, the cache will create a temp table that maps each table in
the database, so that every row in the temp table will be the same as its original database table.
Once the insert statement arrives at the cache, it is executed in the corresponding temp table
instead of being executed in the database. Upon receiving a select query, it will be executed
in the original database table in addition to an extra query that will be executed in the temp
table. The final result will be finalized by merging the two query results. However, to guarantee
consistency, the temp table entries need to be inserted into the original database table after a
certain number of rows. The advantage of this scenario is to avoid invalidating the cache entry
every time a new item is inserted in the table. Thus, the cache entries can be reused more often.

4.2.2 Detecting Coverage Another strategy to enhance cache performance is to detect
whether a query results is fully presented (coverage) in the cache or only partially presented.
Partial coverage means that part of the results of the requested query are already present in
the cache due to a previous query with more restrictive parameters. In case of full coverage, the
results will be returned to the client. If the query is partially covered, then instead of computing
the whole query again at the database, the algorithm checks the remaining results of the query
and forms a new query to send to the database. The final result will be achieved by merging
the results from the new query and the partial results already cached.

Consistency is guaranteed by using Invalidation. Invalidation is a known method to guar-
antee consistency whereby the write operations invalidate the cached objects. In more detail,
consider multiple caches, each resides in one server. Once any of the caches receives a write
query, it will forward it to the database; and, at the same time, the cache processor extracts its
accessed objects in order to invalidate them at the local cache as well as at the remote caches.
Once the local cache receives result from the database and the acknowledgements from other
caches, it sends response back to the client.

4.3 Consistent and Scalable Cache Replication

The application server replication in an enterprise’s multi-tier architecture enhances perfor-
mance of the system and increases its reliability. Moreover, using a local cache in each server
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could decrease accessing the database frequently and, thus, lessen the client response time. But
in such scenario the database is still a bottleneck and the system is more vulnerable to crashes
because it is a one-point failure. The authors in [12] resolve these problems by grouping all of the
application servers, a local cache and a local database at the same replica. Therefore, all repli-
cas are communicating with each other to maintain consistency using a group communication
system, in which there is no shared database among the replicas.

Since application server and database sever are grouped within one machine, a transaction
should be executed in the cache as well as the local database. The transaction commit has to
take place in the local cache, local database, remote caches, and remote databases. In order to
do so, the authors present a replicated cache protocol that depends on snapshot isolation at
the cache level as well as the database level. Once a transaction has committed at one site, its
changes are propagated to all other replicas, including the local one using total order multicast.
Therefore, the permanent changes will be consistent in all replicas because they all process the
writes in the same order.

To guarantee the correct snapshot is served and facilitate concurrency control, a protocol to
maintain versions for each object in the cache was proposed. The version is checked every time a
transaction has to commit to see if a particular object is being accessed by another transaction at
the time the transaction was being processed. Once the transaction is committed, the modified
version becomes global and accessible by other transactions.

4.4 Partitioning of the Cache Hierarchy

Large data centres deploy several DBMSs on the same machine that are connected with a farm
of storage devices at a lower level. The storage server is used to store the data blocks for different
DBMSs. In this design there will be two caches: One attached to the DBMS, which is known
as a buffer pool, and the second attached to the storage server.

Partitioning the cache in both locations among several hosted DBMSs is discussed in [16].
The general goal of the work is to find a partitioning caching policy (the buffer pool quota as
well as the storage cache quota for each DBMS) that will maximize the utilization for all the
DBMSs. The problem can be solved through the following steps:

1. Learn a function of the caching policy for each application. The input is caching policy and
the output is the response time.

2. Map the response time to the corresponding utility value, which is a predefined function of
the operator set to represent the QoS.

3. Solve the problem of finding the global optimal caching policy for all the applications.

5 Database Cloud

Cloud computing providers can pool database resources and offer customers a database-as-
a-service model in the form of a database cloud. The customer data could be deployed as a
platform consolidation, where multiple databases share the same physical resources. Or, on the
other hand, it could be deployed as a database consolidation, where different database schemas
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reside on a single database. However, the new cloud storage systems such as, Google BigTables
and Amazon SimpleDB, do not guarantee the ACID properties. Moreover, the level of accuracy
needed in processing a large amount of data depends on the type of processing. If it is a client
transaction, then it has to be done fast and must provide the most recent data. While large
data analytical transactions could accept long response times and sacrifice some level of data
accuracy. This section will cover some work that has been carried out to elevate the service
level of the cloud data storage as well as to achieve data processing accuracy. More specifically,
four systems will be introduced: CloudTPS, HadoopDB, ES2 ,and Percolator.

5.1 CloudTPS

Many new cloud computing storage systems like Amazon DB and Google Bigtable do not
guarantee strong consistency. For instance, the application may read stale data. Moreover, the
mentioned storage systems do not apply transactions on multiple tables. On the other hand,
they are able to provide a scalable and highly available cloud data store. CloudTPS[19] resolves
the above limitations by providing a transactional model for distributed applications in the
cloud, where cloud data storage is able to perform the ACID transactions and, thus, maintain
data consistency even in the presence of failure.

The design model of CloudTPS works within the context of mutli-tier architecture, where
there is a client accessing a cloud Web application, which in turns communicates with the back
end data storage through a Transaction Processing System (TPS).

TPS consists of a number of Local Transaction Managers (LTM), each of which is responsible
for a part of the data items. Once the system starts, the data is loaded from the cloud storage
system into the TPS layer, then each LTM is assigned a subset of the loaded data. Fault
tolerance is achieved by replicating the LTMs with their data into several nodes.

The client request is handled first by Web application, which in turn issues a transaction
to a TPS. Since TPS contains several LTMs, the incoming transaction is assigned to any LTM
that contains a subset of data accessed by that transaction. That LTM becomes the transaction
coordinator across all LTMs. The transaction is then executed and, at the end, a 2PC protocol
is used to commit or abort the transaction.

5.2 HadoopDB

MapReduce is a programming model that is capable of processing a large amount of data in
parallel. MapReduce distributes the working data set among several nodes(this step is known
as Map), and then gathers the results from different nodes into one output (reduce).

In [1], Abouzeid et al. present HadoopDB, which exploits the MapReduce programming
model by extending it to accommodate DBMS. The basic idea behind this procedure is to
connect multiple nodes of a DBMS cluster that utilizes Hadoop as a communication layer and
a task coordinator. Thus, SQL queries are distributed and executed in parallel among different
nodes using the MapReduce framework, while, at the same time, trying to push the query to be
executed to local node instead of transferring it to another node to achieve higher performance.
In general, HadoopDB capable of utilizing the power of individual DBMSs and, at the same
time, boosting the performance more than other data stores.
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5.3 ES2

A typical cloud database system has to deal with different kinds of access to data stored in
the back-end data storage. One kind is online updates initiated by the system’s clients and
known as Online Transaction Processing (OLTP), and another is periodic large-scale analytical
processing known as Online Analytical Processing (OLAP).

These two operations take place within the same domain and on the same data; however,
they are different in nature. OLTP needs the client request to be served in a low response time
and answered with the freshest data. In contrast, OLAP allows for a margin of low response
time as well as less fresh data. Therefore, any cloud data storage system design has to adapt
both scenarios to allow the system to function properly.

ES2 [4] is a cloud data storage system that supports both OLAP and OLTP within the same
framework. The system architecture has a data access interface for upper application layer and
it is responsible for receiving jobs from both OLAP and OLTP. Snapshot isolation is used for
both kinds, which allows OLAP to be executed on potentially stale but consistent data while
OLTP queries are being executed in parallel on a more recent snapshot.

5.4 Percolator

BigTables is a data storage built upon Google File System (GFS), and it is used mainly inside
Google to store massive amount of data required by Google Apps, such as Web indexing, Map
Reduce, and GoogleMaps. BigTable is not a relational database; rather, it maps two arbitrary
string values, row key and column key, in addition to a time-stamp into an associated array of
bytes.

To provide an efficient yet accurate approach to improve indexing updates, Peng and Dabek
[11] propose Percolator, a system that is able to update Web indices in incremental processing
without the need to retrieve the entire web documents. This approach allows maintaining a
large repository of documents while at the same time processing the indexing update whenever
an associated Web document is crawled.

The implementation of Percolator is built on top of BigTable and provides basically two
additional features: multi-row transaction, which adds the transactional feature to BigTable,
and the observer framework, which initiates the transaction for indexing update once page
indexing changes.

6 Conclusion

This report presents several related topics in the area of distributed systems: dynamic system
reconfiguration, caching, and cloud data storage. We discuss the latest research on configuring
distributed systems to maintain system scalability in order to achieve higher performance and
to guarantee system availability in the presence of failure. The dynamic reconfiguration aims to
distribute resources among different applications sharing the same physical machine; or, on the
other hand, it tries to determine the number of machines to be assigned to each application in
a server cluster within a dynamic workload environment. In caching, the report presents several
caching protocols and possible architectures for multi-tier systems. Finally, several database
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platforms for the cloud were discussed which focus on providing the ACID property and ex-
ploring alternative processing approaches for large data analytical transactions.
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