
Lower Bounds for the Noisy Broadcast Problem

Navin Goyal ∗

ngoyal@cs.rutgers.edu

Dept. of Computer Science
Rutgers University

Guy Kindler†

gkindler@microsoft.com

Microsoft Research
Redmond

Michael Saks‡

saks@math.rutgers.edu

Dept. of Mathematics
Rutgers University

March 26, 2006

Abstract
We prove the first non-trivial (super linear) lower bound in the noisy broadcast model,

defined by El Gamal in [6]. In this model there are n + 1 processors P0, P1, . . . , Pn, each
of which is initially given a private input bit xi. The goal is for P0 to learn the value of
f(x1, . . . , xn), for some specified function f , using a series of noisy broadcasts. At each
step a designated processor broadcasts one bit to all of the other processors, and the
bit received by each processor is flipped with fixed probability (independently for each
recipient).

In 1988, Gallager [16] gave a noise-resistant protocol that allows P0 to learn the entire
input with constant probability in O(n log log n) broadcasts. We prove that Gallager’s
protocol is optimal, up to a constant factor. Our lower bound follows by reduction from a
lower bound for generalized noisy decision trees, a new model which may be of independent
interest. For this new model we show a lower bound of Ω(n log n) on the depth of a tree
that learns the entire input.

We also show an Ω(n log log n) lower bound for the number of broadcasts required
to compute certain explicit boolean-valued functions, when the correct output must be
attained with probability at least 1 − n−α for a constant parameter α > 0 (this bound
applies to all threshold functions, as well as any other boolean-valued function with linear
sensitivity). This bound also follows by reduction from a lower bound of Ω(n log n) on the
depth of generalized noisy decision trees that compute the same functions with the same
error. We also show a (non-trivial) Ω(n) lower bound on the depth of generalized noisy
decision trees that compute such functions with small constant error.

Finally, we show the first protocol in the noisy broadcast model that computes the
Hamming weight of the input using a linear number of broadcasts.

∗Supported in part by NSF grant CCR-9988526 and a Bevier fellowship of Rutgers University
†Supported by CCR grant NCCR-0324906 and NDMS-0111298.
‡Supported in part by NSF grants CCR-9988526 and CCR-0515201.

1 Introduction

The relationships between noise, communication and computation have been studied exten-
sively. A recurring problem, arising both in theory and practice, is to minimize the additional
resources needed to obtain reliable results in the presence of noise. This problem was studied in
the context of decision trees [12, 27, 10, 8, 23], formulas and circuits [25, 15, 30, 18, 9], sorting
networks [20], cellular automata [14], quantum computation [2], data structures [13, 4], various
communication models [16, 29, 19, 28, 23] and other models [1, 7, 24, 17].

The noisy broadcast model was proposed by El Gamal [6] in 1984, and later popularized
by Yao [35], as a simple model in which to study the effect of noise in a highly distributed
system. This model considers n processors, P1, . . . , Pn, and a receiver P0. Each processor Pi

has a private input bit xi, and the goal is for P0 to evaluate a specified function f(x1, . . . , xn)
using the smallest possible number of broadcasts. Communication is carried out in synchronous
time steps: in each step a prespecified processor broadcasts a single bit to all other processors.
For some fixed noise parameter ε < 1/2, each of the other processors independently receives
the broadcast bit (with probability 1 − ε) or the complement of the bit (with probability ε).
After the final broadcast, P0 determines the output of the protocol from the bits it has heard.
If for every given input x ∈ {0, 1}n the protocol outputs f(x) with probability at least 1 − δ,
we say that it computes f with error at most δ for noise parameter ε.

In this paper we study the case where the receiver, P0, aims to output the entire input.
Thus the function to be computed is the identity function, denoted id, which is clearly the
hardest function to compute in this model. There is a simple protocol that computes id with
error δ, for any fixed δ ∈ (0, 1/2), using Θ(n log n) broadcasts: for each i ∈ {1, . . . , n}, Pi

broadcasts its bit c log n times (for some large enough constant c = c(ε, δ)) and P0 outputs
the majority value of the copies of xi it received. In 1988, Gallager [16] gave a protocol for id
using only O(n log log n) broadcasts, and this remains the best upper bound known. Previous
to this paper, the only known lower bound was the trivial Ω(n). In this paper we prove an
Ω(n log log n) lower bound, thereby showing that Gallager’s upper bound is optimal up to a
constant factor.

Related work

Kushilevitz and Mansour [19] showed that the majority function (or any other threshold func-
tion) can be computed using O(n) broadcasts. This protocol takes advantage of a rather strong
and unrealistic feature of the model: that the noise occurring in different receptions is inde-
pendent and identically distributed. To consider protocols that are less dependent on the exact
distribution of noise, Feige and Kilian [11] proposed a stronger adversarial model of noise.
Roughly speaking, this model allows an omniscient adversary to cancel any of the errors intro-
duced by the random noise, thus preventing the algorithm from taking advantage of stochastic
regularities in the noise. Feige and Kilian showed that even against this stronger adversary OR
can be computed in O(n log∗ n) broadcasts. Newman [23] improved this to O(n) broadcasts
(Newman stated his result for a weaker adversarial model, but his result easily carries over to
the stronger adversarial model of [11].)

Some results in closely related models are also worth mentioning: efficient error resilient
protocols were given for the noisy two party communication complexity by Schulman [29], and
for noisy communication networks with small degree by Rajagopalan and Schulman [26].

1.1 Our results

In this paper we prove that Gallager’s O(n log log n) protocol for id is optimal:

Theorem 1. Let ε ∈ (0, 1/2) be any noise parameter, and let β ≥ 1 and n be a positive integer.
Let A be a (possibly randomized) noisy broadcast protocol for n processors using at most βn
broadcasts. If A is executed with noise parameter ε on a random input X distributed uniformly
in {0, 1}n, then the probability that the receiver outputs X is at most√

1

n
+

48β2 log(1/ε)

ε4β log n
.

This immediately gives,

Corollary 2. Let ε ∈ (0, 1/2) be any constant. Then any noisy broadcast protocol which com-
putes the identity function with error at most 1/3 for noise parameter ε, requires Ω(n log log n)
broadcasts.

Our lower bound is formulated for the original noise model of El Gamal; trivially, it also
holds for the adversarial noise models as well. Previously, no superlinear lower bounds were
known even for the adversarial noise model.

Generalized noisy decision trees. Our lower bound for the noisy broadcast model is ob-
tained by reducing that model to a new model, which we call the generalized noisy decision
tree (gnd-tree) model. This model, which may be of independent interest, considers a more
centralized computational setting where a single decision tree attempts to evaluate a function
of the boolean input x. The gnd-tree does not have direct access to x—instead it has access to
an unlimited number of noisy copies of x. In each noisy copy of x each bit is complemented
independently with some fixed probability ε < 1/2. At each step the tree selects one of the
copies of x, and asks for the evaluation of any boolean-valued function at that copy. (A precise
definition of the model appears in Section 2.)

The gnd-tree model can be seen as a generalization of the noisy decision tree (nd-tree)
model introduced by Feige et al. [12]. The nd-tree model is obtained by restricting the gnd-tree
model to coordinate queries, namely queries q of the form q(y1, . . . , yn) = yi, i ∈ {1, . . . , n}.
The computational power of these two models is not the same: the majority function requires
Ω(n log n) queries by an nd-tree [12], but can be computed with just O(n) queries using a gnd-
tree, by adapting the aforementioned noisy broadcast protocol for majority due to Kushilevitz
and Mansour [19].

The proof of Theorem 1 has two parts. The first part is a reduction that takes a protocol in
the noisy broadcast model and simulates it by a gnd-tree. The second (and more substantial)
part is a lower-bound on the depth of gnd-trees required to compute the identity function. It
seems that proving lower bounds for gnd-trees is easier than proving them directly for the noisy
broadcast model, because the former model is more centralized, making it easier to analyze the
progress made in intermediate steps of the computation.

Note that id can be easily computed by a gnd-tree (indeed, even by an nd-tree) of depth
O(n log n): the tree just needs to query the value of all coordinates of O(log n) noisy copies of
the input, and output the bitwise majority of the copies. Our main lower bound for gnd-trees
implies that this protocol is within a constant factor of optimal.

Theorem 3. Let ε ∈ (0, 1/2) be a noise parameter and let n be a positive integer. If a (possibly
randomized) gnd-tree T of depth d is run on an input X chosen uniformly from {0, 1}n, with
noise parameter ε, then the probability that T outputs X is bounded above by

1√
n

+
6 log(1/ε)

ε2 log n
·

(
d

n
+

√
d

n

)
.

In particular, when d ≥ n, the probability that T outputs X is bounded above by

1√
n

+
12 log(1/ε)

ε2 log n
· d

n
.

Decision functions A significant problem left open by Theorem 1 is whether there are
decision functions (functions that output a boolean value) that require a superlinear number
of broadcasts in the noisy broadcast model. While it seems intuitively clear that there should
be such functions, proving this seems difficult. Counting arguments do not seem useful here
because the number of possible protocols grows too quickly as a function of the number of
broadcasts. On the other hand the linear upper bound on threshold functions of Kushilevitz
and Mansour [19], as well as our linear protocol for computing Hamming weight mentioned
below, indicate that it may be difficult to prove a superlinear lower bound for an explicit
function.

Proving lower bounds for decision functions in the gnd-tree model is even more problematic
than in the noisy broadcast model. It is trivial that in the noisy broadcast model every function
that depends on all of its variables needs at least n broadcasts in worst case (since the choice of
who broadcasts is fixed in advance). For gnd-trees, however, we cannot rule out the existence of
trees of sublinear depth even for functions whose (noiseless) decision-tree complexity is linear
(also, there are highly non-trivial functions whose decision-tree complexity is sublinear, and can
also be computed in sublinear depth by gnd-trees). We don’t know of any simple arguments
that yield linear lower bounds for gnd-trees computing decision functions, or even bounds of
the form n1−α for small positive α > 0.

Our proof of Theorem 3 is based on the idea that it is hard for a gnd-tree or a noisy
broadcast protocol to distinguish an input from its immediate neighbors. This suggests the
parity function as a candidate for proving superlinear lower bounds. It turns out, however,
that any boolean function output depends only on the Hamming weight

∑
i xi of the input can

be computed in the noisy broadcast model with a linear number of broadcasts:

Theorem 4. For any ε, δ ∈ (0, 1/2) there is a noisy broadcast protocol that computes the
Hamming weight of the input with probability of error at most δ for noise parameter ε, which
uses cn broadcasts for some constant c = c(ε, δ). Therefore every symmetric boolean can be
computed using a linear number of broadcasts.

Similarly, there exists a gnd-tree that computes
∑

i xi with error at most δ for noise param-
eter ε and has depth dn for some constant d = d(ε, δ).

Our protocol for computing the Hamming weight of the input borrows some of the ideas
from the majority protocol of [19]. While it is somewhat surprising that such a protocol exists, it
has the same drawback as the majority protocol: it relies heavily on the unrealistic assumption
of the model that every bit received experiences independent noise precisely ε.

Lower bounds for decision functions. We are able to get some non-trivial lower bounds
for computing decision functions, both in the noisy broadcast model and for gnd-trees, by
adapting the techniques from the proof of Theorem 3. Our bounds for computing a boolean
function f depend on its sensitivity, sf . The sensitivity of a function f is the maximum, over
all x ∈ {0, 1}n, of the number of neighboring inputs y (inputs y that differ from x on one
coordinate) for which f(y) 6= f(x). In particular, s(f) = n for AND,OR, and PAR, and is at
least n/2 for any symmetric boolean function. Our results, which are more accurately stated
and proved in section 5, are summarized below:

Theorem 5. Let ε, δ ∈ (0, 1/2) and α > 0 be fixed constants. Let f : {0, 1}n → {0, 1} be any
decision function, and let s = s(f) denote the sensitivity of f . Then

• The depth of any gnd-tree that computes f with error at most δ for noise parameter ε, is
at least Ω(s).

• The depth of any gnd-tree that computes f with error at most n−α for noise parameter ε,
is at least Ω(s log(s)).

• Any noisy broadcast protocol that computes f with error at most n−α for noise parameter
ε, requires Ω(s log log(s)) broadcasts.

1.2 Organization

In Section 2 we formally define the noisy broadcast and gnd-tree models. We then state a
reduction theorem between noisy broadcast protocols and gnd-trees, and use it to show that
Theorem 3 implies Theorem 1. Section 3 contains some technical preliminaries for the proofs
of the main results. The proof of Theorem 3 is given in Section 4. Section 5 contains the
precise statements and proofs for our lower bounds on decison functions. Section 6 proves the
reduction theorem, showing how to simulate noisy broadcast protocols by gnd-trees. Section 7
we give our variant of Gallagher’s O(n log log n) noisy broadcast protocol for id and in section
8 we give our linear noisy broadcast protocol for computing the Hamming weight of the input.
We conclude the paper with some open problems in section 9.

2 The noisy broadcast model and gnd-trees.

In this section we begin by defining the noisy broadcast and generalized noisy decision tree
models. Next, we state a general reduction lemma from the first model to the second and use
this lemma to derive Theorem 1 from Theorem 3.

2.1 Noisy copies

Let ε ∈ (0, 1/2) be a noise parameter. An ε-noise bit is a {0, 1}-valued random variable that
takes value 1 with probability ε. An ε-noise k-vector N is a sequence of k independent ε-noise
bits.

For a bit-vector x ∈ {0, 1}k, an ε-noisy copy of x is a random variable of the form x ⊕ N ,
where ⊕ denotes the bitwise XOR, and N is an ε-noise k-vector. More generally, if X is any
random variable taking values in {0, 1}k an ε-noisy copy of X is a random variable of the form
X ⊕N , where N is an ε-noise k-vector chosen independently from X.

2.2 Computation under noise

In standard computation models, a deterministic computation is determined by its input, and a
randomized computation is determined by the input and some auxiliary independent unbiased
random bits.

We will discuss several models for computing in the presence of noise. In such models, the
computation also depends (in some specified way) on a boolean vector N that represents the
noise that affects the computation. It is assumed that N is a ε-noise vector for some ε ∈ (0, 1/2),
and that N is independent of any random bits used by the algorithm.

For δ ∈ [0, 1] we say that an algorithm computes a function f with error at most δ against
ε-noise if for each input x, the algorithm outputs f(x) with probability at least 1−δ, where the
probability is taken with respect to the auxiliary random bits of the algorithm and the ε-noise
vector N .

2.3 The Noisy Broadcast Model

The noisy broadcast model considers one receiver P0 and n processors P1, . . . , Pn. The input is
a boolean vector x of length n, and each of the processors Pi initially has coordinate xi. The
goal is for P0 to evaluate a specified function f at x. This goal is to be accomplished by a noisy
broadcast protocol.

The specification of a noisy broadcast protocol consists of:

• The number s of broadcasts used in the protocol.

• A sequence i1, . . . , is of indices of processors (with repetitions allowed).

• A sequence g1, . . . , gs of broadcast functions, where gj : {0, 1}j −→ {0, 1}.

• An output function h which is defined over the domain {0, 1}s.

Running a protocol. The execution of a noisy broadcast protocol A depends on the input
x, and on a noise vector N . We will think of N as a concatenation of s independent noise
vectors N1, . . . , N s, each of length n + 1. In the j’th step of the execution of A the processor
Pij broadcasts a bit bj and each of the other processors receives an independent noisy copy of
bj. Formally, Ph receives bj

h = bj ⊕ N j
h; it will be convenient (but unimportant) to regard Pij

as receiving a noisy copy bj
j = bj ⊕N j

j of his own message. The bit bj broadcast by Pij at step
j is gj evaluated at the j-vector consisting of Pij ’s input bit and the j − 1 bits received by Pij

during the first j − 1 rounds. Thus bj = gj(xij , b
1
ij , b

2
ij , . . . , b

j−1
ij

). The output of the protocol is
h(b0

1, . . . , b
0
s), that is, the value of h on the s-vector of bits received by P0.

The randomized version of the model is defined in the natural way. each processor has
access to a source that generates independent random bits where the processor has the ability
to specify the bias of each successive bit. The function gj determining the bit broadcast by Pij

may depend on the random bits generated by Pij .
Our version of the noisy broadcast model is similar to that of Gallager [16]. Other minor

variants of this model have been proposed, e.g., there is no receiver P0, and the goal of the
computation is for all of the processors to learn the correct value of f(x). These differences are
not significant, as protocols in one model can easily and efficiently be simulated in another.

This model enforces certain properties typically required of communication protocols in
noisy environments. First, protocols must be oblivious : in the sense that the sequence of
processors who broadcast is fixed in advance and does not depend on the execution. Without
this requirement, noise could lead to several processors speaking at the same time. Second, it
rules out communication by silence: when it is the turn of a processor to speak, it must speak.

2.4 Generalized Noisy Decision Tree Model

The generalized noisy decision tree (gnd-tree) model is a centralized computation model in
which an algorithm seeks to evaluate f on input x ∈ {0, 1}n by asking queries. The algorithm
has no direct access to the input x. Instead, there is a collection (yλ : λ ∈ Λ) of independent
ε-noisy copies of x; here Λ is an arbitrary index set. In each step, the algorithm is allowed to
make an arbitrary boolean-valued query about any one of the noisy copies.

Formally, a generalized noisy decision tree algorithm (gnd-tree) is represented by a rooted
labeled binary tree. Each internal node v is assigned a copy type λv ∈ Λ and a query function
qv : {0, 1}n −→ {0, 1}. The two arcs out of internal node v are labeled by 0 and 1. Each leaf v
is labeled by an output value outv.

The noisy copies y1, y2, . . . of x determine a unique root-to-leaf path, called the execution
path as follows: start from the root r and follow the arc labeled by the output of qr evaluated
at noisy copy yλr to a new node. Upon arriving at internal node v, evaluate qv(y

iv) and follow
the indicated arc. The output of the computation is equal to the output value outv labeling
the leaf.

We also consider randomized gnd-trees. For our purposes, a randomized gnd-tree is simply
a probability distribution over gnd-trees.

2.5 Proof of Theorem 1 via reduction

Let us now state a reduction theorem between the noisy broadcast model and the gnd-tree
model, and show how it can be used to deduce Theorem 1 from Theorem 3.

To state the reduction theorem we need some notation. For K ⊆ [n], we refer to a point
in {0, 1}K as a partial assignment to K. If ρ is a partial assignment to K and x is a partial
assignment to [n]−K we write xρ for the point in {0, 1}n that agrees with ρ on K and with x
on [n]−K.

Theorem 6. Let α > 1, and ε ∈ (0, 1/2). Suppose P is a noisy broadcast protocol that uses
k broadcasts. Then there is a subset K ⊆ [n] of size at most n/α such that for any partial
assignment ρ to K there is a gnd-tree T of depth 2k with input variables indexed by [n] − K
with the following property: for any x ∈ {0, 1}[n]−K, when T is run on x with noise parameter
εαk/n, the output distribution is exactly the same as that of the output of P when run on xρ
with noise parameter ε.

The proof of this theorem appears in Section 6. Now we can deduce Theorem 1 from
Theorem 3.

Proof of Theorem 1 from Theorem 3. Suppose that for some β ≥ 1, A is a βn-step noisy
broadcast protocol that computes idn against ε-noise with some probability of correctness .
Choosing α = 2 in Theorem 6, we have a gnd-tree of depth 2k that computes iddn/2e against

ε2β-noise with the same probability of correctness as A. By Theorem 3, the probability that
this gnd-treeis correct is bounded above by:

1√
n

+
12 log(1/ε2β)

ε4β log n
(2β) ≤

1√
n

+
48β2 log(1/ε)

ε4β log n
.

This completes the proof of Theorem 1.

3 Preliminaries to the proof of Theorem 3

In this section we present some preliminary notation, conventions, and technical facts.

Some notation. We use log to denote logarithm in base 2. When n is implicit from the
context, we use ei to denote the point in {0, 1}n whose i’th cooridnate is 1 and whose other
coordinates are 0. The point with all zero coordinates is denoted 0.

3.1 Entropy and relative entropy.

We use some basic notions from information theory. In that context, we consider terms of the
form 0 log 1

0
or 0 log 0

0
to have value 0. For a random variable X taking values in a finite set A,

the binary entropy of X is given by:

H [X] :=
∑
x∈A

Pr[X = x] log
1

Pr[X = x]
. (1)

If another random variable Y , taking values in a finite set B, is defined over the same probability
space as X, the conditional entropy of X given Y is defined by

H [X|Y] :=
∑
y∈B

Pr[Y = y]H [X|Y = y] . (2)

For two probability measures p and q defined over a finite set A, the relative entropy between
p and q, denoted D(p‖q) is defined by

D(p‖q) :=
∑
x∈A

p(x) log
p(x)

q(x)

(if q(x) = 0 for an x where p(x) 6= 0 the relative entropy is infinite). Entropy and relative
entropy satisfy the following inequalities (see, e.g., [5]):

Fact 7. For X, p, q, and A as above, we have:

D(p‖q) ≥ 0.

H [X] ≤ log |A|.

3.2 Some estimates for logarithms

The Taylor series

ln(1 + x) =
∑
n≥1

(−1)n+1xn

n
,

which is valid for x ∈ (−1, 1), implies that the following functions are continuous and differen-
tiable for all x > −1.

a(x) =

{
ln(1+x)

x
if x 6= 0,

1 if x = 0
(3)

b(x) =

{
ln(1+x)−x

x2 if x 6= 0

−1
2

if x = 0
(4)

Proposition 8. The function a is positive and decreasing on (−1,∞), and the function b is
negative and increasing on (−1,∞).

Proof. For x ∈ (−1, 0) ∪ (0,∞), a′(x) = g(x)
x2 where g(x) = x

1+x
− ln(1 + x). To prove the

statement concerning the function a it thus suffices to show that g(x) ≤ 0 for x > −1. This
follows from the fact that g(0) = 0, and that g′(x) = −x

(1+x)2
which is positive for x < 0 and

negative for x > 0.
Next we prove the statement about the function b. Since x > ln(1 + x) for all x ∈ (−1, 0)∪

(0,∞) it follows that b(x) < 0 for all x ∈ (−1,∞). To show that b is increasing, we show that b′

is nonnegative. Using the Taylor expansion of ln(1+x) around 0, we have that for x ∈ (−1, 1),

b′(x) =
∞∑

n=0

(−1)n n + 1

n + 3
xn.

Thus b′(0) = 1
3

and for x < 0, each term in the second sum is positive so b′(x) > 0. For x > 0,
it suffices to show that the numerator of b′(x) = (x2 + 2x − 2(1 + x) ln(1 + x))/x3(1 + x) is
positive. The numerator is 0 at x = 0 and has derivative 2(x− ln(1 + x)) which is positive for
all x > 0.

Corollary 9. Let ε ∈ (0, 1
2
) and x ≥ ε− 1. Then:

1. 0 < a(x) ≤ 2 ln(1/ε)

2. 0 > b(x) ≥ −2 ln(1/ε).

Proof. Using Proposition 8 and ε ≤ 1/2 we have

0 < a(x) ≤ a(ε− 1) = ln(1/ε)/(1− ε) ≤ 2 ln(1/ε),

and thus the first part holds.

As for the second part, 0 > b(x) follows from Proposition 8. Also, since b is negative and
increasing it remains to show that |b(ε−1)| ≤ 2 ln(1/ε). We consider two cases: if ε ≤ 1−1/

√
2

then it is easy to see that

|b(ε− 1)| ≤ ln(1/ε)

(1− ε)2
≤ 2 ln(1/ε).

If ε > 1 − 1/
√

2, since a is decreasing we have a(ε − 1) ≤ a(−1/
√

2) which by direct
computation is less than 2. From this and ε ≤ 1/2, we get

|b(ε− 1)| = a(ε− 1)− 1

1− ε
=

2a(ε− 1)− 2

2(1− ε)
≤ a(ε− 1)

2(1− ε)
=

ln(1/ε)

2(1− ε)2
≤ 2 ln(1/ε).

Proposition 10. Let m be defined on [0, 1] by:

m(x) =

{
x2 ln(1/x) if x 6= 0,

0 if x = 0

Then m(x) ≥ m(1− x) for all x ∈ [1
2
, 1].

Proof. Let d(x) = m(x)−m(1−x) for x ∈ [1/2, 1]. Then d is continuous and twice differentiable
on [1/2, 1] with second derivative given by d′′(x) = 2(ln((1 − x)/x). Since this is negative for
all x ∈ (1/2, 1), and m(1/2) = m(1) = 0, we conclude that m(x) ≥ 0 for x ∈ [1/2, 1].

Proposition 11. For x, y ∈ [0, 1], x log(x/y) + (1− x) log((1− x)/(1− y)) is nonnegative.

This is a well known fact; we give a proof for completeness.

Proof. Hold x fixed; it suffices to show that as a function of y, g(y) = x log y+(1−x) log(1−y)
has a maximum at y = x. Taking the derivative with respect to y and simplifying yields
g′(y) = (x− y)/y(1− y) which is positive for 0 < y < x and negative for 1 > y > x implying g
attains a maximum at y = x.

3.3 Tail bounds for sums of noise bits

We will need a standard type of tail bound for sums of noise bits.

Lemma 12. Let N be a ε-noisy n-vector. For any nonzero vector α ∈ Rn, and t > 0 we have:

Pr
N

[
∑

i

αi(Ni − ε) > t] ≤ e−2t2/‖α‖2 .

Since we don’t know a reference for this version of the bound, we provide a proof.

Proof. For any positive λ,

Pr
N

[
∑

i

αi(Ni − ε) > t] ≤ e−λtE[eλ
P

i αi(Ni−ε)]

= e−λt
∏

i

E[eλαi(Ni−ε)] = e−λt
∏

i

ε
(
eλαi(1−ε) + (1− ε)e−λαiε

)
≤ e−λt

∏
i

eα2
i λ2/8

(since for p ∈ [0, 1], peγ(1−p) + (1− p)e−γp ≤ eγ2/8 (see Lemma A.1.6 of [3].))

= e−λt+λ2‖α‖2/8.

Choosing λ = 4t/‖α‖2 yields the bound of the lemma.

4 Proof of Theorem 3

In this section we prove Theorem 3. For the rest of this section, fix T to be a gnd-tree that
supposedly computes id for inputs x ∈ {0, 1}n. The success probability of T is the probability
that T gives the correct output when run on a uniformly random input. Our goal is to give an
upper bound on the success probability of T in terms of its depth depth(T), n, and the noise
parameter ε. In the case that T is randomized, i.e., a probability distribution over deterministic
gnd-trees, its success probability is the average (with respect to this distribution) of the success
probabilities of various deterministic trees. Thus, any upper bound for deterministic trees
extends to randomized trees.

Therefore, without loss of generality, we assume that T is deterministic.

The vertices of T . Let V be the set of vertices of T . Let Λ be the set of indices of the noisy
copies of the input used by T . For an index λ ∈ Λ, V λ will denote the set of (internal) vertices
of T that query the noisy copy indexed by λ.

The execution space Υ. For noise parameter ε ∈ (0, 1/2) we define the ε-execution space
Υ = Υ(T, ε) of T to be the probability space corresponding to the choice of a uniformly random
input X ∈ {0, 1}n and an indexed family of independent ε-noise n-vectors NΛ = (Nλ : λ ∈ Λ).
For every λ ∈ Λ, Y λ denotes the ε-noisy copy of X defined by Y λ = X⊕Nλ. Y Λ = (Y λ : λ ∈ Λ)
denotes the indexed family of all noisy copies.

We say that T is executed on Υ if it is run with input X, and with access Y Λ as the noisy
copies of the input. Note that when T is executed on Υ, the unique root-to-leaf execution path
is a random variable that is completely determined by Y Λ. We define the following random
variables and events over the execution space:

• Let Π denote the leaf that terminates the execution path.

• Let success be the event that T correctly outputs the input X.

• For a vertex v, let vis(v) denote the event that v lies on the execution path. In this case
we say that T visits v.

• When the meaning is clear from context, the event X = x (for x ∈ {0, 1}n) is abbreviated
as x; especially when writing the probabality of events. For example, we may write Pr[x]
instead of Pr[X = x] and Pr [success|x], instead of Pr [success|X = x].

The progress function. As with many lower bound proofs, our proof proceeds by defining a
function that measures the progress of the computation towards its goal. We show that (1) for
T to succeed with high probability, the expected value of the progress measure at the final leaf
must be large; and (2) the aforementioned expected value is bounded by a function of depth(T),
and thus for it to be large the depth of T must be large as well.

For a vertex v in T and an input vector x ∈ {0, 1}n we define the following functions. The final
function L serves as our progress measure.

p(v, x) = Pr [vis(v)|X = x] ,

Li(v, x) = log

(
p(v, x)

p(v, x⊕ ei)

)
for i ∈ {1, . . . , n}, (5)

and L(v, x) = 1
n

∑n
i=1Li(v, x).

Some intuition. Theorem 3 gives an upper bound on the success probability of T in terms
of its depth, or equivalently, on the number of queries it makes. Let us consider the most
interesting case, where the success probability is at least some constant, say 1/2. In this case
the theorem gives a lower bound of Ω(n log n) on the number of queries.

To prove this lower bound using a progress measure, we want to show that in order to succeed
with high probability, the expectation of the progress measure achieved by T at the completion
of its computation must be higher than some threshold τ . We then want to show (roughly)
that the progress measure achieved by any gnd-tree making o(n log n) queries is smaller than
τ .

So how does one measure the progress made by T after the computation has reached a
vertex v? One natural choice would be to look at H[X]−H[X|vis(v)], the reduction in entropy
of the random input X provided by knowing vis(v). Initially, at the root, this is equal to 0,
and it is not hard to show that for any gnd-tree that outputs X correctly with probability 1/2
the expectation of this expression must be at least Ω(n). To prove our result, we’d like to show
that Ω(n log n) queries are needed to reduce the entropy of X by Ω(n), but this is not true: if
we query all n coordinates of a single noisy copy, then the expected reduction of entropy in X
is already Ω(n).

The reason for this is that querying each coordinate once already gives us, w.h.p., a guess for
X which is correct on roughly (1−ε)-fraction of coordinates. To go from that to getting all the
coordinates right takes many more queries. Indeed, it turns out that in a sense, distinguishing
between X and its neighbors (namely from inputs that differ from it on a singly coordinate)
is as hard as figuring out all the bits of X from scratch. But although after all coordinates
have been queried once, making further queries will provide less of an entropy reduction, this
behavior is difficult to capture and use, since to show that the entropy reduction is slow one
must use the fact that certain information about X is already known. Furthermore, other
algorithms which perform different queries may have a different pattern of entropy reduction.

The progress measure L turns out to be more useful. For example, it behaves very nicely
when we restrict to coordinate queries of noisy copies of X. Indeed, the change in L due to
the response to a coordinate query in a noisy copy of X is context independent, i.e., does not
depend on the answers to any of the previous queries. (The proof of this is easy, but since

we do not need it explicitly, it is omitted.) A single coordinate query of bit i changes in Li

by Θ(1) while Lj is unchanged, so L changes by at most Ø(1/n). It is easy to show that the
expectation of the final value of L must have expectation at least Ω(log n), and thus using our
progress measure it is relatively easy to get an Ω(log n) lower-bound on the depth of a tree
computing id and only making coordinate queries. In the case of more general queries we do
not have context independence in progress measure gain, but its behavior is still nice enough
for us to control its increase as a function of the depth of T .

By rewriting the expression for L we can get further intuition. Since x is uniformly dis-
tributed we have Pr[x] = Pr[x ⊕ ei], and thus by standard laws of conditional probability the
functions Li can be written as

Li(v, x) = log
(
Pr[x|vis(v)]

)
− log

(
Pr[x⊕ ei|vis(v)]

)
. (6)

The term Pr[y|vis(v)] measures the conditional probability of the event [X = y], given that T
was run on the random input X and has reached the node v in the course of computation.
It is therefore the “perceived probability” that T assigns to y being the value of the input,
when it reaches v during the computation. Thus Li(v, x) compares the perceived probabilities
of x and its neighbor x⊕ ei and thus measures how well the computation has distinguished x
from x⊕ ei, given that it has arrived at v. L(v, x) gives an aggregate measure of how well the
computation has distinguished x from all of its neighbors. Note that while it is also important
that the computation distinguish x from points other than its neighbors, L does not take this
into account directly. Intuitively, the neighbors are the “hardest” points to distinguish x from,
so it is enough for L to only consider these.

Let us now get a rough estimate for the change in L at the completion of a successful
algorithm when the true input is x. At the beginning of the computation, when v is the root,
L(v, x) is obviously zero. At the end of the computation, when T reaches a leaf π, we expect
that T should assign a high perceived likelihood to x, say Ω(1). On the other hand, since
the sum of the perceived likelihoods of all points is 1, the average perceived likelihoods of the
neighbors of x is at most 1

n
and the concavity of the logarithm yields that L(π, x) ≥ log n−O(1).

A coarse intuition for the proof of Theorem 3 is that we bound the expected gain to L
obtained from each query by O(1

n
). Since the typical value of L(Π, X) is roughly log n (this is

the value of L at the leaf reached by the computation and the actual input on which T is run),
it follows that at least Ω(n log n) queries are typically required.

As noted above, if we restrict queries to noisy copies of individual input bits, it is easy to
show that each query changes L by at most O(1

n
). When we turn to general queries this is

no longer true, indeed one can construct situations where a single general query changes L by
much more. Nevertheless, we are able to formulate and prove a weaker statement (Lemma 14)
that suffices for our bounds.

The relation to relative entropy. We note that the functions Li and L are related to

relative entropies. For example, looking at (6) one observes that E
[
Li(Π, X)

∣∣ x] is the relative

entropy between the distribution of the leaf reached when T is run on x, and that of the leaf
reached when T is run on the i’th neighbor of x.

How we proceed. The next two lemmas formalize the above intuition, and imply Theorem 3
immediately. Lemma 13 states that for T to succeed with constant probability, the expected

value of the progress measure at Π should be at least logarithmic in n; and Lemma 14 shows
that each level of depth in T contributes at most O(1

n
) to the expectation of the progress

measure at Π (this is shown to be true not just for a random input, but even if the input is
arbitrarily fixed). The proof of Theorem 3 will be completed once we prove those lemmas.
The relatively simple proof of Lemma 13 appears below. The proof of Lemma 14, which is
considerably more involved, spans through the rest of this section.

Lemma 13. Let T be a gnd-tree with inputs in {0, 1}n. Then when T is executed over Υ(T, ε),

Pr[success] ≤ 2

log n
· E
[
|L(Π, X)|

]
+

1√
n

.

Lemma 14. Let T be a gnd-tree with inputs in {0, 1}n. When T is run over Υ(T, ε), it holds
for every x ∈ {0, 1}n that

E
[
|L(Π, X)|

∣∣ x] ≤ 3 log(1/ε)

ε2
· depth(T)

n
+

5 log(1/ε)

ε
·
√

depth(T)

n
.

Proof of Theorem 2. Since the bound on conditional expectation in Lemma 14 holds for
each x, it holds for the deconditioned expectation. Furthermore, since ε < 1/2, we can use
5 < 3/ε to get:

E
[
|L(Π, X)|

∣∣ x] ≤ log(1/ε)

ε2

(
3
depthT

n
+ 3

√
depthT

n

)
.

Substituting this into Lemma 13 yields the theorem.

Proof. (of Lemma 13). We first show that for any leaf π and input x,

Pr[x ∧ π] ≤ Pr[π]
2L(π,x)

n
. (7)

Taking logs, it suffices to show that

L(π, x) ≥ log(Pr[π ∧ x])− log(
1

n
Pr[π]). (8)

Using (5), the fact that Pr[x] = Pr[x⊕ ei], and the convexity of the logarithm function, we
have

L(π, x) =
1

n

n∑
i=1

[
log(Pr[π ∧ x])− log(Pr[π ∧ (x⊕ ei)])

]
= log(Pr[π ∧ x])− 1

n

n∑
i=1

log(Pr[π ∧ (x⊕ ei)])

≥ log(Pr[π ∧ x])− log(
1

n

n∑
i=1

Pr[π ∧ (x⊕ ei)])

≥ log(Pr[π ∧ x])− log(
1

n
Pr[π]),

as required to prove (8) and (7).
Now let A(π, x) denote the condition L(π, x) < 1

2
log(n) and let Ā(π, x) denote the comple-

mentary condition. We have

Pr[success] ≤ Pr[Ā(Π, X)] + Pr[success ∧ A(Π, X)]. (9)

Using the general upper bound E[|Z|] ≥ B Pr[Z ≥ B] for any random variable Z and positive
real B, the first term of (9) satisfies

Pr[Ā(Π, X)] ≤ 2

log n
E[|L(Π, X)|].

To bound the second term, let out(x) denote the set of leaves in T that output x. Using (7)
we have

Pr[success ∧ A(Π, X)] ≤
∑

x

∑
{π∈out(x) : A(π,x)}

Pr[π ∧ x]

≤
∑

x

∑
{π∈out(x) : A(π,x)}

1√
n

Pr[π].

Since each leaf π belongs to exactly one set out(x) and
∑

π Pr[π] = 1 this is equal to 1√
n
.

4.1 Proof of Lemma 14: Notation

The remainder of this section is devoted to the proof of Lemma 14. For brevity we fix ε for the
rest of the section, and work over the execution space Υ of T , which we also refer to as simply
the execution space . Also, note that while Lemma 14 is stated for every x ∈ {0, 1}n, it suffices
(by symmetry) to prove it in the case x = 0. We begin by defining some notation.

Restriction to x = 0. Since we prove Lemma 14 only for the case x = 0, we can use the
following simplifications in our notation. For any i ∈ [n], define

p0(v) = p(v,0) = Pr[vis(v)|X = 0]

pi(v) = p(v, ei) = Pr[vis(v)|X = ei]

Li(v) = Li(v,0) = log

(
p0(v)

pi(v)

)
L(v) = L(v,0) =

1

n

∑
i

Li(v). (10)

Progress measure for events. Let us now extend the above notation for any event A
defined over the execution space . We denote

p0[A] = Pr[A|X = 0]

pi[A] = Pr[A|X = ei]

Li(A) = log

(
p0(A)

pi(A)

)
L(A) =

1

n

∑
i

Li(A).

Progress measures for variables. Given any function F , such as L and Li, that maps
events in the execution space to real numbers, we define an operator F̃ that maps any random
variable Z over the execution space to a real valued random variable over the execution space
. Let Z be a random variable taking on values from S. Viewing Z as a function from the
execution space to S, we have that for each s ∈ S, Z−1(s) is an event. We define F̃ (Z) to
be the real valued random variable that gets value F (Z−1(s)) when Z gets value s. We abuse
notation by omitting the “∼” and writing simply F (Z).

Intuitively, the value of the random variable Li(Z) indicates how helpful the observed value
of Z is for distinguishing between the zero input from ei. The value of L(Z) indicates how well
the observed value of Z is for distinguishing the zero input from a randomly chosen neighbor.

In the case that Z is the random variable Π, the notation L(Π) as just defined coincides with
the definition we get by using the progress measure for vertices defined in (10) and evaluating
it at the random variable Π.

We define zero-conditioned expectation and entropy by

E0[Z] = E[Z|X = 0] (11)

H0[Z] = H[Z|X = 0].

The goal of proving Lemma 14, formalized using the new notation, is to show that

E0

[
|L(Π)|

]
≤ 3 log(1/ε)

ε2
· depth(T)

n
+

5 log(1/ε)

ε
·
√

depth(T)

n
. (12)

4.2 Analyzing a single event involving one noisy copy

To prove (12) we need to understand the behavior of L(Z) for certain random variables Z (par-
ticularly, for the random variable Π). We begin by understanding its behavior on particularly
simple events and variables.

Definition 15 (λ-events and λ-variables). For an index λ ∈ Λ, (i) an event over the
execution space that depends only on Y λ is called a λ-event, (ii) a random variable that depends
only on Y λ is called a λ-variable.

In this subsection we obtain bounds on L(A) and (L(A))2 for λ-events A, in terms of ε,
p0[A], and the quantities δi[A] defined by δi[A] = pi[A] − p0[A]. We then derive analogous
bounds for expectations of λ-variables.

In the remainder of this subsection we use A to denote a λ-event, and for simplicity we
often denote

p0 = p0[A]

pi = pi[A]

δi = pi − p0

Li = log(p0/pi)

when A is implicit from the context.

The following is an easy bound on pi[A]/p0[A] in terms of ε

Lemma 16. . For any λ-event A, For all i ∈ [n],

ε

1− ε
≤ p0[A]

pi[A]
≤ 1− ε

ε
.

Proof. We have

p0 =
∑
a∈A

p0[Y = a]

pi =
∑
a∈A

pi[Y = a],

and therefore

min
a∈A

p0[Y = a]

pi[Y = a]
≤ p0

pi

≤ max
a∈A

p0[Y = a]

pi[Y = a]
.

Since
p0[Y = a]

pi[Y = a]
=

{
1−ε

ε
if ai = 0

ε
1−ε

if ai = 1

the conclusion of the lemma follows.

To prove the bounds on L(A) and L(A)2, we need the following upper bound for
∑

i δi
2.

Lemma 17. For any λ-event A, ∑
i∈[n]

δ2
i ≤

2

ε2
p2

0 ln(1/p0). (13)

(where, as usual, p2
0 ln(1/p0) is defined to be 0 for p0 = 0.)

Proof. Since A depends only on Y λ, we can identify A can be identified with the subset {0, 1}n of
values for Y λ that imply the event A. The bound of the lemma will be obtained by interpreting
the quantities δi as biased Fourier coefficients (see [32]) of the characteristic function of A. For
this we need some definitions and facts.

Biased Fourier transform. Let F denote the inner product space consisting of functions
mapping {0, 1}n to R with the inner product

〈g, h〉 = EN [g(N)h(N)].

For S ⊆ [n], the biased Fourier character χS ∈ F is defined by

χS(x) =
∏
i∈S

xi − ε√
ε(1− ε)

.

In particular χ∅ is identically 1. For f ∈ F , the ε-biased fourier transform of f is the function
f̂ mapping subsets of [n] to R defined for S ⊆ [n] by

f̂(S) = 〈f, χS〉.

For ease of notation, we use f̂(i) instead of f̂({i}) and χi for χ{i}.

It is easily verified that {χS : S ⊆ [n]} is an orthonormal basis of F . It follows that for any
f ∈ F

f =
∑

S

f̂(S)χS,

and that for any g, h ∈ F ,

〈g, h〉 =
∑

S

ĝ(S)ĥ(S) (14)

For i ∈ [n], let Ti denote the linear transformation on F defined by Tif(x) = f(x ⊕ ei).
Define the constant b = 1−2ε√

1−ε
ε

. By direct computation, one obtains

〈TiχS, χ∅〉 =

1 ifS = ∅
b ifS = {i}
0 otherwise.

(15)

We now return to the proof of Lemma 17. Let f be the characteristic function of the set A.
Using the definitions and the facts above we have

p0 = 〈f, χ∅〉,
pi = 〈Tif, χ∅〉 =

∑
S

f̂(S)〈Ti(χS), χ∅〉 = f̂(∅) + bf̂(i),

δi = bf̂(i).

We thus have that
∑

i(δi)
2 = b2

∑
f̂(i)2. The proof of Lemma 17 will therefore be completed

once we prove the following lemma.

Lemma 18. Let f : {0, 1}n −→ [0, 1] be any function. Then∑
f̂(i)2 ≤ 2

ε(1− ε)
(f̂(∅)2 ln(1/f̂(∅)).

Lemma 18 is a generalization to the biased case of a lemma from [33].

Proof. Let S(f) =
∑

f̂(i)2, and let g ∈ F be the function g =
∑

i f̂(i)χi. By equation (14),

S(f) = 〈f, g〉.

Defining ` ∈ F by `(x) =
∑

i f̂ixi and µ = EN [`(N)] = ε
∑

i f̂i we have that for all x,

g(x) =
`(x)− µ√
ε(1− ε)

.

Consequently, we have from Lemma 12 that

Pr[g(N) ≥ s] = Pr[`(x)− µ ≥ s
√

ε(1− ε)] ≤ e−2ε(1−ε)s2/S(f).

Since f(x) ∈ [0, 1] for every x, it holds for any positive parameter t that

S(f) = 〈f, g〉
≤ tEN [f(N)] + EN [(g(N)− t)1{g(N)>t}]

= tf̂(∅) +

∫ ∞

s=0

Pr[g(N)− t > s]ds

= tf̂(∅) +

∫ ∞

s=t

Pr[g(N) > s]ds

≤ tf̂(∅) +

∫ ∞

s=t

e−2ε(1−ε)s2/S(f)ds

≤ tf̂(∅) +
1

t

∫ ∞

s=t

se−2ε(1−ε)s2/S(f)ds

= tf̂(∅) +
S(f)

4ε(1− ε)t
e−2ε(1−ε)t2/S(f).

Choosing t =

√
S(f)√

2ε(1−ε)

√
ln(1/f̂(∅)) in the last expression yields

S(f) ≤
f̂(∅)

√
S(f)√

2ε(1− ε)

√ln(1/f̂(∅)) +
1

2

√
ln(1/f̂(∅))

 .

Now assume that f̂(∅) ≤ 1/2. In this case the second summand is bounded above by the
first, and we get

S(f) ≤

√
2S(f)

ε(1− ε)
f̂(∅)

√
ln(1/f̂(∅)),

which implies the desired inequality

S(f) ≤ 2

ε(1− ε)
f̂(∅) ln(1/f̂(∅)).

Now if f̂(∅) > 1/2 (it always holds that f̂(∅) = E[f] ≤ 1), take h = 1−f . Then ĥ(∅) ≤ 1/2,
and we have

S(f) = S(h) ≤ 2

ε(1− ε)

(
ĥ(∅)2 ln(1/ĝ(∅))

)
. (16)

Since f̂(∅) = 1−ĝ(∅) we may, using Proposition 10, replace ĝ(∅) by f̂(∅) in (16). This completes
the proof of Lemma 18, and also the proof of Lemma 17.

We are now ready to state and prove the bound for λ-events.

Lemma 19. Let A be a λ-event. Then

L (A) ≤ 3 log(1/ε)

ε2n
log(1/p0)−

log e

p0n

n∑
i=1

δi (17)

L2 (A) ≤ 6(log(1/ε))2

ε2n
log(1/p0). (18)

Proof. By definition, L (A) = − 1
n

∑n
i=1 log

(
1 + δi

p0

)
= − log e

n

∑n
i=1 ln

(
1 + δi

p0

)
. To obtain (17)

we rewrite the expression for L (A) in terms of the function b defined in (4), and use the second
part of Corollary 9 together with the inequality p0/pi ≥ ε, and then use Lemma 17 to get

L (A) =
− log e

n

[
n∑

i=1

(
δi

p0

)2

b
(δi

p0

)
+

n∑
i=1

δi

p0

]

≤ log e

n

[
2 ln(1/ε)

p2
0

n∑
i=1

δ2
i −

1

p0

n∑
i=1

δi

]

≤ 3 log(1/ε)

ε2n
log(1/p0)−

log e

p0n

n∑
i=1

δi

For (18) we rewrite the expression for L (A)2 in terms of the function a defined in (3), and
obtain the chain of inequalities

L (A)2 =

(
log e

n

n∑
i=1

(
δi

p0

)
a

(
δi

p0

))2

(1)

≤

(
2 log(1/ε)

p0

1

n

n∑
i=1

δi

)2
(2)

≤

2 log(1/ε)

p0

√√√√ 1

n

n∑
i=1

δ2
i

2

≤ 4(log(1/ε))2

p2
0n

n∑
i−1

δ2
i

(3)

≤ 4(log(1/ε))2

p2
0n

2p2
0 log(1/p0)

ε2 log e
≤ 6(log(1/ε))2

ε2n
log(1/p0).

Here (1) comes from the first part of Corollary 9, (2) follows from the Cauchy-Schwartz in-
equality and (3) is obtained from Lemma 17.

We now deduce an analog of Lemma 19 for expectations of λ-variables.

Corollary 20. Let Z be a λ-random variable. Then

E0[L (Z)] ≤ 3 log(1/ε)

ε2n
H0[Z]

and E0[L (Z)2] ≤ 6(log(1/ε))2

ε2n
H0[Z].

Proof. In the following expressions, the index z ranges over values of Z. Using the definition
of L (Z) and applying (17) we get

E0[L (Z)] =
∑

z

p0[Z = z]L([Z = z])

≤
∑

z

3 log(1/ε)

ε2n
p0[Z = z] log(1/p0[Z = z]) +

∑
z

log e

n

n∑
i=1

δi[Z = z]

=
3 log(1/ε)

ε2n
H0[Z],

where the last transition is obtained by noting that the second double sum is 0 since for each
fixed i,

∑
z pi[Z = z] =

∑
z p0[Z = z] = 1 and so

∑
z δi[Z = z] = 0.

The bound on E0[L (Z)2] follows by a similar (actually simpler) calculation using (18).

4.3 Box events

In this subsection we define box events and box random variables, which are more general than
λ-events and λ-variables. We then extend the bounds from the previous section to the box
case, and apply these bounds to the random variable Π, which turns out to be a box random
variable.

Box events. A box event is an intersection of λ-events for possibly different λ’s. Any box
event B can be uniquely written as B =

⋂
λ∈Λ Bλ where each Bλ is a λ-event. A box random

variable is a random variable Z for which each of the events [Z = s] is a box event.

Our interest in box events stems from the following immediate fact.

Fact 21. For each vertex v in T the event vis(v) is a box event, and therefore Π is a box random
variable.

Let B =
⋂

λ∈Λ Bλ be a box event. The different λ-events (Bλ : λ ∈ Λ) may well be
dependent, as the variables Y λ, each being correlated with X, are dependent. We observe,
however, that once we condition on a fixed value of X they become mutually independent.
This implies the following properties for box events.

Fact 22. Every box event B satisfies

p0[B] =
∏
λ∈Λ

p0[B
λ].

Moreover, for every i ∈ {1, . . . , n},

pi[B] =
∏
λ∈Λ

pi[B
λ],

Li(B) =
∑
λ∈Λ

Li

(
Bλ
)
,

and L(B) =
∑
λ∈Λ

L
(
Bλ
)
.

(19)

Contribution of copies to progress. Looking at (19) one observes that for box events the
contribution to the progress measure of each noisy copy can be easily singled out. For a box
event B and for λ ∈ Λ we define

Lλ
i (B) = Li

(
Bλ
)
,

and Lλ(B) = L
(
Bλ
)
.

In the same way that we extended L and Li from events to random variables, we extend Lλ

and Lλ
i from box events to box random variables.

Some more notation. The following notation is used for the bounds for box random vari-
ables below. Throughout this subsection we use the letter y to denote points in ({0, 1}n)Λ

representing an assignment to Y Λ (recall that Y Λ is the set of all noisy copies of the input).

We use yλ to denote a value of Y λ. Also, writing λ̂ for the set Λ − {λ}, we use yλ̂ to denote

a value of Y λ̂, namely an assignment to all noisy copies but Y λ. In a context where a point
y ∈ ({0, 1}n)Λ is specified, we use yλ̂ and yλ to denote the restrictions of y to the λ coordinate

or the set λ̂ of coordinates respectively. We also write y = (yλ, yλ̂).

Lemma 23. Let Z be a box random variable. Then

E0[L
λ(Z)] ≤ 3 log(1/ε)

ε2n
H0[Z|Y λ̂]

E0[(L
λ(Z))2] ≤ 6(log(1/ε))2

ε2n
H0[Z|Y λ̂].

Proof. Since Z is a box random variable, its value is determined by the value of Y λ. We can
therefore write Z = Z(y) = Z(yλ, yλ̂). Lemma 23 is obtained by applying Corollary 20 to

restrictions of Z of the form Z(Y λ, yλ̂), which are λ random variables. Let us therefore denote

the random variable Z(Y λ, yλ̂) by Zyλ̂ . Letting y range over all values of Y Λ, we have

E0[L
λ(Z)] =

∑
y

p0[Y
Λ = y]Lλ([Z = Z(y)])

=
∑

y

p0[Y
Λ = y]L([Z = Z(y)]λ)

=
∑

y

p0[Y
Λ = y]L([Z(Y λ, yλ̂) = Z(y)])

=
∑
yλ̂

p0[Y
λ̂ = yλ̂]E0

[
L(Zyλ̂)

]
≤
∑
yλ̂

p0[Y
λ̂ = yλ̂]

3 log(1/ε)

ε2n
H0[Z|Y λ̂ = yλ̂] (by Corollary 20)

=
3 log(1/ε)

ε2n
H0[Z|Y λ̂].

The bound on E0[(L
λ[Z])2] is obtained similarly.

Lemma 24. For any box random variable Z,

H0[Z] =
∑

λ

H0[Z|Y λ̂].

Proof. As in the proof of Lemma 23 we can write Z = Z(y), since Z only depends on the value
of Y Λ. We denote the box events [Z = Z(y)] by B(y), and let B = {B(y)}y. In the sums below,

y ranges over the values of Y Λ and yλ̂ ranges over the values of Y λ̂.

H0[Z] =
∑
B∈B

p0[B] log p0[B]

=
∑
B∈B

p0[B]
∑

λ

log p0[B
λ]

=
∑

λ

∑
B∈B

p0[B] log p0[B
λ]

=
∑

λ

∑
y

p0[Y
Λ = y] log p0[B(y)λ]

=
∑

λ

∑
yλ̂

(
p0[Y

λ̂ = yλ̂] ·
∑
yλ

p0[Y
λ = yλ] log p0[B(y)λ]

)
=

∑
λ

∑
yλ̂

(
p0[Y

λ̂ = yλ̂] ·
∑
yλ

p0[Y
λ = yλ|Y λ̂ = yλ̂] log p0[B(y)|Y λ̂ = yλ̂]

)
=

∑
λ

∑
yλ̂

(
p0[Y

λ̂ = yλ̂] ·
∑
yλ

H0[Z|Y λ̂ = yλ̂]
)

=
∑

λ

H0[Z|Y λ̂].

Since Π is a box random variable, we obtain the following as an immediate consequence of
Lemmas 23 and 24.

Corollary 25. Let T be a gnd-tree. Then the random variable Π defined over the execution
space of T satisfies

E0[L(Π)] ≤ 3 log(1/ε)

ε2n
H0[Π], (20)

and E0

[∑
λ

(Lλ(Π))2
]
≤ 6(log(1/ε))2

ε2n
H0[Π]. (21)

4.4 Dealing with correlations

Since H0[Π] is obviously bounded from above by depth(T), we would be happy to prove a
bound on E0[|L(Π)|] of the form H0[Π] · polylog(1/ε)/n. Corollary 25 comes close: noting that
L(Π) =

∑
λ Lλ(Π) we see that if only the variables Lλ(Π) were uncorrelated, (21) would have

given a bound on the second moment of L(Π), and together with (20) we would have easily
obtained the desired bound (since L(Π) can be negative, (20) by itself is not sufficient to get
the bound).

However in general the variables Lλ(Π) can be correlated. For example, T can decide to
query one noisy copy only if queries to a different copy have yielded very little gain to the
progress measure. This would introduce correlation between the contributions to the progress
measure of those two copies. To handle the correlations we define two random variable, Q =
Q(Π) and R = R(Π). Random variable Q is the sum over nodes on the path to Π, of the

expected progress due to the query at that node (a precise definition appears below), and
R = L(Π)−Q.

We show that Q has the same expectation as L(Π) but is nonnegative, and thus E0[|Q|] =
E0[Q] = E0[L(Π)], which we already know is suitably small from (20). It is then left to show
a bound on E0[|R|]. We show that R can be written as a sum R =

∑
λ∈Λ Rλ of contributions

from the individual noisy copies, but unlike the variables Lλ(Π), the Rλ’s are uncorrelated.
The bound on E0[|R|] is then obtained by proving a bound on E0[(R

λ)2] for all λ ∈ Λ.

The variables L, Q, and R

In this subsection we write L to denote the random variable L(Π), and Lλ for Lλ(Π) (we still
use the notation L(v) and Lλ(v) for vertices other than Π). Recall that V is the set of vertices
of T , and define a partial order on V by writing v ≤ w if v lies on the path from the root to
w. We say that v and w are incomparable if neither v ≤ w nor w ≤ v. For an internal vertex
v, let v0 and v1 denote its children.

In order to define Q, we first decompose L as a sum of random variables {Lv}v∈V , where
Lv represents the contribution of the query at vertex v to L. For vertices v, w ∈ T we define

Lv(w) =

L(v0)− L(v) if v0 ≤ w

L(v1)− L(v) if v1 ≤ w

0 otherwise.

Lv(w) measures the contribution of the query made at v to L(w). It easily follows from the
definition that L(w) =

∑
v∈V Lv(w). Moreover, one can verify that

Lλ(w) =
∑
v∈V λ

Lv(w)

(where V λ is the set of vertices in T that query the noisy copy indexed by λ). For every v we
define the random variable Lv = Lv(Π). We further define the following random variables:

Qv =

{
E0[Lv|vis(v)] if v ≤ Π

0 otherwise ,

Rv = Lv −Qv,

Q =
∑
v∈V

Qv , and Qλ =
∑
v∈V λ

Qv for every λ ∈ Λ,

R =
∑
v∈V

Rv , and Rλ =
∑
v∈V λ

Rv for every λ ∈ Λ.

Qv can be thought of as an a priori approximation to Lv, and Rv can be thought of as the
a posteriori correction to Qv. Following are some properties of Qv and Rv .

Proposition 26. For any internal vertices v and w,

1. E0[Qv] = E0[Lv].

2. If v ≥ w, E0[Qv|vis(w)] = E0[Lv|vis(w)].

3. If v ≥ w, E0[Rv|vis(w)] = 0.

4. Qv ≥ 0.

Proof. Part 1 is immediate from the definitions of Qv and Lv. For part 2, since Qv = Lv = 0
when w is not visited we have E0[Qv|vis(w)] = 1

Pr[vis(w)]
E0[Qv] = 1

Pr[vis(w)]
E0[Lv] = E0[Lv|vis(w)].

The third part follows immediately from the second part. For part 4, fix v and for j ∈ {0, 1}
and i ∈ {0, . . . , n} let ai(j) = pi(vj)/pi(v). Observe that ai(0) + ai(1) = 1 for each i. Now

Qv =
1

n

n∑
i=1

(
a0(0) log

a0(0)

ai(0)
+ a0(1) log

a0(1)

ai(1)

)
,

and each term of the sum is nonnegative by Proposition 11.

Proposition 27. For any vertices v, w ∈ V ,

1. If v and w are incomparable then E0[QvQw] = 0.

2. If v ≤ w then E0[QvQw] = E0[QvLw].

3. If v 6= w then E0[RvRw] = 0

Proof. If v and w are incomparable then on any execution of T either v or w are not visited,
so QvQw = RvRw = 0 and we have part 1. Part 2 follows since both Qw and Lw are 0 if w is
not visited, and conditioned on w being visited Qv is constant. Formally,

E0[QvQw] = Pr[vis(w)]E0[QvQw|vis(w)]

= Pr[vis(w)]E0[Qv|vis(w)]E0[Qw|vis(w)]

= Pr[vis(w)]E0[Qv|vis(w)]E0[Lw|vis(w)]

= Pr[vis(w)]E0[QvLw|vis(w)] = E0[QvLw].

For the third part, if v and w are incomparable then RvRw is 0. If v < w then the
product is 0 unless w is visited. But conditioned on w being visited Rv is a constant, and
E0[Rw|vis(w)] = 0.

As an immediate corollary of part 3 of Proposition 27 we have the following.

Corollary 28. For λ 6= κ ∈ Λ, E0[R
λRκ] = 0.

Bounds for L, Q, and R

Having defined L, Q, R and related variables, and proven their basic properties, we now prove
some bounds for these variables that ultimately yield (12). The first bound is on the contribu-
tion that the subtree of T below a given vertex can make to Lλ.

Proposition 29. Let v ∈ V λ. Then |
∑

w∈V λ:w≥v Lw| ≤ 2 log(1/ε).

Proof. The sum inside the absolute value equals 0 unless Π ≥ v does not hold. If Π ≥ v then
the sum is equal to |Lλ(Π)− Lλ(v)| ≤ |Lλ(Π)|+ |Lλ(v)| ≤ 2 log(1/ε) by Lemma 16.

Next we show that the second moment of Rλ cannot be much higher than the second moment
of Lλ.

Lemma 30. For each λ ∈ Λ, E0[(R
λ)2] ≤ E0[(L

λ)2] + 6 log(1/ε)E0[L
λ].

Proof.

E0[(R
λ)2] = E0[(L

λ −Qλ)2]

≤ E0[(L
λ)2] + 2|E0[L

λQλ]|+ E0[(Q
λ)2]. (22)

Since by Lemma 16 we have |Lλ| ≤ log(1/ε), we can bound the second term in (22) by

2|E0[L
λQλ]| ≤ 2 log(1/ε)E0[|Qλ|] = 2 log(1/ε)E0[L

λ].

For the third term in (22), we have

E0[(Q
λ)2] =

∑
v,w∈V λ

E0[QvQw]

(1)

≤ 2
∑

v,w∈V λ:v≤w

E0[QvQw]

(2)
= 2

∑
v,w∈V λ:v≤w

E0[QvLw]

≤ 2
∑
v∈V λ

E0

[
Qv ·

∑
w∈V λ:w≥v

Lw

]
(3)
= 2E0

[∑
v∈V λ

Qv

]
· 2 log(1/ε)

= 4 log(1/ε)E0[Q
λ]

(4)
= 4 log(1/ε)E0[L

λ],

where (1) follows from part 1 of Proposition 27, (2) follows from part 2 of Proposition 27, (3)
follows from Proposition 29, and (4) follows from the first part of 26. Combining the bounds
for the second and third terms in (22), the lemma is obtained.

Completing the proof

We are now ready to prove (12), which implies Lemma 14, which in turn completes the proof
of Theorem 3.

Since L = Q + R, we have

E0[|L|] ≤ E0[|Q|] + E0[|R|]. (23)

Using the parts 1 and 4 of Proposition 26, we have that E0[|Q|] = E0[Q] = E0[L]. Hence using
Corollary 20 and the immediate fact that H0[Π] ≤ depth(T), we can bound the first term in
the r.h.s. of (23) by

E0[|Q|] = E0[L] ≤ 3 log(1/ε)

ε2n
·H0[Π] ≤ 3 log(1/ε)

ε2
· depth(T)

n
. (24)

For the second term of the r.h.s. of (23), we have using the Cauchy–Schwartz inequality,

E0[|R|]2 ≤ E0[R
2]

=
∑

λ

E0[(R
λ)2] (by part 3 of Proposition 27)

≤
∑

λ

(
E0[(L

λ)2] + 6 log(1/ε)E0[L
λ]
)

(by Lemma 30)

=

(∑
λ

E0[(L
λ)2]

)
+ 6 log(1/ε)E0[L]

≤ 24(log(1/ε))2

ε2n
H0[Π] (by Corollary 25)

≤ 24(log(1/ε))2

ε2

depth(T)

n
.

Combining the bounds for Q and for R we get

E0[|L|] ≤
3 log(1/ε)

ε2
· depth(T)

n
+

5 log(1/ε)

ε
·
√

depth(T)

n
,

which completes the proof.

5 Lower Bound for Decision Functions

In this section we prove lower bounds for computing decision functions (function that output
a single boolean value), as stated in Thorem 5. Out lower bounds are stated in terms of the
sensitivity of the function to be computed, which is defined as follows.

Definition 31. Let f : {0, 1}n → {0, 1} be any function. The sensitivity of f at input x ∈
{0, 1}n, denoted sx(f) is the number of indices i ∈ [n] such that f(x) 6= f(x⊕ei). The sensitivity
of f is the maximum of sx(f) over all x.

For example, AND, OR and PAR all have sensitivity n, and every other symmetric boolean
function has sensitivity at least n/2.

We have the following lower-bound:

Theorem 32. Let ε ∈ (0, 1/2) and δ ∈ (0, 1/16), and let f be an n-variate boolean function.
Any randomized gnd-tree that for every input x, outputs f(x) with probability 1 − δ when run
with noise parameter ε satisfies:

depth(T) ≥ ε2 log(1/4δ)

50 log2(1/ε)
· s(f).

Thus gnd-trees that compute symmetric boolean functions with small constant probability
of error require linear depth. While this fact is trivial for noisy broadcast protocols (since the
protocol must consider all bits of the input), it is not so for gnd-trees. In fact, we do not

know how to achieve linear lower bounds for gnd-trees without applying the full power of the
techniques developed in Section 4.

Theorem 32 also implies that gnd-trees for symmetric functions that are correct with probability
1 − nΩ(1) must have depth Ω(n log n). Before proving Theorem 32, we derive a corollary for
noisy broadcast protocols which shows that they require Ω(n log log n) broadcasts to compute
symmetric functions with polynomially small error probability.

Corollary 33. Let ε ∈ (0, 1/2) and β > 0. Let f be an n-variate boolean function. Any
randomized noisy broadcast protocol for f that, for every input x, outputs f(x) with probability

1− n−β when run with noise parameter ε, uses at least Ω(s(f) · log log(nβ)
log(1/ε)

) broadcasts.

Proof. Suppose that A is a noisy broadcast protocol for f that on any input x has error
probability 1− n−β and suppose A uses t · s(f) broadcasts. Applying Theorem 6 with α = s(f)

2n

yields a subset K of s(f)/2 variables given by the theorem. Let z be an input with sensitivity
s(f). If we fix the variables of K according to z, the resulting function f ′ with variables indexed
by [n]−K has sensitivity at least s(f)/2. Furthermore, by the conclusion of Theorem 6, there
is a gnd-tree T that uses 2t · s(f) queries and for all inputs y ∈ {0, 1}[n]−K outputs f ′(y) with
probability at least 1− n−β when run with noise parameter ε2t. By Theorem 32, we have:

2t · s(f) ≥ ε4t log(nβ/4)

50 log2(1/ε2t)
· s(f),

from which the claimed lower bound easily follows.

The decision-function execution space Υz. Let T be a gnd-tree. To prove Theorem 32,
it suffices to prove a suitable upper bound on the probability that T is correct, when T is
executed on an input selected at random from some distribution. Rather than use the uniform
distribution as we did for Theorem 3, we use a distribution tailored to f .

Let z ∈ {0, 1}n be chosen such that sz(f) = s(f), and let I ⊆ [n] be such that f(z) 6=
f(z ⊕ ei) for i ∈ I. The ε-execution space for f , denoted Υz = Υz(T, ε) is similar to Υ defined
in Section 4, except that X is set to z with probability 1/2, and to z⊕ ei with probability 1/2s
for each i ∈ I.

Without loss of generality, we may assume that z = 0 and that f(0) = 0 (we can replace f by
the function mapping x to f(x⊕z)⊕f(z) and make the analogous change to T). Furthermore,
we may assume that s(f) = n by fixing all variables outside I to 0 in both f and T . We therefore
have that the execution space for f is Υ0, and it satisfies that the input X is equal to 0 with
probability 1/2 (in which case the f(X) = 0), and to any of the vectors ei with probability
1/2n (in which case f(X) = 1. As in the proof of Theorem 3, since we are proving a lower
bound with respect to an input distribution, we may now assume that T is deterministic.

The progress measure. We use the same progress measure L as was used in Section 4. Note
that once X is fixed to a value in {0, e1, e2, . . . , en} the spaces Υ(T, ε) and Υ0(T, ε) become
identical, and therefore the values of p0(v), pi(v), Li(v) and L(v,0), as defined at the beginning
of Section 4.1, remain unchanged when defined over Υ0(T, ε). For the same reason, Lemma 14
holds for x = 0 with Υ replaced by Υ0. Using the notation for zero-conditioned expectation as
defined in (11) (again, the definition is the same whether it is done over Υ or over Υ0 since it
fixes X), we have that (12) holds over Υ0(T, ε).

Adaptation of notation. As in Section 4, we denote L(v) = L(v,0). We also define the
following random variables and events over Υ0(T, ε):

• Let Π denote the leaf that terminates the execution of T over Υ0(T, ε).

• Let err denote the event that T does not output f(X) (when this occurs we say that T
errs).

5.1 The analogue of Lemma 13

Having observed that Lemma 14 applies in the decision-function case, we now need an analogue
of Lemma 13. First we derive a lower bound on the probability that T errs, in terms of the
probability that on input 0, T arrives at a leaf π where L(π) is small. Define, for every t ≥ 1,

At = {π leaf of T | L(π) ≤ log t} (25)

Lemma 34. For every t ≥ 1,

Pr[err] ≥ Pr[At|X = 0]

2t
.

Proof. For every leaf π we have

L(π) = log (Pr[Π = π|X = 0])− 1

n

∑
i

log (Pr[Π = π|X = ei]) (by definition)

≥ log (Pr[Π = π|X = 0])− log

(
1

n

∑
i

Pr[Π = π|X = ei]

)
(concavity of log)

= log (Pr[Π = π|X = 0])− log (Pr[Π = π|X 6= 0]) . (by definition of Υ0)

Exponentiating both sides of the inequality with base 2, we get

Pr [Π = π|X 6= 0] ≥ Pr [Π = π|X = 0]

2L(π)
, (26)

Now let A0
t = {π ∈ At|outπ = 0} denote the set of leaves in At where T outputs zero, and

similarly, let A1
t = {π ∈ At|outπ = 1}. Since f(0) = 0 and f(ei) = 1 for all i ∈ [n], we have

Pr[err] = 1
2
Pr[err|X = 0] + 1

2
Pr[err|X 6= 0]

≥ 1
2
Pr
[
A1

t |X = 0
]
+ 1

2
Pr
[
A0

t |X 6= 0
]

≥ 1
2
Pr
[
A1

t |X = 0
]
+ 1

2
Pr
[
A0

t |X = 0
]
· 1

t
(by (26) and definition of At)

≥ 1
2t
·
(
Pr
[
A1

t |X = 0
]
+ Pr

[
A0

t |X = 0
])

=
Pr [At|X = 0]

2t
,

concluding the proof.

The following lemma is the analogue of Lemma 13 for the decision-function case.

Lemma 35. Denote δ = Pr[err]. Then if δ ≤ 1/4,

E [|L(Π)||X = 0] ≥ 1
2
log(1/4δ).

Proof. Take t = 1/4δ. Then by Lemma 34 we have

δ = Pr[err] ≥ Pr[At|X = 0]

2t
= 2δ · Pr[At|X = 0],

and thus
Pr[At|X = 0] ≤ 1/2.

Now on the complement of At with respect to the set of leaves in T , the values of L are greater
than log t. We therefore have

E [|L(Π)||X = 0] ≥ (1− Pr[At|X = 0]) · log(t) ≥ 1
2
log(1/4δ)

as desired.

5.2 Proof of Theorem 32

We are now ready to complete the proof of Theorem 32.

Proof of Theorem 32. Let us consider the execution of T over Υ0(T, ε). It is given that Pr[err] =
δ < 1

16
. Applying Lemma 35 and (12), we thus have that

3 log(1/ε)

ε2
· depth(T)

n
+

5 log(1/ε)

ε
·
√

depth(T)

n
≥ t, (27)

where t = 1
2
log
(

1
4δ

)
≥ 1. Therefore either the first or the second summand in (27) is greater

than t
2
, and by isolating depth(T) in the resulting inequalities we obtain

depth(T) ≥ min

{
ε2tn

3 log(1/ε)
,

ε2t2n

25 log2(1/ε)

}
≥ ε2tn

25 log2(1/ε)
,

as desired.

6 Proof of reduction theorem (Theorem 6)

Let us now prove Theorem 6. We are given a noisy broadcast protocol P that uses k broadcasts.
We are also given a noise-parameter ε and another parameter α > 1. Our goal is to select a
subset K of size n/α and show that for each partial assignment ρ that fixes K there is a
(possibly randomized) gnd-tree T that uses 2k queries and, for any input x ∈ {0, 1}[n]−K , when
T is run on x with noise parameter εαk it gives the same output that P gives when run on the
input xρ ∈ {0, 1}n with noise parameter ε.

We select K to be the index set of processors that broadcast more than αk/n times in P .
Since there are k broadcasts in P , |K| < αn.

Now fix a partial assignment ρ to K. The gnd-tree T is obtained by a sequence of reductions.
These reductions involve two intermediate models of noisy computation which we now define.

The semi-noisy broadcast model SNB(ε) is similar to the noisy broadcast model. In this
model there are n input processors Q1, . . . , Qn, a receiver P0, and a collection {Pλ : λ ∈ Λ}
of auxiliary processors (where Λ is an arbitrary index set). Qi initially has input xi and is

restricted to making ε-noisy broadcasts of xi. An auxiliary processor Pλ may broadcast any
boolean function of the bits it heard previously, and this broadcast is noise-free, i.e., is received
by every other processor with no error.

In the Noisy-copy broadcast model NCB(ε), there is a receiver P0 and an indexed collection
{Pλ : λ ∈ Λ} of processors. Each of the Pi initially gets an (independent) ε-noisy copy of the
entire input. All broadcasts are noise-free.

Starting from P =: P1, we construct a sequence of protocols:

• P2 in the model SNB(ε) takes input in {0, 1}n,

• P3 in the model SNB(ε) takes input in {0, 1}[n]−K .

• P4 runs in the model NCB(εαk) and takes input in {0, 1}[n]−K .

• T is a gnd-tree that takes input in {0, 1}[n]−K .

As stated, there are k broadcasts in P . Using the notation from Section 2.3, we have for
1 ≤ j ≤ k,

• ij is the index of the processor broadcasting at step j

• gj is the boolean function (depending on xj and the bits received by Pj prior to step j)
that determines broadcast j.

• bj is the bit broadcast at step j (obtained by evaluating gj)

• For h ∈ [n], bj
h is the noisy copy of bj received by Ph.

We also introduce the notation gj
0 and gj

1 for the functions obtained from gj by setting xj

to 0 and to 1, respectively.

From P1 to P2. Given P1, the protocol P2 in the model SNB(ε) will consist of k stages.
Stage j simulates broadcast j of P1 and consists of three broadcasts.

The index set Λ for auxiliary processors is [n]. In P2, we will maintain the invariant that
after each stage j:

For 0 ≤ i ≤ n, Pi has constructed a sequence bi
1, . . . , b

i
j of bits and the collection

(bi
h : 0 ≤ i ≤ n, 1 ≤ h ≤ j} has the same joint probability distribution as it does in

P1.

P0 will compute its output exactly as in P1 and the invariant insures that the outputs of
the two protocols have the same distribution.

Assume that the invariant holds inductively after stage j − 1. We define stage j of P2 so as
to maintain the invariant. In stage j, Qij broadcasts xij (which is all it can do in this model)
and Pij evaluates both gj

0 and gj
1 at bij

1 , . . . , bij

j−1 and broadcasts the two values.

Each Pi must generate bj
i . Pi receives 3 bits (x, a0, a1), where x is a noisy copy of xij

broadcast by Qij , and a0 and a1 are the exact bits sent by Pij . If a0 6= a1, Pi sets bi
j to ax, and

if a0 = a1, Pi uses its private randomness to generate an ε-noise bit N , and sets bi
j to a0 ⊕N .

It is easy to check that this choice maintains the invariant.
The total number of broadcasts in P2 is 3k, of which k are by input processors and 2k are

by auxiliary processors.

From P2 to P3. We now construct a protocol P3 for the restricted function fdρ in the model
SNB(ε). For this function, the input (and the Qi) are indexed by [n]−K. The index set Λ of
auxiliary processors is chosen to be [n].

P3 simulates P2 in a step by step fashion. The only difficulty is that the processors Qi for
i ∈ K don’t exist when running P3. In P2, processor Qi would send its input bit, which is now
fixed to ρi. In P3, the value ρi can be “hardwired” and each processor simply simulates the
reception of ρi as ρi ⊕N where N is an ε-noise bit that it generates locally. Every other step
is done exactly as in P2.

The total number of broadcasts in P3 is 3k, of which at most k are by input processors and
the remaining are by other processors. Furthermore no input processor sends its bit more than
αk times.

From P3 to P4. We now construct a protocol P4 in the NCB(γ) model for γ = εαk, that
simulates P3.

In P3 each input bit xi is broadcast at most αk times, so each Pj receives at most αk noisy
copies of xi. In P4, Pj starts with a γ-noisy copy of xi. It suffices to show αk independent
ε-noisy copies of xi can be generated from a single γ-noisy copy of xi.

Lemma 36. Let t be an arbitrary integer, ε ∈ (0, 1/2) and γ = εt. There is a randomized
algorithm that takes as input a single bit b and outputs a sequence of t bits and has the property
that if the input is a γ-noisy copy of 0 (resp. of 1) then the output is a sequence of independent
ε-noisy copies of 0 (resp. of 1).

Proof. The algorithm is specified by two probability distributions q0 and q1 over {0, 1}t. On
input b, the algorithm outputs a string according to the distribution qb.

If the input b to the algorithm is a γ-noisy copy of 0, resp. 1, then the output will be
generated according to the distribution function r0 = (1−γ)q0 +γq1, resp. r1 = (1−γ)q1 +γq0.

Let p0 (resp. p1) be the distribution on {0, 1}t obtained by taking t independent ε-noisy
copies of 0 (resp. 1). We want to choose q0 and q1 so that r0 = p0 and r1 = p1. For each
s ∈ {0, 1}t, we need:

(1− γ)q0(s) + γq1(s) = p0(s),

(1− γ)q1(s) + γq0(s) = p1(s).

Solving for q0(s) and q1(s) we get:

q0(s) =
(1− γ)p0(s)− γp1(s)

1− 2γ
,

q1(s) =
(1− γ)p1(s)− γp0(s)

1− 2γ
.

It suffices to show that q0 and q1 are probability distributions, i.e., they are nonnegative and
sum to 1. That they sum to 1 follows from the fact that p0 and p1 each sum to 1. Nonnegativity
follows immediately from the easy fact that for any s ∈ {0, 1}t, p0(s)/p1(s) ≥ p0(1

t)/p1(1
t) ≥

γ/(1− γ) and p1(s)/p0(s) ≥ p1(0
t)/p0(0

t) ≥ γ/(1− γ).

From P4 to T . P4 is randomized, i.e., each processor uses its own internal source of random
bits in the protocol. We construct a random gnd-tree that first simulates the random choices
of all the processors in P4. Once these are fixed, P4 reduces to a deterministic protocol. So
it is enough to show how to simulate a deterministic protocol Q in the NCB(γ) model by a
gnd-tree.

Let λ1, . . . , λ2k be the sequence of indices of processors that broadcast inQ and let b1, . . . , b2k

be the bits broadcast. The gnd-tree makes 2k queries and will be chosen so that the answer to
query j is bj. Query j is made to copy λj. Given that the sequence of answers to the first j− 1
is b1, . . . , bj−1, the question asked of copy ij is: “what would processor Pij broadcast in Q given
that the string of bits received during the first j− 1 rounds is b1, . . . , bj−1?” The answer to this
is a boolean function depending only on copy ij. Since all broadcasts in Q are noise-free, the
sequence of answers in the gnd-tree has exactly the same distribution as the sequence of bits
broadcast by Q.

This completes the proof of Theorem 6.

7 A protocol for Identity

In this section we give a protocol for computing id with O(n log log n) broadcasts. Our protocol
is similar to, but simpler than, the protocol of Gallagher mentioned earlier. Gallagher’s protocol
and ours work in all three models of noise discussed in the introduction.

Gallagher gave an O(n log log n) broadcast protocol for PAR, and used that protocol to
construct one for id. Our protocol uses constant rate error correcting codes, which are well-
known to exist (random codes are good) but non-trivial to construct explicitly. Gallagher’s
protocol has the advantage of being self-contained and explicit.

Error correcting codes are an efficient way to communicate large blocks of data on a noisy
channel. In the noisy broadcast model, each processor only has a single bit to start, so error
correcting codes are not directly applicable.

For our protocol, we divide the processors into teams of size t = log n. The processors in
each team work together to transmit their bits to the receiver. Processors ignore transmissions
by processors in other teams.

For the analysis, we will need to assume ε < 1/12. This is without loss of generality since
given a protocol P that works for some constant noise parameter ε′ we can get a protocol that
works for larger noise parameter ε < 1/2 by a routine amplification: every broadcast in P
is repeated C times some appropriate constant C = C(ε, ε′), and each receiver decodes the
broadcast by majority vote.

We will describe a protocol for a single team, denoted T = {Q1, . . . , Qt}. The protocol uses
O(log t) broadcasts. We show that the probability that the receiver fails to recover the team’s
entire input, is at most 2(4−t) = 2/n2. Repeating the same protocol for each team yields a
protocol for id that fails with probability less than 2/(n log n).

Let y = (y1, . . . , yt) denote the team’s input. The protocol works in two phases.

Phase 1. For each i ∈ [t], Qi broadcasts yi s = c1 log t times, for some constant c1 to be
chosen according to Lemma 37. Every other processor tries to recover yi by taking a majority
vote of the s copies it received.

Let yi be the copy of y recovered by Qi. Say that Qi is successful if yi = y. Let U denote
the set of unsuccessful processors.

Lemma 37. There exists a constant c1 = c1(ε) such that:

Pr[|U | ≥ εt] ≤ 4−t].

Proof. Processor Qi decodes yj inccorrectly if at least 1/2 of the copies of yj that Qi received
were corrupted by noise. By Lemma 12 with each αi = 1 and t (in the lemma) equal to
(1/2− ε)s, the probability that Qi decodes yj incorrectly is at most e−2(1/2−ε)2s. Summing over
the t bits of y, Pr[Qi ∈ U] is at most q = te−2(1/2−ε)2c1 log t.

For S ⊆ T , Pr[U = S] ≤ q|S|. Summing over subsets S of size at least εt, we obtain:

Pr[|U | ≥ εt] ≤ qεt2t = (2qε)t.

We want that this is at most 4−t, so it suffices that q < (1/8)1/ε. It is now easy to choose
c1 sufficiently large (depending on ε) so that this last condition holds.

Phase 2. In this phase the processors of T work together to transmit an encoding of y based
on an error correcting code. For boolean strings v, w of the same length, let d(v, w) denote the
number of coordinates where they differ. The following well known result states what we need
about the existence of good codes:

Lemma 38. For γ ∈ (0, 1/2) there is an integer K1 = K1(γ) such that for each positive integer
t and each K ≥ K1, there is a subset Ct of {0, 1}Kt having size 2t, such that for all v, w ∈ Ct

with v 6= w, d(v, w) ≥ γKt.

This is easily proved by the probabilistic method [3]. For γ sufficiently small, there are
explicit constructions, e.g. Justesen codes (see, e. g., [21]).

Set γ to be 6ε (here is where we need ε < 1/12. Let K = max{K1(γ), 1/ε2) and let Ct be
given by the lemma. Fix a bijection σ from {0, 1}t to Ct. Divide σ(y) into t blocks of size K
and denote the jth block by σj(y).

In phase 2, Qi broadcasts σi(yi). Let ri be the noisy version of this heard by the receiver
and let r be the concatenation of r1, . . . , rlog n. The receiver chooses w ∈ Ct to minimize d(r, w)
and outputs σ−1(w).

If d(r, σ(y)) < γKt/2 = 3εt, then by the choice of Ct, w = σ(y) and the receiver correctly
outputs y.

Since every processor that was successful in phase 1 broadcasts σ(y), r differs from σ(y)
only on coordinates sent by unsuccessful processors and coordinates that were flipped due to
noise. Let I ⊆ [Kt] be the index set of the coordinates that were flipped by noise. Thus
d(r, σ(y) ≤ K|U |+ |I|.

By Lemma 37, Pr[k|U | ≥ Kεt] ≤ 4−t. By Lemma 12, Pr[|I| ≥ 2Kεt] ≤ e−2ε2Kt. which is
at most 4−t for K ≥ 1/ε2. Thus the probability that the receiver does not output the input of
the team is at most 2× 4−t ≤ 2/n2. Summing over all n/ log n teams, the probability that the
receiver fails is at most 2/(n log n).

8 A linear noisy broadcast protocol computing weight

In this section we prove Theorem 4 by giving a protocol for computing weight(x) which uses
a linear number of broadcasts in the noisy broadcast model, and showing a gnd-tree of linear
depth that computes it. This immediately implies linear protocols or gnd-trees for PAR, or any
other boolean function whose value at x depends only on weight(x). Our protocol does not
work under any of the adversarial noise models.

We begin by giving a gnd-tree T of linear depth for weight(x), and then convert it to a
protocol in the noisy broadcast model.

8.1 A gnd-tree for computing weight

We need some additional notation. For θ ∈ [0, n], the threshold function fθ : {0, 1}n → {0, 1}
is defined to be 1 if weight(x) ≥ θ. All queries made by T are threshold functions. We define
the real function ρ : [0, n] −→ [0, n] by ρ(a) = εn + (1− 2ε)a. Observe that an ε-noisy copy of
0 has expectation ε and a ε-noisy copy of 1 has expecation 1 − ε. Therefore, for fixed x, the
expected weight of a noisy copy of x satisfies:

E[weight(x⊕N)] = ρ(weight(x)).

The gnd-tree T works in two phases. During the first phase, T does a modified binary
search to identify an interval [a, b] of length at most O(

√
n that contains weight(x) with high

probability. During the second phase, T repeats the threshold query f(a+b)/2 on O(n) different
copies and determines weight(x) from this with high probability.

Phase I. During this phase T does a modified binary search to identify an interval of length
O(
√

n) that contains weight(x) with high probability. Initially the interval is [a0, b0] = [0, n].
The phase consists of stages. During stage i, the interval is reduced to 2/3 of its previous
length. The interval after stage i is denoted [ai, bi]. Phase 1 ends when bi − ai ≤ c(ε)

√
n, for

c(ε) = 6/(1− 2ε). This uses O(log n) stages.
The algorithm for a stage depends on the interval [a, b] at the beginning of the stage, and

is denoted Sa,b. Let m = (a + b)/2 be the midpoint. Sa,b consists of k = 16 ln n threshold
queries fθ(m) to distinct copies of the input. If the number of 0 answers is less than k/2 then
the interval [a′, b′] output by Sa,b is [a, a+2b

3
] and otherwise it is [2a+b

3
, b].

We say that stage Sa,b fails if weight(x) belongs to [a, b] but not to [a′, b′].

Lemma 39. let c(ε) = 6/(1− 2ε). Let x ∈ {0, 1}n and suppose a, b ∈ [0, n] satisfy b− a >
√

n
and weight(x) ∈ [a, b]. The probability that Sa,b fails is at most 1/n2.

Proof. We divide the analysis according to which of the intervals [a, 2a+b
3

), [2a+b
3

, a+2b
3

] and
(a+2b

3
, b] contains weight(x).

If weight(x) ∈ [2a+b
3

, a+2b
3

] then weight(x) ∈ [a′, b′] for either of the two possible outputs.
We next consider the case weight(x) ∈ [a, 2a+b

3
); the analysis in the other case is very similar

and is omitted. For such an x, fρ(m)(x) = 0.
Let q denote the probability a single noisy query of fρ(m) is incorrect. For i ∈ [k], let Zi be

the random variable that is 1 if the answer to the ith noisy query is incorrectly 1. The stage

fails if
∑

i Zi ≥ k/2. Using Lemma 12 with ε = q and all of the ai = 1, the probability that the
stage fails is at most:

Pr[
∑

(Zi − q) ≥ k(
1

2
− q)] ≤ e−2(1/2−q)2k = e−32(1/2−q)2 ln n.

If q ≤ 1/4, then this is at most 1/n2. So we complete the proof by showing that q ≤ 1/4.
Let X be a noisy copy of x and N the associated noise vector. For i ∈ [n], let ai = 1− 2xi.

Xi = xi+aiNi = ρ(xi)+ai(Ni−ε) and
∑

i Xi = ρ(weight(x))+
∑

ai(Ni−ε). Noting that under
the case assumption we have ρ(m)−ρ(weight(x)) = (m−weight(x))(1−2ε) ≥ (b−a)(1−2ε)/6 ≥
c(ε)

√
n(1− 2ε)/6 ≥

√
n. Lemma 12 implies:

q = Pr[
∑

i

Xi ≥ ρ(m)] = Pr[
∑

i

ai(Ni − ε) ≥ ρ(m− weight(x))]

≤ Pr[
∑

i

ai(Ni − ε) ≥
√

n] ≤ e−2.

Observe that the total number of queries in phase 1 is O((log n)2).

Bias Differences. After successfully completing the first phase T “knows” that the weight
of x is in a strip [ar, br] of length roughly

√
n. In the second phase T simply makes a linear

number of queries of the form fρ(θ) to distinct noisy copies of x, where θ = ar+br

2
. The weight

of x is estimated based on the number of ‘1’ answers. Intuitively, the larger the weight(x) is
the more 1’s we expect to see (note that the distribution on the number of ‘1’ answers depends
only on the weight of x). We make this observation more formal in the next definition and
lemma.

Definition 40. Let ε ∈ (0, 1/2) be a noise parameter, and let θ ∈ [0, n]. For any x ∈ {0, 1}n

we define

βn,ε(ω, θ) = Pr
[
fρ(θ)(x⊕N) = 1

]
,

where ω = weight(x), and N is an ε-noise vector.

Lemma 41. There exists a global constant C > 0 which satisfies the following. Let ε ∈ (0, 1/2)
be a noise parameter, and let c(ε) be as in Lemma 39. Then for n large enough it holds for
every θ ∈ [0, n] and every ω ∈ [θ − c(ε)

√
n, θ + c(ε)

√
n] that

βn,ε(ω + 1, θ)− βn,ε(ω, θ) ≥
exp

(
− C

ε(1−2ε)4

)
C
√

n
(28)

Lemma 41 follows in a straightforward way by writing βn,ε(ω + 1, θ) − βn,ε(ω, θ) as an
expression involving binomial coefficients and powers of ε and of (1 − ε), and then applying
simple estimations using Stirling’s formula. We omit the full derivation.

Phase II. For brevity, let us denote the expression in the right hand side of (28) by ∆(n, ε).
In the second phase, T applies the threshold tree Tk,θ to x, where θ = ar+br

2
and k = 17/∆2(n, ε).

That is, T queries fρ(θ) on k distinct noisy copies of x (note that k is linear in n, and thus this
only adds a linear depth to T).

To determine the output of T , let Z denote the number of queries of the threshold tree for
which the result was 1. Also, for every ω ∈ {0, 1, . . . , n} define a segment Iω by

Iω =
[
k · βn,ε(ω, θ)− 2

√
k , k · βn,ε(ω, θ) + 2

√
k
]
.

As we show below, the segments Iω are all disjoint for ω ∈ [ar, br]. If Z ∈ Iω for such an ω, T
outputs ω. Otherwise T declares failure in computing weight(x).

Analysis of phase II. As noted above, the depth that the second phase contributes to T
is linear in n (the total depth of T is therefore linear, as required). To show that the output
is really weight(x) with high probability, we have to first note that the output is well defined,
namely that the segments Iω are disjoint for all ω ∈ [ar, br]. Indeed, since each Iω is a segment
of length 4

√
k centered around k · βn,ε(ω, θ), the choice of k and Lemma 41 directly imply that

these segments are disjoint.
Now suppose weight(x) = ω for some ω ∈ [ar, br]. By definition, each query of the threshold

tree applied in the second phase returns the value 1 with probability βn,ε(ω, θ), and thus

E[Z] = k · βn,ε(ω, θ).

Also, since Z is the sum of k independent random variables (the indicators of events of the
from “the i’th query being 1”) each with variance at most 1, it follows that the variance of Z
is at most

√
k. Therefore by Chebyshev’s inequality,

Pr[Z ∈ Iω] = Pr
[
|Z − E[Z]| ≤ 2

√
k
]
≥ Pr

[
|Z − E[Z]| ≤ 2

√
V[Z]

]
≥ 3/4.

It follows that, assuming the first phase succeeds, T outputs weight(x) with probability at least
3/4. The overall probability that T computed weight(x) correctly is therefore at least 2/3.

8.2 Translating to a noisy broadcast protocol

We have constructed a gnd-tree T of linear depth in n, which computes weight(x). Let us sketh
how T can be transfomed into a protocol in the noisy broadcast network model. As each query
that T makes is applied to a distinct ε-noisy copy of the input, we first need to get hold of that
many noisy copies of x.

Obtaining noisy copies of x. Let ε ∈ (0, 1/2) be the noisy parameter in a noisy broadcast
network, and let x ∈ {0, 1}n be an input. The first step in simulating T is to obtain noisy copies
of the input. To achieve d · n noisy copies of x, say, we can make each processor broadcast its
own bit d times. After this step (which takes d · n broadcasts) is completed, each processor
has d noisy copies of each of the other player’s bits. Using its own private randomness, each
processor can also obtain d copies of its own input bit, thus obtaining d ε-noisy copies of x. In
the protocol described below we only need a linear number of noisy copies, and therefore this
step only takes a linear number of broadcasts.

Phase I simulation. Once sufficient number of noisy copies of x have been obtained, we can
start by simulating the first phase of T . We can pre-assign Θ(log2 n) processors to perform the
queries originally applied by T in the first phase. To avoid errors, we can have each processor
repeat the result of the query it makes, broadcasting it Θ(log n) times, so that with very high
probability all the other processors will get the result of the query correctly. At the end of the
first phase simulation we have that with probability at least 1− 1/poly(n) all processors agree
on the same segment [ar, br], the same as would have been acheived by T using the same noisy
copies.

Since T makes Θ(log2 n) queries in the first phase, and since we simulate each query by
Θ(log n) broadcasts, the simulation of the first phase requires Θ(log3 n) broadcasts.

Phase II simulation. The second phase in T consists of counting the number of 1s obtained
in a series of threshold queries. In the simulation of this phase the receiver, P0, will do the
counting and output the result accordingly. The actual threshold queries will be applied by the
other processors: each of them, in its turn, will apply fρ(θ) queries to the noisy copies under its
possession, and broadcast the results.

A slight problem arises from the fact that P0 may receive the wrong result for some of the
queries due to noise. If weight(x) = ω, the probability that P0 will receive the answer 1 for a
query of type fρ(θ) is not βn,ε(ω, θ) as before, but rather it is

β′
n,ε(ω, θ) = ε + (1− 2ε)βn,ε(ω, θ).

But it is obvious that Lemma 41 still holds for β′
n,ε(ω, θ), perhaps with a different constant C,

and thus the simulation of the second phase can still be carried out.

9 Open Problems

The main questions left open by this paper concern lower bounds for decision functions.

1. Can every decision function be computed by a linear noisy broadcast protocol if constant
error is allowed? The same question can be asked for gnd-trees, and we believe these
two questions should have the same answer, and that the answer should be negative. A
random function would seem to be a natural candidate for a hard function.

2. What other interesting classes of decision functions besides symmetric functions have
linear noisy broadcast protocols and/or gnd-trees?

3. Are there any functions that can be computed by a gnd-tree whose depth is significantly
smaller than their randomized decision-tree complexity, namely the depth required to
compute them by a (noiseless) randomized decision tree?

4. The same questions as above can be asked about the adverserial noise model of [11]. For
this model, the only nontrivial upper bound known for both the noisy broadcast and
gnd-tree models is the protocol for OR due to [23], which is linear in both models. What
other non-trivial functions have linear protocols? Does the parity function have linear
cost protocols/gnd-trees? We conjecture that the answer to the latter question is negative.

5. In the adversarial noise model, we don’t know of any examples of decision functions where
gnd-trees do better than ordinary noisy decision trees. Are these models equivalent for
adversarial noise?

References

[1] M. Ajtai. The invasiveness of off-line memory checking. STOC 2002, 504–513.

[2] D. Aharonov, M. Ben-Or. Fault Tolerant Quantum Computation with Constant Error. STOC
1997, 176–188.

[3] N. Alon, J. Spencer. The Probabilistic Method. Second Edition. Wiley, 2000.

[4] Y. Aumann and M. A. Bender. Fault Tolerant Data Structures. Proceedings of the 37th Annual
Symposium on Foundations of Computer Science (FOCS), 580–589, 1996.

[5] T. Cover, J. Thomas. Elements of Information Theory. Wiley, 1991

[6] A. El Gamal. Open problems presented at the 1984 workshop on Specific Problems in Communi-
cation and Computation sponsored by Bell Communication Research. Appeared in Thomas M.
Cover and B. Gopinath, editors. Open Problems in Communication and Computation, 1987.
Springer-Verlag.

[7] W. Evans, C. Kenyon, Y. Peres, L. J. Schulman. Broadcasting on trees and the Ising model.
Annals of Applied Probability, 10(2), 2000, pp. 410–433.

[8] W. S. Evans, N. Pippenger. Average-Case Lower Bounds for Noisy Boolean Decision Trees. SIAM
J. Comput., 28(2): 433–446 (1998).

[9] W. S. Evans., L. J. Schulman. Signal propagation and noisy circuits. IEEE Transactions on
Information Theory, 44(3), May 1998, 1299–1305.

[10] U. Feige. On the Complexity of Finite Random Functions. Inf. Process. Lett., 44(6): 295–296
(1992).

[11] U. Feige, J. Kilian. Finding OR in a noisy broadcast network. Inf. Process. Lett. 73(1-2): 69–75
(2000).

[12] U. Feige, P. Raghavan, D. Peleg, E. Upfal. Computing with Noisy Information. SIAM J. Comput.,
23(5): 1001–1018 (1994).

[Fel72] W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons,
1972.

[13] I. Finocchi, G. F. Italiano. Sorting and searching in the presence of memory faults (without
redundancy). STOC 2004.

[14] P. Gács. Reliable Cellular Automata with Self-Organization. FOCS 1997, 90–99.

[15] P. Gács, A. Gál. Lower bounds for the complexity of reliable Boolean circuits with noisy gates.
IEEE Transactions on Information Theory, Vol. 40, No. 2, 1994, pp. 579–583.

[16] R. G. Gallager. Finding parity in simple broadcast networks. IEEE Transactions on Information
Theory, Vol. 34, 1988, 176–180.

[17] A. Kalai, R. Servedio. Boosting in the Presence of Noise. 35th Annual Symposium on Theory of
Computing (STOC), 2003, pp. 196–205.

[18] D. J. Kleitman, F. T. Leighton, Y. Ma. On the Design of Reliable Boolean Circuits That Contain
Partially Unreliable Gates. J. Comput. Syst. Sci. 55(3): 385–401 (1997)

[19] E. Kushilevitz, Y. Mansour. Computation in Noisy Radio Networks. SODA 1998: 236–243.

[20] F. T. Leighton, Y. Ma. Tight Bounds on the Size of Fault-Tolerant Merging and Sorting Networks
with Destructive Faults. SIAM J. Comput., 29(1): 258–273 (1999).

[21] J. H. van Lint. Introduction to Coding Theory. Third Edition. Springer-Verlag 1999.

[22] E. Mossel. Survey: Information flow on trees. In Graphs, Morphisms and Statistical Physics. DI-
MACS series in discrete mathematics and theoretical computer science J. Nestril and P. Winkler
editors. (2004).

[23] I. Newman. Computing in fault tolerance broadcast networks. 19th IEEE Annual Conference on
Computational Complexity, 2004, 113–122.

[24] A. Pelc. Searching games with errors—fifty years of coping with liars. Theoret. Comput. Sci.,
270 (2002), no. 1-2, 71–109.

[25] N. Pippenger. On the Networks of Noisy Gates. FOCS 1985, 30–36.

[26] S. Rajagopalan, L. J. Schulman. A coding theorem for distributed computing. STOC 1994,
790–799.

[27] R. Reischuk, B. Schmeltz. Reliable Computation with Noisy Circuits and Decision Trees—A
General n log n Lower Bound. FOCS 1991: 602–611.

[28] A. Russell, M. Saks, D. Zuckerman. Lower Bounds for Leader Election and Collective Coin-
Flipping in the Perfect Information Model. SIAM Journal on Computing, 31(6):1645–1662,
2003.

[29] L. Schulman. Coding for Interactive Communication. IEEE Trans. Information Theory, 42(6)
Part I, 1745–1756, Nov.1996.

[30] D. A. Spielman. Highly Fault-Tolerant Parallel Computation. FOCS 1996, 154–163.

[31] M. Szegedy, X. Chen. Computing Boolean Functions from Multiple Faulty Copies of Input Bits.
LATIN 2002, 539–553.

[32] M. Talagrand. On Russo’s approximate zero-one law. Ann. Probab. 22 (1994), no. 3, 1576–1587.

[33] M. Talagrand. How much are increasing sets positively correlated? Combinatorica 16 (1996),
no. 2, 243–258.

[34] A. Yao. Probabilistic computations: Towards a unified measure of complexity, In Proceedings of
the Seventeenth IEEE Conference on Foundations of Computer Science, 1977, pages 222–227.

[35] A. Yao. “On the Complexity of Communication under Noise”. Invited talk in the 5th ISTCS
conference, 1997.

	Introduction
	Our results
	Organization

	The noisy broadcast model and gnd-trees.
	Noisy copies
	Computation under noise
	The Noisy Broadcast Model
	Generalized Noisy Decision Tree Model
	Proof of Theorem ?? via reduction

	Preliminaries to the proof of Theorem ??
	Entropy and relative entropy.
	Some estimates for logarithms
	Tail bounds for sums of noise bits

	Proof of Theorem ??
	Proof of Lemma ??: Notation
	Analyzing a single event involving one noisy copy
	Box events
	Dealing with correlations
	The variables L, Q, and R
	Bounds for L, Q, and R
	Completing the proof

	Lower Bound for Decision Functions
	The analogue of Lemma ??
	Proof of Theorem ??

	Proof of reduction theorem (Theorem ??)
	A protocol for Identity
	A linear noisy broadcast protocol computing weight
	A gnd-tree for computing weight
	Translating to a noisy broadcast protocol

	Open Problems

