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Abstract

Let CCo(n)[m] be the class of circuits that have
size o(n) and in which all gates are MODm gates.

• We show that CC[m] circuits cannot compute
MODq in sub-linear size when m, q > 1 are
co-prime integers. No non-trivial lower bounds
were known before on the size of CC[m] cir-
cuits of constant depth for computing MODq.
On the other hand, our results show circuits of
type MAJ ◦ CCo(n)[m] need exponential size
to compute MODq . Using Bourgain’s recent
breakthrough result on estimates of exponen-
tial sums, we extend our bound to the case
where small fan-in AND gates are allowed at
the bottom of such circuits i.e. circuits of type
MAJ ◦ CC[m] ◦ ANDε log n, where ε > 0 is a
sufficiently small constant.

• CC[m] circuits of constant depth need superlin-
ear number of wires to compute both the AND
and MODq functions. To prove this, we show
that any circuit computing such functions has a
certain connectivity property that is similar to
that of superconcentration. We show a superlin-
ear lower bound on the number of edges of such
graphs extending results on superconcentrators.

1 Introduction
Proving lower bounds on the size of boolean cir-

cuits needed to compute explicit functions is of fun-
damental importance in theoretical computer science.

∗Supported by NSERC and FQRNT.
†Supported by grant No. A1019401 of the Academy of Sci-

ences, Czech Republic.

Since the problem has proved to be very hard in
general, various restricted models of circuits have
been considered. One of the most fruitful directions
has been the study of small depth circuits. The re-
sult (the most general version of which appears in
[14]) that circuits constructed using unrestricted fan-
in OR, AND and NOT gates with constant depth
(such circuits when restricted to polynomial size de-
fine the class AC0) need exponential size to compute
the PARITY function, remains a jewel of the area.

Smolensky [25], extending the work of
Razborov [24], showed that sub-exponential
size AC0 circuits augmented with MODm gates
(such circuits when restricted to polynomial size
define the class ACC0[m]) cannot compute MODq

if (m, q) = 1 and m is a prime power. However,
the seemingly innocuous problem of extending these
lower bounds to ACC0[m] circuits for generalm has
remained open despite extensive efforts. Some of
the difficulties that one faces in attempting to extend
the Razborov-Smolensky method to general m are
discussed in [2].

One of the main impediments in obtaining bounds
for ACC0, is understanding the power of circuits of
constant depth having only MODm gates. The class
of such circuits is denoted by CC0[m] when the cir-
cuits are further restricted to have polynomial size.
Since it is difficult to compute the MODm function
using AND and OR gates, it is an interesting ques-
tion to determine if small size CC0[m] circuits can
compute AND and OR. It is known that both AND
and MODq functions are impossible to compute by
constant depth circuits composed entirely of MODm

gates when m is a prime power. In contrast, it is also
known that depth two MOD6 circuits can compute
every boolean function in exponential size [4]. [18]
makes the tempting conjecture that AND needs ex-



ponential size CC0[m] circuits. A special case of a
conjecture of Smolensky implies exponential lower
bounds on size of such circuits computing MODq,
whenever (m, q) = 1.

Most known lower bounds, e.g., [4, 17, 11, 10]
work only for special classes of CC0[m] circuits. We
do not even know if the satisfiability problem (SAT)
can be solved by depth-2 linear size CC[6] circuits,
when the gates used are generalized MOD6 gates [7]
(see Section 2 for the definition of generalized MOD
gate).

The currently best known lower bound on the size
of CC0[m] circuits computing AND is linear in the
number of variables [28]; [26] proved a linear lower
bound for a more complicated function. However,
the methods of [28] and [26] do not seem to yield
a linear lower bound for MODq. In fact, previous
to this work, to the best of our knowledge, no lin-
ear lower bounds were known for MODq. The dif-
ficulty in proving such lower bounds may partly be
explained by the fact mentioned above that depth two
CC[m] circuits can compute all boolean functions if
m has at least two different prime factors, but not
if m is a prime power. The advantage of compos-
ites over prime powers in computing the AND and
MODq functions is also witnessed in the closely re-
lated setting of polynomials over Zm (see [3, 12]).

As a special case of CC0, [4] considered MODp ◦
MODm circuits (those having depth two with a
MODp gate at the output and a single layer of
MODm gates at the input). A number of papers
[4, 11, 27] showed exponential lower bounds for
such circuits computing AND and MODr, where
(r, p) = (r,m) = 1. [4] formulated the Constant
Degree Hypothesis (CDH) whose special case asserts
that circuits of the type MODp ◦MODm ◦ANDO(1)

(layered depth-3 circuits with AND gates of con-
stant fan-in in the input layer, MODm gates in the
middle layer, and a MODp gate at the output) re-
quire exponentially many MODm gates to compute
AND. Some progress towards proving CDH is made
by [29, 11, 10]. While obtaining the general CDH
remains wide open, previous to our work not even
linear lower bounds on the number of MODm gates
were known, without restricting the type of sub-
circuits rooted at each MODm gate.

It is known (see [5]) that ACC0 can be simu-
lated by depth three circuits using MAJORITY gates
alone in quasi-polynomial size. [1] shows that quasi-
polynomial size circuits of type MAJ ◦ MODm ◦
ANDpolylog(n) can simulate AC0, for every m > 1.
An interesting open question is if these circuits are
powerful enough to simulate ACC0. Recently, Bour-

gain [6] made a breakthrough by showing that such
circuits required exponential size to compute MODq

if the fan-in of the AND gates at the bottom were re-
stricted to a constant, (m, q) = 1 and m is odd. [9]
showed that there is a simple way to extend Bour-
gain’s argument to all m.

While the number of gates has been the more pop-
ular measure of circuit size, number of wires has also
been studied fairly extensively, e.g., [8, 22, 23, 16].
[8] show that, somewhat surpisingly, AC0 circuits
can compute THRESHOLDk for any constant k us-
ing linear number of wires. Superlinear lower bounds
on the number of wires for constant depth arithmetic
circuits are proved in [23]. They also show simi-
lar lower bounds for boolean circuits computing n
boolean functions with n inputs. [16] is able to give
a superlinear bound on the number of wires in ACC0

circuits computing a single boolean function. How-
ever, their method applies only to those functions that
have high communication complexity. Consequently,
their method fails to give bounds on simple functions
like AND and MODq.

Our results. We need some definitions. CC[m] de-
notes the class of circuits consisting of MODm gates
without any depth restriction; as mentioned before,
CC0[m] denotes the same class but now the circuits
have constant depth; CCo(n)[m] denotes the class
CC[m] when the circuits are restricted to have size
o(n). Unless otherwise specified we always consider
generalized MODm gates which we now define.

For every positive integer m, we define the
boolean function MODm : {0, 1}n → {0, 1} in the
following way: MODm(x) = 1 iff

∑n
i=1 xi 6= 0

(mod m). For each A ⊆ Zm, the generalized
MODA

m boolean gate computes the following func-
tion : MODA

m(x) = 1 iff
∑n
i=1 xi ∈ A. The setA is

called the accepting set of the MOD gate. We remark
that the standard gate used in the literature is the one
that has the accepting set {1, . . . ,m− 1}. However,
in circuits that we consider each gate would have its
own accepting set that may or may not be the same
as those of other gates.

Let q be a positive integer and b ∈ {0, . . . , q− 1}.
Define the bth MODq-residue class of {0, 1}n by

Mn,q(b) =

{x = (x1, . . . , xn) ∈ {0, 1}n |
n∑

i=1

xi = b mod q}

Our lower bounds on the number of gates in
CC[m] circuits follow from the following two results
about boolean solutions to systems of linear equa-
tions over Zm. These results may be of independet
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interest.
Let L = {θ1, . . . , θs} be a set of s linear forms

over Zm. For v ∈ Zsp, let KL(v) represent the set of
points in {0, 1}n, that satisfy θi = vi for all 1 ≤ i ≤
s. Using simple estimates on exponential sums, we
show the following :

Lemma 1 (Linear Uniformity Lemma) Using the
notation above, for all positive integers m, q with
(m, q) = 1, there exists a positive constant γ =
γ(m, q) < 1 such that for all n and linear mappings
L : Znm → Zsm,

∣∣|KL(v) ∩Mn,q(b)| − |KL|/q
∣∣ ≤ (2γ)n. (1)

for each b ∈ {0, . . . , q − 1} and v ∈ Zsm.

The above lemma shows that if |KL(v)| is large
compared to the RHS of (1), then every MODq

residue class occurs with roughly the same frequency
in KL(v). In that case, KL(v) looks random to a
MODq counter. By combining two known results
from additive number theory and Fourier analysis, we
show that the set KL(v) is indeed large, whenever it
is non-empty.

Theorem 2 For all positive integers m there exists a
positive constant c such that the following holds. Let
L : Znm → Zsm be a linear map. For any v ∈ Zsm, if
KL(v) is non-empty, then

|KL(v)| ≥ 2n

cs
. (2)

Lower bounds on the number of gates. In Sec-
tion 3, we show that Lemma 1 implies

Lemma 3 Consider any positive integers q,m that
are co-prime to each other and numbers a, b ∈
{0, . . . , q − 1}. Then, for every CC[m] circuit C of
size o(n), we have

|Pr
x

[C(x) = 1|x ∈Mn,q(a)]

−Pr
x

[C(x) = 1|x ∈Mn,q(b)]| ≤ 2−Ω(n). (3)

Consider any boolean function f and two disjoint
sets A,B, where A ⊆ f−1(1) and B ⊆ f−1(0). We
say that a circuit C is an ε-discriminator for f with
respect to A and B if

|Pr
x

[C(x) = 1|x ∈ A]− Pr
x

[C(x) = 1|x ∈ B]| ≥ ε.

The ε-discriminator lemma of Hajnal et al. [15]
states that if a circuit with a MAJORITY gate at

the output computes a function f and the fan-in
of the output MAJORITY gate is s, then for ev-
ery A ⊆ f−1(1) and B ⊆ f−1(0) at least one
of the sub-circuits feeding into the output gate 1/s-
discriminates f . Hence, choosing A = Mn,q(1) and
B = Mn,q(0) and using Lemma 3, we get the fol-
lowing where by a circuit of type MAJ ◦ CCo(n)[m]
we mean a circuit with a MAJ gate at the ouput with
CC[m] circuits of sublinear size feeding into it.

Theorem 4 Any circuit of type MAJ ◦ CCo(n)[m]
computing MODq requires the output gate to have
fan-in 2Ω(n) if (m, q) = 1.

In fact, our methods show the above theorem for
the more general class of circuits of type MAJ ◦
ANY ◦ CC[m], where the sub-circuit rooted at each
ANY gate is sub-linear in size and every input to an
ANY gate is the output of a MODm gate.

We also prove a different kind of lower bound for
CC[m] circuits. An intuition about CC[m] circuits
of small size is that since the set of inputs that a
single MODm gate accepts is large and cannot be
concentrated in a small portion of the boolean hy-
percube, hence one would expect a similar situation
to occur for a small CC[m] circuit. The Uniformity
Lemma does not imply any lower bounds on the size
of the support set of CC[m] circuits. Theorem 2 be-
low gives a bound of this type

Theorem 5 For every positive integer m there exists
a positive constant c such that any boolean function
with support size less than 2n/cs requires CC[m] cir-
cuits of size at least s.

Thérien [28] implies a similar but weaker re-
sult that functions with support set of size less than
( α(m)
α(m)−1 )n 1

α(m)s require CC[m] circuits of size s.
In particular, such results imply that AND cannot

be computed by sublinear size CC[m] circuits.

Lower bound for number of wires. We give
super-linear lower bounds on the number of wires
in CC0[m] circuits computing AND and MODq.
To state our result more precisely, define for d =
1, 2, . . . ,

λ1(n) = dlog2 ne,
λd+1(n) = min{i ∈ N; λ

(i)
d (n) ≤ 1},

where the superscript i denotes the i-times iterated
function.

Theorem 6 For every q and d there exist δ > 0 such
that every circuit computing AND or MODq func-
tions that has depth d + 1 and uses only MODm

gates, has at least δnλd(n) wires.
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We consider the bounded depth directed graph of
a boolean circuit. The proof of the above theorem
involves first showing that such graphs must satisfy
a certain connectivity property similar to that of su-
perconcentrators. We next prove a superlinear lower
bound on the number of edges in such graphs. This
theorem is stronger than the lower bounds proved on
bounded depth superconcentrators (when the depth
of superconcentrator is even) and enables us to prove
lower bounds on CC0[m] circuits for which we can-
not use superconcentrators.

Uniformity Lemma for equations of small degree.
Finally in Section 5, we show an extension of the
Linear Uniformity Lemma using recent breakthrough
result on estimates of exponential sums by Bour-
gain [6]. This extension can then be used to derive
a correponding generalization of Lemma 3 to circuits
of type CCo(n)[m] ◦ANDε logn. More precisely,

Theorem 7 For each ε ∈ (0, 1) there exists a δ > 0
such that every circuit of type MAJ ◦ CCo(n)[m] ◦
ANDδ logn computing MODq requires the output
gate to have fan-in 2Ω(nε) if (m, q) = 1.

A related result was first proved by Hansen [13]
after the preliminary vesrsion of this paper was sub-
mitted. We later observed that Theorem 7 followed
easily from our work.

2 Properties of boolean solutions of sys-
tems of equations

2.1 Proof of the Uniformity Lemma
The proof of the Uniformity Lemma uses an expo-

nential sum argument. Exponential sums have been
previously used in similar contexts [6, 9]. As is stan-
dard, we use the notation em(x) to denote e2πix/m,
where i is the complex square root of −1.

Proof: [of Lemma 1] Suppose KL(v) is non-empty.
Then, θ(a) = v for some boolean vector a. Sub-
stituting xi = xi − ai and b = b − ∑n

i=1 ai, for
1 ≤ i ≤ n, we reduce to the case of v being the all-
zero vector. We abbreviate KL(0s) to KL. We first
write |KL∩Mn,q(b)| as an exponential sum and then
estimate this exponential sum by grouping the terms
appropriately.

|KL ∩Mn,q(b)| =
∑

x∈{0,1}n

[ s∏

i=1

( 1

m

m−1∑

j=0

em(jθi(x))
)(1

q

q−1∑

j=0

eq(j(
n∑

k=1

xk − b))
)]
. (4)

The above identity is immediate from the well-
known and simple fact that 1

m

∑m−1
j=0 em(ja) is 1 if

a = 0 and is 0 otherwise, for every positive integer
m. We now rewrite the right hand side (RHS) in (4)
as

(4) =
∑

x∈{0,1}n

1

q

s∏

i=1

( 1

m

m−1∑

j=0

em(jθi(x))
)
+

+
∑

x∈{0,1}n

[ s∏

i=1

( 1

m

m−1∑

j=0

em(jθi(x))
)

×
(1

q

q−1∑

j=1

eq(j(

n∑

k=1

xk − b))
)]
. (5)

The first term in the RHS is easily seen to be
|KL|/q. Hence we get

∣∣|KL ∩Mn,q(b)| − |KL|/q
∣∣ =

∣∣∣∣∣
∑

x∈{0,1}n

[ s∏

i=1

( 1

m

m−1∑

j=0

em(jθi(x))
)

×
(1

q

q−1∑

j=1

eq(j(

n∑

k=1

xk − b))
)]
∣∣∣∣∣ (6)

We now estimate the RHS of (6). To do this,
let us multiply out the terms in the summand inside
the abolute value and then sum the resulting terms.
We obtain ms(q − 1) terms after multiplying out the
terms in the summand, each of which gives rise to a
sum of the form
eq(−jb)
msq

∑

x∈{0,1}n

[
em(j1θ1(x) + . . .+ jsθr(x))

× eq(j
n∑

k=1

xk)
]
. (7)

where (j1, . . . , js) ∈ {0, . . . ,m − 1}s and j ∈
{1, . . . , q − 1}.

Bounding the absolute value of the expression in
the previous equation is standard (see, e.g., Bour-
gain [6]); however, we include the proof here as it
is simple and thus makes the proof self-contained.
Writing a1x1 + . . . + anxn := j1θ1(x) + . . . +
jsθs(x), using the trigonometric identity 1 + ei2ρ =
2eiρ cos(ρ), and taking absolute values, we have

|(7)| =
∣∣∣∣

1

msq

n∏

i=1

(1 + em(ai)eq(j))

∣∣∣∣

=

∣∣∣∣
2n

msq

n∏

i=1

cos
(
π(
ai
m

+
j

q
)
)∣∣∣∣. (8)
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Let γ = maxai∈Zq ; j∈Zm | cos
(
π(aim + j

q )|. Since, m
and q are co-prime and j 6= 0, it can be verified that
γ < 1. Hence

|(8)| ≤ 2nγn

msq
. (9)

Using the triangle inequality in the RHS of (6) and
plugging in the bound of (9), we get

∣∣|KL ∩Mn,q(b)| − |KL|/q
∣∣ ≤ ms(q − 1)

(2γ)n

msq
.

(10)

As mentioned in the introduction, the linear uni-
formity lemma can be generalized to systems of
equations if the degrees of the equations are small.
A precise statement appears in Section 5.

2.2 Size of a solution set
A simple averaging argument shows that for ev-

ery L : Znm → Zsm, there exists a v ∈ Zsm such that
KL(v) has size at least 2n/ms. An interesting ques-
tion is if every v for which KL(v) is non-empty is of
size close to the average size? We note that the re-
sults in [28] based on methods introduced in [4], im-
ply a lower bound of ( α

α−1 )n · 1
αs for |KL(v)| when

it is non-zero. This is still exponentially smaller than
the average size. Theorem 2 gives a lower bound for
every non-empty KL(v) that is indeed close to the
average size.

Proof:[of Theorem 2] To prove Theorem 2 we com-
bine two existing results from the literature. First,
we need a notion from additive combinatorics: for
any abelian group G, the Davenport constant of G
(denoted by s(G)) is the smallest integer k such
that every sequence of elements of G of length at
least k, has a non-empty subsequence that sums to
zero. Olson [20] showed that there exists a connec-
tion between s(G) and the set of boolean solutions
to the equation g1x1 + . . . + gnxn = 0 (denoted by
K(G,n)), where each gi ∈ G.

Theorem 8 (Olson’s Theorem) |K(G,n)| ≥
max{1, 2n+1−s(G)}.

Note that the group we are interested in is Zsm,
i.e. an equation in n variables over Zsm is equivalent
to s equations over Zm in the same set of variables.
The argment at the beginning of the proof of the Uni-
formity Lemma to show that it suffices to prove the
Lemma for KL(0s) applies to the setting of the fol-
lowing corolloary as well, and so Olson’s Theorem
above gives

Corollary 9 Let L : Znm → Zsm be a linear map.
Then for all v ∈ Zsm such that KL(v) is non-empty
we have |KL(v)| ≥ 2n+1−s(Zsm).

To the best of our knowledge, determining s(Zsm)
for s ≥ 3 and arbitrarym, is an open question. How-
ever, the independent works of [19, 28] based on
Fourier analysis, imply the following upper bound:

Theorem 10 s(Zsm) ≤ (m logm)s.

Theorem 2 follows by combining Corollary 9 and
bound on s(Zsm) given by Theorem 10.

3 Lower bounds on number of gates
Consider a CC[m] circuit C having s MODm

gates g1, . . . , gs. For each gate gi, we form the lin-
ear form θi =

∑n
j=1 ci,jxj , where ci,j is the number

(modulom) of copies of input bit xj feeding into gi.
We thus get at most s non-trivial linear forms that
give rise to the linear map θ : {0, 1}n → Zsm. One
can easily verify that if θ(x) = θ(y), then C outputs
the same value on x and y. Let V ⊆ Zsm be the set
of those vectors which correspond to the circuit out-
putting 1 i.e. for every y in V , θ(x) = y implies that
C(x) = 1. The size of V is at most ms. Thus, we
obtain the following:

∣∣Pr
x

[C(x) = 1 ∧ x ∈Mn,q(a)] −

Pr
x

[C(x) = 1 ∧ x ∈Mn,q(b)]
∣∣ =

∣∣∣∣
∑

y∈V

[
Pr
x

[θ(x) = y ∧ x ∈Mn,q(a)] −

Pr
x

[θ(x) = y ∧ x ∈Mn,q(b)]
]∣∣∣∣ (11)

Using (1) from the Linear Uniformity Lemma and
the triangle inequality, one can easily show that the
summand in the RHS of (11), for every y ∈ V is at
most 2γn, where the constant γ is defined in the Uni-
formity Lemma. Combining this with the fact that
s = o(n), we obtain

(11) ≤ |V | · 2γn ≤ ms · 2γn = 2−Ω(n). (12)

Since MODq is an almost balanced function, i.e.
|Prx[x ∈Mn,q(a)]− Prx[x ∈Mn,q(b)]| ≤ 2−Ω(n),
(12) implies Lemma 3.

As described in the Introduction, a routine argu-
ment using the ε-discriminator lemma yields the ex-
ponential lower bound on the fan-in of the output
gate in circuits of type MAJ ◦CCo(n)[m] computing
MODq .
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4 Lower bound on the number of wires
In this section we prove superlinear lower bound

on the number of wires needed in a CC0 circuit to
compute AND and MOD functions, namely Theo-
rem 6 .

This section is organized as follows. After setting
up some notation we prove a superlinear lower bound
on the number of edges in bounded depth graphs with
a certain connectivity property. The proof is then
completed by showing that the circuits in Theorem 6
satisfy this property and hence have superlinear num-
ber of edges.

Notation. Let G be a finite directed acyclic graph
with a distinguished set of indegree zero vertices V0,
which will be called input vertices. Let X be a sub-
set of input vertices. We shall say that a subset of
vertices S separates X , if for every two different in-
put vertices x, y ∈ X , every vertex v and every pair
of directed paths p, q starting in x and y respectively
and ending in v, at least one of the paths must contain
a vertex from S. S may contain input vertices.

We shall say that X is ε-separable, if there exists
an S such that S separates X and |S| ≤ ε|X |.

We shall say that G is ε-inseparable, if for every
subset of input vertices X , if |X | ≥ 2, then X is not
ε-separable. (ε < 1, as X separates itself.)

Define, for d = 1, 2, . . . ,

λ1(n) = dlog2 ne,

λd+1(n) = min{i ∈ N; λ
(i)
d (n) ≤ 1},

where the superscript i denotes the i-times iterated
function.1

We can now state the theorem about graphs that
we will use for our lower bound on the number of
wires.

Theorem 11 For every ε > 0 and every integer d ≥
1, there exists δ > 0 such that for all n, if G has
depth d, n inputs and it is ε-inseparable, then it has
at least δnλd(n) edges.

We shall prove a stronger version of this theorem.
For a set of inputs X of G, define

s(X) = min{|S|; S separates X}.

Let n be the number of input vertices, let 2 ≤ t ≤
n, and ε > 0. We shall say that G is weakly t, ε-
inseparable, if for all k, t ≤ k ≤ n,

E
|X|=k

(s(X)) > εk.

1Note that the functions λi defined in [23] are different.

The greater generality (in particular, the bound on the
expectation, instead of an absolute bound) is needed
for the proof.

Theorem 12 For every ε > 0 and every integer d ≥
1, there exists δ > 0 such that for every 2 ≤ t ≤
n, every weakly t, ε-inseparable G of depth d with n
input vertices has at least δnλd(nt ) edges.

This theorem is proved by induction on the depth
d. We shall assume w.l.o.g. that G is stratified into
levels V0, V1, · · · , Vd and edges are only between
consecutive levels. The following two lemmas for-
malize the induction base and the induction step.

Lemma 13 For every ε > 0, there exists δ > 0 such
that if G has depth 1, has n input vertices and it is
weakly t, ε-inseparable, where 2 ≤ t ≤ n, then it
has more than δn log n

t edges.

Proof: Suppose G is weakly t, ε-inseparable. Let
v1, v2, . . . be all vertices on the level 1 (the level 0
being the input vertices) ordered by the decreasing
indegrees d1 ≥ d2 ≥ . . . . For t ≤ q ≤ εn

2 consider
the undirected graph Hq with the set of vertices be-
ing the input vertices of G and edges (x, y) such that
x → vi, y → vi in G for some i > q. Thus Hq has
m ≤∑i>q

(
di
2

)
edges. Let X be a random subset of

inputs of cardinality k = d 2q
ε e (thus t ≤ k ≤ n). The

expected number of edges on X is m

(n2)

(
k
2

)
.

Observe that if there are ` edges of Hq onX , then
s(X) ≤ ` + q (take the vertices v1, · · · , vq and one
vertex from each edge). Thus we have

m(
n
2

)
(
k

2

)
+ q ≥ E(s(x)) > εk.

Since q ≤ εk/2, we have

m(
n
2

)
(
k

2

)
>
εk

2
.

Substituting for m and simplifying we get

∑

i>q

(
di
2

)
(
n
2

) > ε

k − 1
.

Since di ≤ n, we can estimate (di2 )
(n2)
≤ d2

i

n2 . Thus we
get

∑

i>q

d2
i

n2
>

ε

k − 1
=

ε

d 2q
ε e − 1

≥ ε2

2q
.
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By Lemma 4 of [21], this implies

∑

i

di
n
≥ δ1 log

b εn2 c
t
,

for some δ1 > 0 depending only on ε. Hence if t =
o(n), we get

∑

i

di ≥ δn log
n

t
.

Otherwise use the trivial lower bound εt on the num-
ber of edges.

Lemma 14 For every integer d ≥ 1, reals ε > 0,
and γ > 0, there exists δ > 0 such that for every n, if

(i) for every 2 ≤ t ≤ n, every weakly t, ε2 -
inseparable G of depth d with n input ver-
tices has at least γnλd(nt ) edges,

then

(ii) for every 2 ≤ t ≤ n, every weakly t, ε-
inseparable G of depth d + 1 with n input
vertices has at least δnλd+1(nt ) edges.

Proof: Suppose (i) holds true. Let G be weakly t, ε-
inseparable directed graph with depth d + 1 and n
input vertices.

Let us briefly sketch the idea of the proof before
doing detailed computations. We would like to dis-
tinguish two cases: either there are a lot of vertices of
high degree on the first level, or not. In the first case
there are, clearly, many edges. In the second case
we can delete the vertices on the first level that have
large degrees, connect inputs directly to the second
level and then we can apply (i) to the resulting depth
d graph. However, this does not quite work, as after
deleting the vertices with high degree, the degrees of
the remaining vertices on level 1 are still too large.
Therefore we have to consider also vertices with in-
termediate degrees. If the number of those vertices
would be small, then a random set of inputs would
meet only a few edges connected to them.

Let deg(v) denote the indegree of a vertex v. Let
t be given, 2 ≤ t ≤ n. Put r = n

t ,

A0 = {v ∈ V1; deg(v) > λd(r)},
Ai = {v ∈ V1; λ

(i+1)
d (r) < deg(v) ≤ λ(i)

d (r)},
for i ≥ 1.

Let E denote the set of edges of G.
Claim. For every i, 1 ≤ i ≤ λd+1(r)/2 − 3, at

least one of the following three inequalities is satis-
fied:

1. |A0 ∪ · · · ∪ Ai−1| ≥ ε
4

n

λ
(i+1)
d (r)

;

2. |{(u, v) ∈ E; u ∈ V0, v ∈ Ai ∪ Ai+1 ∪
Ai+2}| ≥ ε

4n;

3. |{(u, v) ∈ E; u, v 6∈ A0 ∪ · · · ∪ Ai+2}| ≥
γn

λ
(i+2)
d (r)

λ
(i+3)
d (r)

.

Proof of Claim. Let i be given and sup-
pose that conditions (1) and (2) are false. Let
n/λ

(i+1)
d (r) ≤ k ≤ n. Observe that n/λ(i+1)

d (r) =

n/λ
(i+1)
d (n/t) ≥ t, since λd(x) ≤ x for all x. Let

X ⊆ V1 be a random subset of size k. We shall
show that if we remove from G all edges incident
with A0 ∪ · · · ∪ Ai+2, then

E(s′(X)) >
ε

2
k,

where s′(X) denotes s(X) in the modified graph,
which we shall denote by G′.

Indeed, let a = |A0 ∪ · · · ∪ Ai−1|, b(X) =
|{(u, v) ∈ E; u ∈ X, v ∈ Ai ∪ Ai+1 ∪ Ai+2}|.
Then

s(X) ≤ a+ b(X) + s′(X).

Hence

E(s′(X)) ≥ E(s(X)− b(X)− a)

= E(s(X))−E(b(X))− a.

By non-1, a < ε
4

n

λ
(i+1)
d (r)

≤ ε
4k. By non-2, we have

E(b(X)) < ε
4k, (each edge from {(u, v) ∈ E; u ∈

V0, v ∈ Ai∪Ai+1∪Ai+2} is chosen with probability
k/n; use the linearity of expectation).

Thus G′ is weakly n/λ(i+1)
d (r), ε2 -inseparable.

We shall further modifyG′ by removing all edges
between V1 and V2 and adding, for every path
(u, v, w) in G′ with u ∈ V0, v ∈ V1, w ∈ V2, the
edge (u,w). The resulting graph will be denoted by
G′′. It has depth d (the first level being V1 ∪ V2, the
second level being V3 etc.) and at most λ(i+3)

d (r)-
times more edges.

Furthermore, G′′ is also weakly n/λ(i+1)
d (r), ε2 -

inseparable. To see that, observe that if X is a set
of inputs (in G′ and G′′) and S is a separating set
for X in G′′, then S is a separating set for X also
in G′. Indeed, let S be a separating set for X in G′′

and let (v0, · · · , vj) and (u0, · · · , uj) be two paths
in G′, v0, u0 ∈ X , v0 6= u0 and vj = uj . Then
if j = 1, these paths are also paths in G′′, and
if j > 1, (v0, v2, · · · , vj) and (u0, u2, · · · , uj) are
paths in G′′. In both cases they contain an element
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from S, whence the original pair of paths also con-
tains an element from S. Thus separating sets are at
least as large in G′′ as in G′.

By the assumption (i), G′′ must have at least
γnλd(λ

(i+1)
d (r)) = γnλ

(i+2)
d (r) edges. Hence

G′ has at least γnλ(i+2)
d (r)/λ

(i+3)
d (r) edges, which

proves 3. This finishes the proof of the Claim.

To finish the proof of Lemma 14, we shall use the
inequality

λ
(i)
d (r)

λ
(i+1)
d (r)

≥ 1
2λd+1(r),

for every i ≤ λd+1(r)/2 − 1, which was proved
in [21] as Lemma 5. By the Claim it suffices to con-
sider the following three cases.

1. Suppose for some i ≤ λd+1(r)/2 − 3 the con-
dition (i) of Claim is satisfied. Then, since every
v ∈ A0∪· · ·∪Ai−1 has degree> λ

(i)
d (r), the number

of edges in G is at least

ε

4

n

λ
(i+1)
d (r)

λ
(i)
d (r) ≥ ε

8
nλd+1(r).

2. Suppose for all i ≤ λd+1(r)/2−3 the condition
(ii) of Claim is satisfied. Then the number of edges
of G is at least

1
3 (λd+1(r)/2− 3)

ε

4
n = Ω(nλd+1(r)).

3. Suppose for some i ≤ λd+1(r)/2 − 3 the con-
dition (iii) of Claim is satisfied. Then the number of
edges of G is at least

γn
λ

(i+2)
d (r)

λ
(i+3)
d (r)

≥ 1
2γnλd+1(r).

Proof:[Proof of Theorem 6] Without loss of gen-
erality, it suffices to show lower bound for the
function x1 ∧ . . . xn instead of the AND function.
Thus assume that the circuits C computes function
F (x1, . . . , xn) which is either the function x1 ∧
. . . xn or the function MODq where (m, q) = 1.

Let 0 < ε < γ, let δ > 0 be given by Theo-
rem 11 for these ε and d. Suppose that the circuit has
< δnλd(n) edges. Then, by Theorem 11, there exists
a set of inputs X which is ε-separated in the depth d
graph obtained by removing the output gate from the
circuit. Let S be the separating set augmented with
the output gate. Then S is a separating set in the

whole circuit and |S| ≤ ε|X | + 1. We may more-
over require that |X | ≥ logn, thus if n is sufficiently
large, |S| ≤ γ|X |.

Furthermore, for every v ∈ S, disconnect v from
its inputs and set it to be the constant equal to the
boolean value computed at v when all inputs are 0.
Let C ′ be the resulting circuit. Let v ∈ S and let w
be an input gate of v in C. Then in C ′, the gate w
only depends on at most one input from X , because
S is a separating set. Thus if we put back the original
MODm gate on v, the boolean function computed at
v will be some MODm function Ev : that is, there
is a linear form θ(x1, . . . , xn) over Zm, and A ⊆
{0, . . . ,m− 1} such that Ev(x) = 1 iff θ(x) ∈ A.

Thus in order to get a contradiction with the as-
sumption that C computes F (x1, . . . , xn) we need
only find a boolean assignment a 6= 0n of x1, . . . , xn
such that the variables outside X are set to 0 and the
following holds: For every v ∈ S

Ev(a) = Ev(0n), (13)

but F (a) 6= F (0n).
On the left hand side of (13) we replace each

boolean function Ev(·) by its underlying linear form
that takes values in Zm.

Then if the resulting linear system over Zm is sat-
isfied then so is (13). The assumption that F is either
x1∧ . . . xn or MODq with (q,m) = 1 guarantees the
existence of a boolean solution a 6= 0n to this system
such that F (a) 6= F (0n) by the Linear Uniformity
Lemma. Thus C cannot compute AND or MODq.

5 Generalization to low degree polyno-
mials

In this section we generalize Theorem 4 to The-
orem 7 by extending the Linear Uniformity Lemma
to systems of equations involoving low degree poly-
nomials. We shall need the following estimate from
[9]:

Fact 15 Let q,m be any relatively prime numbers.
Further, let φ(x) = φ(x1, . . . , xn) be any polyno-
mial of degree d with coefficients in Zm. Then there
exists 0 < α(m, q) < 1, such that

∑

x∈{0,1}n
em(φ(x))eq(a

n∑

i=1

xi) ≤ 2ne
− αn

(m2m)d ,

(14)

whenever a 6= 0 mod q.
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We now show that one can easily use (14) to ex-
tend our Linear Uniformity Lemma to systems of
polynomial equations of small degree.

Let S = {φ1, . . . , φr} be a set of s polynomials
over Zm, where φi has degree di. Let ∆ = ∆(S) =
max1≤i≤sdi be the maximum degree among all poly-
nomials in S. For v ∈ Zsm, let KS(v) represent the
set of points in {0, 1}n, that satisfy φi = vi for all
1 ≤ i ≤ s. We show the following :

Lemma 16 (General Uniformity Lemma) Using
the notation above, for all positive integers m, q,
with (m, q) = 1, there exist constants α, β > 0 such
that for all polynomial mapping S : Znm → Zsm, we
have

∣∣|KS(v) ∩Mn,q(b)| − |KS |/q
∣∣ ≤

(
2

eα/β∆

)n
.

(15)

for each b ∈ {0, . . . , q − 1} and vector v ∈ Zsm.

Proof: One can easily mimick the first few steps of
the proof of the Uniformity Lemma from Section 2
to obtain the following :

∣∣|KS ∩Mn,q(b)| − |KS |/q
∣∣ =

∣∣∣∣∣
∑

x∈{0,1}n

[ s∏

i=1

( 1

m

m−1∑

j=0

em(jφi(x))
)

×
(1

q

q−1∑

j=1

eq(j(
n∑

k=1

xk − b))
)]
∣∣∣∣∣. (16)

As in Section 2, we multiply out the terms in the
summand above. This gives usms(q−1) terms, each
of which is of the form below:

eq(−jb)
msq

∑

x∈{0,1}n

[
em(j1φ1(x) + . . .+ jsφs(x))

× eq(j

n∑

k=1

xk)
]
, (17)

where j ∈ [q − 1] and (j1, . . . , js) ∈ {0, 1, . . . ,m−
1}s. The degree of the form j1φ1(x) + . . .+ jsφs(x)
is at most ∆(S) for every (j1, . . . , js). Using the
bound on (14) in Fact 15, one can write

(17) ≤ q − 1

q

( 2

eα/β∆

)n (18)

It can be easily verified that the bound of (18) easily
yields (15) in the General Uniformity Lemma.

We apply an argument similar to that applied to
prove Lemma 3 from the Linear Uniformity Lemma
(see Section 3), to inequlaity (15). This shows that
for every 0 < ε < 1, there exists a constant δ =
δ(m, q, ε) > 0 such that

|Pr
x

[C(x) = 1|x ∈Mn,q(a)]

− Pr
x

[C(x) = 1|x ∈Mn,q(b)]| ≤ 2−Ω(n), (19)

where C is circuit of type CCo(n)[m] ◦
ANDδ log n. Using the ε-discriminator lemma we im-
mediately get Theorem 7.

Note that our method again yields a bound for a
more general class of circuits i.e. of type MAJ ◦
ANY◦CCo(n)[m]◦ANDδ log n where the sub-circuit
rooted at each ANY gate uses sub-linear number of
MODm gates and each input of an ANY gate is the
output of a MODm gate. Using Hastad’s switch
Lemma and our results above, one can show that
super-polynomial size is needed when the bottom
AND gates are replaced by poly-sized AC0 circuits.

We believe that circuits of type MODm◦MODm◦
ANDO(1) need exponential number of MODm gates
to compute the AND function. We cannot even show
a linear lower bound on the number of MODm gates
at the moment. To show that, it would be sufficient to
show that KS is large if S has sub-linear number of
equations. This looks like a problem of independent
interest.
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[28] D. Thérien. Circuits constructed with MODq

gates cannot compute AND in sublinear size.
Comput. Complexity 4 (1994), no. 4, 383–388.

[29] P. Y. Yan, I. Parberry. Exponential Size Lower
Bounds for Some Depth Three Circuits. Inf.
Comput. 112(1): 117–130 (1994).

10


