
COMP322 - Introduction to C++

Winter 2011

Lecture 08 - Inheritance continued

School of Computer Science

McGill University

March 8, 2011

Last Time

◮ Single Inheritance

◮ Polymorphism: Static Binding vs Dynamic Binding

◮ Abstract Classes

Public inheritance

◮ The use of the public keyword in the declaration of the

derived class is the norm, but it must be present.

◮ One can specify private or protected inheritance,

which hides inherited members.

◮ If you omit the public keyword, inheritance is private.

class A {

public: void f();

};

class B: A { // B inherits A privately

public: void g();

};

int main() {

A a;

B b;

a.f(); // OK

b.g(); // OK

b.f(); // Illegal

}

Static binding

If a member function is not virtual, the choice of function

to call is made at compile time:

class A {

int f();

};

class B : public A {

int f();

};

int main() {

B b;

A *pa = &b;

pa ->f(); // Calls A::f() because pa is of type ’A *’

}

This is called “static binding”, and it is the default behavior in

C++.

Dynamic binding

If a member function is virtual, the choice of function to

call is made at run time:

class A {

virtual int f();

};

class B : public A {

int f();

};

int main() {

B b;

A *pa = &b;

pa ->f(); // Calls B::f() because pa points to a ’B *’

}

Called either “dynamic binding”, this is both more useful and

less efficient than static binding.

Implementing pure virtual functions

A pure virtual function can provide an implementation which

could be used by derived classes.

class A {

public:

virtual void f() = 0;

};

void A::f() {

// ...

}

class B : public A {

public:

void f();

};

void B::f() {

A::f(); // call the base class

// do more ...

}

The compiler will still refuse to create an object of class A!

Multiple inheritance

Java includes the “interface” construct, which allows one to

generically specify a group of functions which must be

implemented by a derived class.

C++ accomplishes the same thing through abstract classes

and multiple inheritance.

Multiple inheritance allows a class to be derived from two or

more base classes. The derived class inherits all of the data

and functions of each base class, which clearly raises the

possibility of naming conflicts.

Java interfaces are similar to a C++ abstract class with no

data or function implementations. Both provide only the

prototypes for functions which must be implemented by the

derived class.

Multiple inheritance syntax

The syntax of multiple inheritance is straightforward. Each

base class can use private, public, or protected inheritance:

class A { // base class 1

int x;

public:

void f();

};

class B { // base class 2

int y;

public:

void g();

};

class C : public A, public B { // C inherits from A & B

int z; // Visible only within ’C’

public:

// ..

};

Class C will contain both functions and three variables.

Assignment compatibility

A derived class is assignment compatible with any base class.

class A { // base class 1

// ...

};

class B { // base class 2

// ...

};

class C : public A, public B { // C inherits from A & B

// ...

};

int main() {

A a;

B b;

C c;

a = c; // OK

b = c; // OK

c = a; // Error

return 0;

}

Assignment compatibility with pointers

Assignment compatibility with pointers is maintained similarly.

However, the conversion to different base classes may return

different values.

class A { // base class 1

// ...

};

class B { // base class 2

// ...

};

class C : public A, public B { // C is derived from A, B

// ...

};

int main() {

C c;

A *pa = &c;

B *pb = &c;

// ...

}

Sources of ambiguity

Multiple inheritance can introduce ambiguities and conflicts:

class A {

public:

void f();

};

class B {

public:

void f();

};

class C : public A, public B {

public:

void g() { f(); } // Which f() do I invoke?

};

This can be resolved by qualifying the call to f() as A::f(),

for example.

Diamond inheritance

An difficult situation arises when one class inherits from two

others, both of which share a base class:

class person {

string name;

public:

void getName ();

};

class student : public person {

int year; // U0 , U1 , U2 , etc ..

public:

void getYear ();

};

class employee : public person {

int year; // years of seniority

public:

void getYear ();

};

class studentemployee : public student , public employee {

};

The diamond inheritance problem

The problem is even worse than we might imagine at first

glance. Our getYear() method is clearly ambiguous.

So is the getName() method! Our student and employee

classes both inherited from person. Internally,

C++ represents derived class as a concatenation of the base

and derived classes, so our studentemployee class contains

two copies of person:

person

student

person

employee

studentemployee

The diamond inheritance problem
If we use getName() in our studentemployee class, it could

refer to either person. This can be overcome with scope

resolution:

class studentemployee : public student , public employee {

public:

void f() {

string s = employee :: getName ();

}

};

Assignment compatibility is now broken:

int main() {

person p1;

studentemployee se1;

p1 = se1; // Which person does the compiler use ??

}

Again, there is a workaround:

p1 = (employee) se1;

There are two solutions for diamond inheritance
◮ Avoid this situation at all costs!

◮ Use virtual inheritance:

class person {

string name;

public:

void getName ();

};

class student : virtual public person {

int year; // U0 , U1 , U2 , etc ..

public:

void getYearOfStudy ();

};

class employee : virtual public person {

int year; // years of seniority

public:

void getYearsOfService (); // avoid function name conflict

};

class studentemployee : public student , public employee {

};

What is virtual inheritance?

◮ Virtual inheritance ensures that a single copy of the

common base class is maintained in all derived classes.

◮ As with virtual functions and dynamic dispatch, the

compiler adds a layer of indirection to accesses to the

virtual base class.

◮ Virtual inheritance must be anticipated and applied above

the point where any two classes with a common base

class are joined.

class A {};

class B: virtual public A {};

class C: virtual public A {};

class D: public B, public C {};

◮ Rules for virtual inheritance are more complex than we

can cover here.

Advanced type casting

The complexity of C++ inheritance has inspired a number of

additional type conversion operators.

dynamic cast<type>(expression) - safely converts pointers

and references among polymorphic types, with runtime checks.

class A { /* ... */ };

class B { /* ... */ };

class C: public A, public B { /* ... */ };

int main() {

A *pa1 = new A;

A *pa2 = new C;

B *pb;

C *pc;

pc = dynamic_cast <C *>(pa1); // Returns NULL

pc = dynamic_cast <C *>(pa2); // OK

pb = dynamic_cast <B *>(pa2); // OK

}

Advanced type casting

static cast<type>(expression) - converts among related

classes with static checks. Unlike dynamic cast, it cannot

consider the runtime type, it only considers the compile time

type.

int main() {

A *pa1 = new A;

A *pa2 = new C;

B *pb;

C *pc;

pc = static_cast <C *>(pa1); // OK , but dangerous

pc = static_cast <C *>(pa2); // OK

pb = static_cast <B *>(pc); // OK

pb = static_cast <B *>(pa2); // Compiler error

}

Advanced type casting

reinterpret cast<type>(expression) - converts among any

pointer types, with no checks or adjustments. This can lead to

extremely dangerous situations, as we can convert among

completely unrelated types!

int main() {

A *pa1 = new A;

B *pb;

C *pc;

pc = reinterpret_cast <C *>(pa1); // Legal but dangerous

pb = reinterpret_cast <B *>(pa1); // Legal but dangerous

}

Generic Programming

◮ Generic Programming is a programming paradigm for

developing efficient, reusable software libraries

Introduction to Generic Programming

◮ Algorithms are written independently of data

◮ Data types are filled in during execution

◮ Number of algorithms are data-type independent:

◮ sorting
◮ searching
◮ finding n-th largest
◮ swapping, etc

◮ Write once, use many times philosophy

◮ dramatically reduces lines-of-code
◮ makes code much easier to maintain

Templates

◮ In C++, templates = generic programming

◮ A template is a routine in which some parameters are

qualified by a type variable.

◮ The template is then specialized for each combination of

argument types that occur in practice

◮ We can define

◮ Function Templates
◮ Class Templates

◮ In Java, generic programming is implemented using

inheritance: All the collections API classes are written in

terms of the Object class, and since all objects in Java are

instances of this class, these collections are usable by all

class types.

Function Templates

◮ Special functions that can operate with generic types

◮ A template parameter is a special kind of parameter used
to pass a type as an argument

◮ Just like regular function parameters, but pass types to a

function

◮ Declaration Format:

template <class identifier > function_declaration;

Function Templates - Example

template <class T> T getMax(T a, T b){

return (a>b?a:b);

}

int main (){

int i=5,j=6,k;

long l=10,m=5,n;

k = getMax <int >(i,j);

n = getMax <long >(l,m);

cout << k << endl;

cout << n <<endl;

return 0;

}

Note: You cannot mix int and long types: There is one

template type only in definition.

Function Templates - Multiple template types

Define template types after the template keyword

template <class T1 , class T2 > T getMax(T1 a, T2 b){

return (a>b?a:b);

}

Class Templates

◮ Can have members that use template parameters as types

template <class T> class myClass{

private:

T *storage;

// ...

};

◮ More Next Time

