
COMP322 - Introduction to C++

Winter 2011

Lecture 07 - Overloading cont’d & The Basics of
Inheritance

Milena Scaccia

School of Computer Science
McGill University

March 1, 2011

Last Time: Function Overloading

void print(int x, int radix = 10) {

cout << setbase(radix) << x << endl;

}

void print(double x, int precision = 6) {

cout << setprecision(precision) << x << endl;

}

int main() {

print (10 ,16); // calls first print

print (3.14159); // calls second print

}

Overloading operators

Almost all of the unary and binary operators in C++ can be
redefined for a particular class.

Operator overloading example

class complex {

private:

float real , imag;

public:

complex(float r=0, float i=0) {

real = r;

imag = i;

}

float getReal () const { return real; }

float getImag () const { return imag; }

complex operator +(const complex &y) const { // overload +

return complex(real + y.real , imag + y.imag);

}

complex operator *(const complex &y) const { // overload *

return complex(real * y.real - imag * y.imag ,

real * y.imag + imag * y.real);

}

};

Operator overloading example, continued

We can now use the ’+’ and ’*’ operators with our complex
type, just as we can with “normal” types:

int main() {

complex c1(2, 1);

complex c2(3, 3);

complex c3 = c1 * c2;

complex c4 = c1 + 1; // Implicit promotion

}

The constant ’1’ is implicitly converted to a float, then our
constructor generates a complex before performing the second
addition.

Global operator functions

We can also define operator functions at the global level.

ostream & operator << (ostream &out , complex &r) {

out << r.getReal () << " + " << r.getImag () << "i";

return out;

}

int main() {

complex c1(2, 1);

complex c2(3, 3);

complex c3 = c1 * c2;

complex c4 = c1 + 1;

cout << c3 << endl;

cout << c4 << endl;

}

the output would be:

3 + 9i

3 + 1i

Overloading continued

Consider our example of matrix/vector multiplication:

vector operator *(const matrix& m, const vector& v)

{

vector r;

for (int i=0; i < m.rows (); i++) {

r.elem(i) = 0;

for (int j=0; j < m.cols (); j++) {

r.elem(i) += m.elem(i,j) * v.elem(j);

}

}

return r;

}

this permits us to write:

vector v, w;

matrix m;

// ...

w = m * v;

Overloading conversion

Consider a simple string class:

class pstring {

char *m_buf;

int m_len;

public:

pstring () { m_buf = 0; m_len = 0; } // Default Constructor

pstring(char *pch); // Constructor

pstring(const pstring &str); // Copy constructor

int length () const { return m_len; }

operator int() const { // Conversion to integer

int result = 0;

char *p = m_buf;

for (int i = 0; (*p > ’0’ && *p < ’9’) && i < m_len; i++)

result = (result * 10) + (*p++ - ’0’);

return result;

}

};

String conversion

#include <iostream >

#include "pstring.h"

using namespace std;

int main() {

pstring y("12345");

int n = (int)y; // Conversion

cout << n << endl;

}

Overloading indexing

We can overload the idea of array indexing, and even check
array bounds if desired:

// return reference so can use as lvalue

char & pstring :: operator [](int i) {

if (i < 0 || i >= m_len) {

i = 0;

cerr << "Index out of bounds\n";

}

return m_buf[i];

}

int main() {

pstring y("12345");

cout << y[4] << endl;

cout << y[10] <<endl; // Will print an error

}

Inheritance

McDuck

What is inheritance?

Problem: You write a class A and later discover a class B that
is almost identical to A but has some extra attributes and
operations.

Solution: Ask class B to re-use operations / attributes of A.

◮ Inheritance refers to our ability to create a hierarchy of
classes, in which derived classes (subclass) automatically
incorporate functionality from their base classes
(superclass).

◮ A derived class inherits all of the data and functions from
its base class.

◮ A derived class may add its own features, data, etc, and
may also override one or more of the inherited functions.

Inheritance Example

◮ Inheritance allows to build software incrementally,
allowing you to first build classes for the generic case and
then build classes for special cases that inherit from the
generic classes.

Inheritance syntax
class A { // base class

private:

int x; // Visible only within ’A’

protected:

int y; // Visible to derived classes

public:

int z; // Visible globally

A(); // Constructor

~A(); // Destructor

void f(); // Example method

};

class B : public A { // B is derived from A

private:

int w; // Visible only within ’B’

public:

B(); // Constructor

~B(); // Destructor

void g() {

w = z + y; // OK

f(); // OK

w = x + 1; // Error - ’x’ is private to ’A’

}

};

Notes

◮ No private members are inherited EVER with any of the
keywords. Only public and protected members are
inherited.

◮ friends are not inherited

◮ Types of Inheritance
◮ Single Inheritance
◮ Multiple Inheritance (Next Lecture)

class Foo {// ...};

class Bar {// ...};

class FooBar: public Foo , public Bar {// ...};

Benefits of Inheritance

◮ Maximize reuse and quality
◮ Programmers reuse the base classes instead of writing

new classes
◮ Using well-tested base classes helps reduce bugs in

applications that use them (e.g. Boost Library)
◮ Reduce object code size

Overriding member functions
A derived class may override a function from its base class:
class A {

public:

void f(int x) { cerr << "A::f(" << x << ")\n"; }

};

class B: public A {

public:

void f(int x) { cerr << "B::f(" << x << ")\n"; }

};

int main() {

A a;

B b;

a.f(1);

b.f(2);

}

the main() program will print:
A::f(1)

B::f(2)

Do not confuse overriding with overloading!

Calling the base class

Overridden functions do not automatically invoke the base
class implementation. We have to do this explicitly:

class B: public A {

public:

void f(int x) {

A::f(x); // Call the base class

cerr << "B::f(" << x << ")\n";

}

};

the prior main() would now print:

A::f(1)

A::f(2)

B::f(2)

Because of multiple inheritance, C++ does not offer the Java
super() construct.

Assignment compatibility

C++ considers objects of a derived class to be assignment
compatible with objects of their base class. This just makes a
copy, skipping members that aren’t part of the base class.

class A {

protected:

int x;

// ...

};

class B: public A {

int y;

// ...

};

int main() {

B b;

A a;

a = b; // OK , but ’y’ is not copied!

}

Assignment compatibility

However, we can’t do the reverse and assign an object from a
base class to a derived class. This could leave derived class
members in an undefined state.

class A {

protected:

int x;

// ...

};

class B: public A {

int y;

// ...

};

int main() {

B b;

A a;

b = a; // Not OK - undefined value for ’y’

}

Assignment compatibility with pointers

The same rules apply with pointers. We can assign the
address of an object of a derived class to an pointer to the
base class, but not the opposite.

class A {

// ...

};

class B: public A {

// ...

};

int main() {

A a, *pa;

B b, *pb;

pa = &b; // OK

pb = &a; // Error!

}

However, since we are assigning pointers, the objects in these
assignments are not modified, as opposed to the case when
objects are copied. They retain their full contents.

Polymorphism
The ability to use base class pointers to refer to any of several
derived objects is a key part of polymorphism.

Exploiting polymorphism requires additional effort:

class A {

public:

void f() { cerr << "A::f()" << endl; }

};

class B: public A {

public:

void f() { cerr << "B::f()" << endl; }

};

int main() {

B b;

A *pa = &b; // OK

pa ->f(); // Which f() does this call?

}

This call invokes the base class, A::f()! This is known as static binding.

The choice of function to call is made at compile time.

Virtual functions - Dynamic Binding

The solution is to declare functions virtual.

class A {

public:

virtual void f() { cerr << "A::f()" << endl; }

};

class B: public A {

public:

void f() { cerr << "B::f()" << endl; }

};

int main() {

B b;

A *pa = &b; // OK

pa ->f(); // Now this will call B::f()! Dynamic Binding

}

The virtual keyword indicates that the appropriate function is called

based on the type of object that the pointer refers to, and not by the

type of pointer. The choice of function to call is made at run time.

Virtual functions

A virtual function in the derived class will override the base
class only if the type signatures match.

class A {

public:

virtual void f() { cerr << "A::f()" << endl; }

};

class B: public A {

public:

void f(int x) { cerr << "B::f()" << endl; }

};

int main() {

B b;

A *pa = &b; // OK

pa ->f(); // Now this will call A::f()!

}

As with overloading, changing only the return type introduces
an ambiguity and will trigger a compile-time error.

Virtual function details

◮ You do not need to use the virtual keyword in the
derived classes, but it is legal.

◮ If you explicitly use the scope operator, you can override
the natural choice of function.

class A {

public: virtual void f() { cerr << "A::f()\n"; }

};

class B : public A {

public: virtual void f() { cerr << "B::f()\n"; }

};

int main() {

A *pa = new B();

pa ->A::f(); // Explicity invokes the base class

pa ->f(); // Invokes B::f()

}

Virtual constructors or destructors

◮ You cannot declare a constructor virtual.

◮ You can, and often should, declare a destructor virtual:

class A {

public:

virtual ~A() {};

};

class B : public A {

private:

int *mem;

public:

B(int n=10) { mem = new int[n]; }

~B() { cerr << "~B()\n"; delete [] mem; }

};

int main() {

A *pa = new B(100);

delete pa; // What would happen if the destructor

// was not declared as virtual?

}

Virtual destructor cont’d

◮ If the destructor was not declared virtual, the compiler
would use the type of pa to decide which method to call.

◮ In our case, pa is of type A, so the A destructor would
get called.

◮ This can cause a memory leak from pa (how?)

◮ Always declare destructors virtual!

Pure virtual functions and abstract classes

◮ Pure virtual function is a function declared with no
definition (the base class contains no implementation at
all)

◮ a class containing a pure virtual function is an abstract
class (similar to Java interfaces)

◮ This enforces a design through inheritance hierarchy
(inhertied classes must define implementation)

Example of Abstract Class

class A {

public:

A();

virtual void f() = 0; // pure virtual

};

class B: public A {

public:

B();

void f() { cout << "Class B" << endl; }

};

class C: public B {

public:

C();

void f() { cout << "Class C" << endl; }

};

Example continued

int main() {

B b; C c;

A* pa1 = &b;

A* pa2 = &c;

pa1 ->f();

pa2 ->f();

}

Outputs:

Class B

Class C

Abstract Class Example

Motivational Example: Imaging Device Objects (webcam,
firewire, disk images, movies) need to acquire frames in their
own way

class ImagingDevice {

protected:

unsigned char *buffer;

int width , height;

...

public:

ImagingDevice ();

virtual ~ImagingDevice (); // virtual destructor

...

virtual bool InitializeDevice () = 0;

virtual bool GetImage ()=0;

virtual bool UninitializeDevice () = 0;

virtual void SaveImage ()=0;

...

};

Continued

class USBDevice: public ImagingDevice {

...

public:

USBDevice ();

virtual ~USBDevice ();

...

};

bool USBDevice :: InitializeDevice (){ ... }

bool USBDevice :: UninitializeDevice (){ ... }

bool USBDevice :: GetImage (){ ... }

void USBDevice :: SaveImage (){ ... }

