
COMP322 - Introduction to C++

Winter 2011

Lecture 06 - Classes & Overloading

Milena Scaccia

School of Computer Science
McGill University

February 8, 2011



Recall from last class

◮ Class Definition (Declaration and Implementation)
◮ Constructor
◮ Destructor
◮ Copy Constructor
◮ Member Functions



The this pointer
The object through which we invoke the member function is
an implicit parameter which may be accessed by using a
member name:

complex complex ::mul(const complex &y) {

return complex(real * y.real - imag * y.imag ,

real * y.imag + imag * y.real);

}

Alternatively, we can explicitly reference the implicit parameter
using the keyword this. In any non-static member function,
this is a pointer to the object through which the member was
invoked:

complex complex ::mul(const complex &y) {

return complex(this ->real * y.real - this ->imag * y.imag ,

this ->real * y.imag + this ->imag * y.real);

}

It is rarely necessary to use the this pointer explicitly, but it
may occasionally help clarify the intent of your code.



Static member functions

If a member function is declared static, it is not called
through a specific object, and the this pointer is undefined:

// from the class declaration :

static float abs(const complex &x);

// Here is the actual function definition. Note that we must

// not re -use the static modifier here:

float complex ::abs(const complex &x) {

return sqrt(x.real * x.real + x.imag * x.imag);

}

These static functions are not invoked through a specific
object:

cout << complex ::abs(c) << endl;



Static data members

Unlike structure definitions, data objects in a class can also be
declared static.

This creates a single data field whose storage and value is
shared among all instances of the class.

These are the only data members in a class which may be
initialized:

class Example {

private:

int data1;

string data2;

static int data3 = 5;

// ...

};



Applications of static data
Here are a couple of applications for static data members:

◮ Parameters that are common to all class objects:
static const int N_TABLE = 100; // Fixed

static int udp_port = 1337; // Variable

◮ Data which is used for global accounting of resources:
class Example {

static int lock = 0;

};

Example () {

if (lock++ == 0) {

// Get resources

}

}

~Example () {

if (--lock == 0) {

// Free resources

}

}



Default arguments

We saw this for constructors; it also applies for member
functions.

Sometimes it is useful to specify default values for function
parameters. In this way we can simplify the most commonly
used form of a function call.

void sort(int *array , bool descending = false );

We can call this function in any number of ways:

int numbers [] = { 7, 9, 28, 5, 1 };

sort(numbers ); // Sort in ascending order

sort(numbers , true); // Sort in descending order

sort(numbers , false );

Default arguments may be specified for any C++ function.



Scoping issues

An issue arises when we wish to refer to a global object from within a

class:

#include <iostream >

using namespace std;

int count = 500;

class X

{

private:

int count;

public:

X(int a){

count = a;

}

int getGlobalCount (){

return ::count; // Here we use the ‘‘unary ’’ form of the

// scope resolution operator , which means

// ‘‘use the global version of count ’’.

}

};



Inefficiencies may arise from privacy

Suppose we have two classes, matrix and vector, with
private data and public accessor functions:

vector multiply(matrix& m, vector& v)

{

vector r;

for (int i=0; i < m.rows (); i++) {

r.elem(i) = 0;

for (int j=0; j < m.cols (); j++) {

r.elem(i) += m.elem(i,j) * v.elem(j);

}

}

return r;

}

All these function calls may be inefficient.



Friend functions
The friend keyword can be used to alter the normal rules about the

visibility of class members.

We add this line to both the matrix and vector classes:

class vector {

// ...

friend vector multiply(matrix &, vector &);

};

class matrix {

// ...

friend vector multiply(matrix &, vector &);

};

our function can now be written more efficiently:

vector multiply(matrix& m, vector& v)

{

vector r;

for (int i=0; i < m.n_rows; i++) {

r.data[i] = 0;

for (int j=0; j < m.n_cols; j++) {

r.data[i] += m.data[i][j] * v.data[j];

}

}

return r;



Friend classes

class Fox {

// ...

void f();

};

class Hound () {

// ...

friend class Fox; // Grant all of Fox access to Hound

};

class Poodle () {

// ...

friend void Fox::f(); // Grant Fox ::f() access to Poodle

};



Nesting classes

A class can contain one or more classes:

class X {

int x;

class Y {

// ...

};

class Z {

// ...

};

};

The enclosed classes are not visible outside of the scope of the
enclosing class. Nested classes usually act as “helper classes”
to the enclosing class.



Initializing class members
When a class contains objects of another class, the
constructors of the components can be called in the
constructor of the containing class.

A new syntax is necessary to allow parameters to be passed to
the constructor of objects allocated within the structure.
class matrix {

public:

matrix(int rows , int cols) {

// ...

}

};

class something {

matrix m1;

matrix m2;

public:

something(int n, int m)

: m1(n, m), m2(n, m) {

// initialize other members of something

}

};



Overloading



What is overloading?

http://www.codercaste.com/2011/01/09/what-is-function-overloading-how-to-use-it-to-write-better-code/



What is overloading?

Overloading refers to the programmer’s ability to assign
multiple new meanings to existing functions or operators.

◮ Function Overloading

◮ Overloaded functions must have different argument lists,

so the compiler can select the correct function.

◮ Operator Overloading
◮ C++ allows us to overload operators as well. Operators

get additional “power”. Example: we can redefine the

meaning of ’+’ for a new class.



Overloading functions

// First print

void print(int x, int radix = 10) {

cout << setbase(radix) << x << endl;

}

// Second print

void print(double x, int precision = 6) {

cout << setprecision(precision) << x << endl;

}

int main() {

print (10 ,16); /* Calls the first print. If no second parameter

is specified for the base , then it takes the

default value of 10 */

print (3.14159); /* Calls the second print. If no second

parameter is specified for precision ,

then it takes the default value of 6 */

}



Restrictions on overloading

◮ The functions cannot differ by return type alone!

class example {

double getval ();

int getval (); // Ambiguous !!

}

◮ Pointers and arrays are identical in argument lists, and
the first array dimension is not significant:

double mean(int array [10]);

double mean(int array [20]); // Ambiguous

double mean(int *array ); // Also ambiguous

◮ Typedef names are not distinct

typedef int Int;

void f(int i);

void f(Int i); // Ambiguous


