
COMP322 - Introduction to C++

Winter 2011

Lecture 05 - I/O using the standard library &
Introduction to Classes

Milena Scaccia

School of Computer Science
McGill University

February 1, 2011

Final note on pointers
◮ Pointers to constants

double fee = 3.22;

const double *p1 = &fee;

const char *str1 = ‘‘hello ’’;

We cannot change the value that p1 or str1 point to.

◮ Constant Pointers

int n = 21;

int * const p2 = &n;

char * const str2 = ‘‘hello ’’;

We can change the value of n or of the message, but p2
and str2 cannot point to anything else.

◮ Constant Pointers to Constants

const int * const p3 = &n;

const char * const str3 = ‘‘hello ’’;

We cannot alter the addresses of p3, str3, nor the value
of the data pointed to.

Basic I/O in C++

Recall that in C, we have three file handles which are
automatically created by the runtime library:

◮ stdin - standard input (from the keyboard/terminal)

◮ stdout - standard output (to the terminal/shell window)

◮ stderr - standard error

C++creates three ’stream’ objects which encapsulate these
handles:

◮ cin - standard input (from the keyboard/terminal)

◮ cout - standard output (to the terminal/shell window)

◮ cerr - standard error

Formatted I/O

In C++, the ’<<’ operator has been overloaded to write
formatted data to stream objects:

#include <iostream >

using namespace std;

int n = 1;

double x = 2.0;

cout << n << " " << x << endl;

In C++, the ’>>’ operator has been overloaded to read
formatted data from stream objects.

#include <iostream >

using namespace std;

int n;

double x;

cin >> n >> x;

Output stream manipulators

We can control the details of numeric output using stream
manipulators, for example:
Name Temp Description

hex N Print integers in base 16
oct N Print in base 8
dec N Print in base 10
fixed N Set fixed precision
scientific N Set scientific notation
left Y Left justify in width
right Y Right justify in width
setw(n) Y Set minimum field width
setprecision(m) N Set number of decimal places
setfill(’0’) N Set fill character

’Temp’ manipulators apply only to the next item printed.

Using I/O manipulators
#include <iostream >

#include <iomanip >

using namespace std;

int main() {

int n = 123;

double x = 123.4567;

cout << hex << n << endl

<< dec << right << setw (6) << n << endl

<< setfill(’*’) << left << setw (6) << n << endl

<< scientific << x << endl

<< fixed << setprecision (2) << x << endl;

}

Produces the output:

7b

123

123***

1.234567e+02

123.46

File input/output

For I/O with named files, we use objects of class ’ofstream’ or
’ifstream’:

#include <fstream >

ofstream out_file;

ifstream in_file;

in_file.open("in.txt");

out_file.open("out.txt");

Now one can read or write formatted data from these stream
objects:

in_file >> n;

out_file << n << endl;

When appropriate, we can close the file and reuse the object:

in_file.close ();

out_file.close ();

Verifying file operations

The >> operator returns a boolean which is true if the
operation succeeds:

int n;

while (in_file >> n) {

// process new input

}

we can also call member functions to retrieve status:

float x;

in_file >> x;

if (in_file.fail ()) {

// operation did not work , ’x’ is invalid

}

Reading unformatted characters

If we näıvely attempt to read characters using the >> operator,
this will skip spaces, end of line characters, etc.

You can read individual characters, including spaces, using the
get() method:

char ch;

while (in_file.get(ch)) { // Read next character into ’ch’

// do something

}

We can put a character back into the input stream using
unget():

in_file.unget(ch); // Pretend we didn ’t read ’ch’

Reading line-by-line input

We can read through an entire file using the getline()
function:

string nextline;

ifstream in_file;

in_file.open("input.txt");

while (getline(in_file , nextline)) {

// process this line

}

in_file.close ();

We can then use string functions, or the istringstream
class, to parse the line.

Introduction to Classes in C++

C++ is a multi-paradigm programming language:

◮ Generic Programming (Templates) (To be seen later)

◮ Imperative Programming (Procedural) (We have seen this)

◮ Object-Oriented Programming (Classes) (This lecture)

Classes in C++

A class can be thought of as an abstract data type, from
which we can create any number of objects.

In C++ , a class allows us to hide implementation details from
clients, and allows inheritance from one or more base classes,
creating a class hierarchy (multiple inheritance).

Defining a Class

A class definition can be broken up into two parts:

1. Class Declaration (Defined in a .h header file)
◮ Specifies what data members and member functions the

class will have.

2. Class Implementation (Defined in a .cpp source file)
◮ Provides the code for the function bodies

This is to separate the interface from the implementation.
However, separating the code this way is not required. We
may include code for the member functions in the .h file when
it involves only one or two statements.

Class Declaration

The following is an example declaration for the complex
number class. This should be declared in a file called
complex.h.

class complex{

private:

float real; // real part

float imag; // imaginary part

public:

complex (); // default constructor

complex(float r, float i); // full constructor

float getReal ();

float getImag ();

void setReal(float r);

void setImag(float i);

complex add(const complex &y);

};

Class Declaration

class complex{

private:

float real; // real part

float imag; // imaginary part

public:

complex (); // default constructor

complex(float r, float i); // full constructor

float getReal ();

float getImag ();

void setReal(float r);

void setImag(float i);

complex add(const complex &y);

};

Visibility specifiers for members are supplied by section.
Data members generally have private visibility.
private =⇒ visible only to other members of this very class.

Class Declaration
class complex{

private:

float real; // real part

float imag; // imaginary part

public:

complex (); // default constructor

complex(float r, float i); // full constructor

float getReal () const;

float getImag () const;

void setReal(float r);

void setImag(float i);

complex add(const complex &y);

};

Constructors and other member functions have public (global)
visibility.
Note there is a third kind of visibility modifier:
protected =⇒ visible to this class and all of its descendants.

Class declarations end in a semi-colon.

Class Implementation

We can implement the functions in a file complex.cpp as
follows:

#include "complex.h"

complex :: complex () { // Default constructor

real = imag = 0.0;

}

complex :: complex(float r, float i) {

real = r;

imag = i;

}

float complex :: getReal () const{

return real;

}

void complex :: setReal(float r){

real = r;

}

// ...

complex complex ::add(const complex &y) {

return complex(real + y.real , imag + y.imag);

}

Using our class

We can create a main function to use our class.

int main (){

complex a(1.0, 2.0);

complex b(2.0, 1.0);

complex c; // invokes default constructor

// We may also create a pointer to a complex number object

complex *d = new complex (2.0 ,3.0);

complex *e = new complex;

c = a.add(b);

cout << c.getReal () << " + " << c.getImag () << "i" << endl;

}

This code will print
3 + 3i

Constructors

Each class can define one or more constructors. These are
special functions which have the same name as the class, and
have no defined return type.

◮ Default Constructor

◮ “Full” Constructor

Constructors

The appropriate constructor is called automatically when an
object is created.

The default constructor is the constructor with no arguments.
It simply fills in a “reasonable” set of values.

In our example main() function, the declaration

complex a(1.0, 2.0);

invokes the “full” constructor, while the declaration

complex c;

invokes the default constructor.

Member functions

Unless specified otherwise, a member function is invoked by
dereferencing a specific object:

c = a.add(b);

The object through which we invoke the member function is
an implicit parameter to the function. It may be accessed
simply by using a member name:

complex complex ::add(const complex &y) {

return complex(real + y.real , imag + y.imag);

}

Const member functions

If a member function is declared const, by placing the
keyword after the parameter list, this means the member
function will not make any changes to the implicit parameter:

class complex {

// ...

float getImag () const;

// ...

};

float complex :: getImag () const {

return imag;

}

In comparison, consider a function to set the imaginary part:

void complex :: setImag(float i) {

imag = i;

}

Issues with constructors

Consider the following class declaration:

class intStack {

int top;

int max;

int size;

int *data;

intStack(int max = 100) { // Constructor

intStack ::max = max;

data = new int[max];

size = 0;

}

int pop();

void push(int i);

};

Issues with constructors cont’d
What happens if we initialize a new object with an old one?

int main() {

intStack a;

a.push (1);

a.push (2);

intStack b = a; // initialize new object with an old one

cout << b.pop() << endl;

a.push (3);

cout << b.pop() << endl;

}

Perhaps surprisingly, this prints:

2

3

If no copy constructor is defined, C++ uses the default copy
constructor which copies each field (i.e. shallow copy).

Copy constructor
The solution to this problem is to provide a copy constructor,
which copies the entire data structure.

The most generic form of copy constructor is:

class X {

X(const X &src);

// ...

};

For our intStack example, it would be:

intStack(const intStack &src) {

max = src.max;

data = new int[max];

size = src.size;

for (int i=0; i<size; i++) {

data[i] = src.data[i];

}

}

Deep copy

Destructors
A destructor is another “special” member function. The class destructor
is called when an object of a given class is deleted. This gives an
opportunity for the class to free memory or other resources.

The destructor always has the name ∼ 〈classname〉:

class intStack {

int top;

int max;

int size;

int *data;

intStack(int max = 100) { // Constructor

intStack ::max = max;

data = new int[max];

size = 0;

}

intStack(const intStack &src) { // Copy Constructor ...}

~intStack () { // Destructor

delete [] data;

}

int pop();

void push(int i);

};

More complex destructors
class Symtable {

private:

Symbol *head;

Symbol *find(string name) {

for (Symbol *sp = head; sp != NULL; sp = sp ->link)

if (sp ->name == name) return sp;

return NULL;

}

public:

Symtable () { head = NULL; } // Empty

~Symtable () {

while (head != NULL) { // Free the list

Symbol *sp = head ->link;

delete head;

head = sp;

}

}

void set(string name , int value);

int get(string name) {

Symbol *sp = find(name);

return (sp == NULL ? 0 : sp ->value);

}

};

Recall the Symbol structure

struct Symbol{

struct Symbol *link; // Next in linked list

int value; // Value

char name [32]; // Text name

};

