
COMP322 - Introduction to C++

Winter 2011

Lecture 4 - Memory Management

Milena Scaccia

School of Computer Science
McGill University

January 25, 2011

Memory management in C++

Provides ways to allocate portions of memory to programs at
their request, and freeing it for reuse when it is no longer
needed.

When your program runs, it has access to certain portions of
memory:

◮ Stack: Section of computer memory where all variables
declared and initialized before runtime are stored.

◮ Heap (aka free store): Section of computer memory
where all the variables created or initialized at runtime are
stored. The pattern of allocation and size of blocks is not
known until run time (Dynamic memory allocation).

Memory Layout

Figure: Computer Memory Source: etutorials.org/Networking/

Computer Memory Example: Stack Allocation

Computer Memory Example: Heap Allocation

Importance of Memory Management

Correctly managing memory is crucial. Failing to do so may
result in serious consequences.

Your program may:

◮ Crash (segfaults)

◮ Behave unexpectedly

◮ Run slowly (memory hog)

◮ Be vulnerable to hackers

In this lecture:

◮ How to allocate/deallocate memory

◮ Common memory management errors and how to prevent
them

The free store

C:

◮ malloc()

◮ free()

C++

◮ new

◮ delete

The free store in C

The free store, or heap, allows us to create objects whose
addresses may be assigned to pointer variables.

The C heap is accessed by the functions malloc() and
free().

◮ void *malloc(size t nbytes) returns a pointer to a
region of memory at least ’nbytes’ in size. It returns
NULL if no such region is available.

◮ void free(void *ptr) marks the region as unused.

An pointer returned by malloc() can be used until it is
explicitly released by calling free().

The free store in C
◮ The argument to malloc() is the number of bytes

required, often a sizeof expression.
◮ The memory returned is not initialized in any way.
◮ malloc() returns void *, so we cast the return value to

the required pointer type.
◮ Any argument to free() must have been returned by
malloc()

struct student* create_student(long id , double grade) {

struct student *new_p ;

new_p = (struct student *) malloc(sizeof(struct student));

if (new_p != NULL) {

new_p ->sID = id;

new_p ->sGrade = grade;

}

return (new_p);

}

void delete_student(struct student *sp) {

free(sp); // Memory is no longer in use

}

The free store in C++

While malloc() and free() remain part of the
C++ standard library, C++ introduces two operators which
manipulate the free store.

◮ new - Allocate memory on the free store.

◮ delete - Free memory if the argument is non-zero.

struct student *create_student(long id , double grade) {

struct student *new_p = new struct student;

new_p ->sID = id;

new_p ->sGrade = grade;

return (new_p);

}

void delete_student(struct student *sp) {

delete sp; // Memory is no longer in use

}

Details of the new operator

◮ A new expression implicitly calls the constructor for an
object, which may initialize the object.

◮ However, the initial value of the memory is undefined.

◮ We can specify initial arguments for the constructor:

double *pd1 = new double (1.1); // Sets the initial value

◮ If a new operation fails, it throws an exception. By
default this will end the program.

◮ We can suppress the exception with the nothrow
parameter:

#include <new >

symbol *sym_p = new(std:: nothrow) symbol ();

if (sym_p == NULL) { // Allocation failed

Creating and deleting arrays

The new and delete operators also work with arrays. This
allows us to set the lengths of arrays at runtime. We can
access elements using the [] operator, indexing in an array.

int *create_array(int size) {

int *array = new int[size]; // Allocate ’size ’ integers

// perform some initialization

for(int i = 0; i<size; i++)

array[i] = 0;

return array;

}

void delete_array(int *array) {

delete [] array; // brackets tell delete this is an array

}

We must specify delete [] when deleting an array.

Creating multidimensional arrays

The syntax of C++ does not allow for easy creation of
multidimensional arrays:

float ** matrix = new float [10][10]; // Illegal!

Instead we have to use a more complex initialization:

float ** matrix = new float *[10];

int i, j;

for (i = 0; i < 10; i++) {

matrix[i] = new float [10];

}

// now we can access matrix[i][j]

Many of these sort of things are better handling using the
standard library.

Advantages of C++ memory management

The new and delete operators provide several advantages
over malloc() and free().

1. No need to cast - New automatically returns a pointer of
the correct type.

2. No need to explicitly calculate the size of the object.

3. Initialization is performed if a constructor is defined.

4. Can throw an exception on failure, which can simplify
error handling.

5. Will call the destructor before deleting an object, if
defined.

6. You can override the new operator and provide your own
implementation for debugging or other special purposes.

Common memory management error 1

There are a large number of ways in which memory
management can go wrong.

What is wrong with the following code fragment?

int n;

int *p = &n;

// ...

delete p;

int *pv = new int [5];

pv++;

delete [] pv;

Deleting a pointer that was not returned by new:

int n;

int *p = &n;

// ...

delete p; // error!

int *pv = new int [5];

pv++; // alters the pointer

delete [] pv; // error!

Common memory management error 2

What is wrong with the following code fragment?

float *pv1 = new float[size];

float sum;

sum += pv1 [0];

Assuming the memory is initialized

float *pv1 = new float[size];

float sum;

sum += pv1 [0]; // The value of pv1 [0] is undefined!

Common error 3: Memory Leak

mysticmemos.wordpress.com

Memory Leak: Failing to delete allocated memory. This is a
common error in programming with languages that have no
built-in garbage collection.

char *linebuf = new char [1024];

// ...

linebuf = new char [128]; // Another object

// ...

delete [] linebuf; // deleted 2nd , but not 1st object

Memory Leak cont’d

No serious consequences for programs that run over a short
period of time.

Examples of when memory leaks can be serious:

◮ The program runs for an extended time and consumes
additional memory over time (e.g. background tasks on
servers)

◮ Memory is very limited (e.g. in embedded systems)

Results in: Diminished computer performance/system slow
downs/application failure

Common error 4: Buffer overflow

Buffer overflow: trying to put more data into an array than
there is room for. As a result, the program may overrun the
buffer’s boundary and overwrite adjacent memory.

◮ C/C++ provide no built-in protection against accessing
or overwriting data in any part of memory

◮ No automatic bounds checking for arrays =⇒ this is the
responsibility of the programmer!

Security issue! “Giving a program more data than it can
handle is the number one trick in the arsenal of the hacker.” 1

1Fred Swartz, MIT License

Recent exploitations of buffer overflow

◮ Internet worms compromised a large number of systems
by exploiting buffer overflows:

◮ Code Red worm
◮ SQL Slammer worm

◮ Buffer overflows in licensed games have been exploited to
allow unlicensed software to run on the console without
the need for hardware modifications 2.

2gamesindustry.biz

Common memory management error 5

What is wrong with the following code fragment?

int *p = new int (10);

// ...

delete p;

// ...

delete p;

Multiple erroneous memory de-allocations

int *p = new int (10); // Initialize *p==10

// ...

delete p;

// ...

delete p; // error!

◮ Programs may erroneously free memory that has already
been freed

◮ This can result in an immediate crash or be exploitable,
allowing an attacker to cause arbitrary code to be
executed 3.

3David A. Wheeler, Secure Programming for Linux and Unix

HOWTO, March 2003

