
COMP322 - Introduction to C++

Winter 2011

Lecture 2 - Language Basics

Milena Scaccia

School of Computer Science
McGill University

January 11, 2011

Course Web Tools

◮ Announcements, Lecture Notes, Assignments will be
posted at:
http://www.cs.mcgill.ca/∼mscacc/comp322/

◮ Assignment Submissions, Discussions
http://www.mcgill.ca/mycourses

Key Dates

◮ 08 Feb - Assignment 1 Due

◮ 15 Feb - In-Class Test 1

◮ 22 Feb - Study Break - No Class

◮ 29 Mar - In-Class Test 2

◮ 05 Apr - Assignment 2 Due

Using namespaces
A namespace supports grouping of a set of functions or
objects. For example, most of the standard library is
associated with the namespace “std”:

#include <iostream >

int main() {

std::cout << "Hello!" << std::endl;

return 0; // Return code for success

}

The scope resolution operator ’::’ tells C++ we want to use
the “cout” associated with the namespace “std”. We can
simplify our code with the using statement:

#include <iostream >

using namespace std;

int main() {

cout << "Hello!" << endl;

return 0; // Return code for success

}

Using namespaces

We can be more specific about using only those things we
actually need:

#include <iostream >

using std::cout;

using std::endl;

int main()

{

cout << "Hello , world!" << std::endl;

return 0; // Return code for success

}

Even if we explicitly import a symbol from a namespace, we
can still use the fully-qualified form of the name.

User-defined namespaces
namespace A {

int factorial(int x) {

return (x <= 1) ? 1 : (x * factorial(x - 1));

}

}

namespace B {

int factorial(int x) {

int y = 1;

for (int i = 1; i < x; i++)

y *= x;

return y;

}

}

int main()

{

cout << A:: factorial (5) << endl;

cout << B:: factorial (5) << endl;

using namespace A;

cout << factorial (5) << endl;

}

Side note: Difference with C
In C, we use the function fprintf (or one of its relatives) to
write formatted data:

#include <stdio.h>

printf("Hello World !\n");

fprintf(stdout , "Hello World !\n");

int n = 42;

fprintf(stdout , "%d\n", n);

C++ provides iostreams (not found in the C language):

#include <iostream >

cout << "Hello World!" << endl;

int n = 42;

cout << n << endl;

C++ is very compatible with C, so we can actually use either
iostreams or C functions to write data.

C/C++ Code

Figure: FoxTrot 10/03/2003

cout vs printf

So what is the difference between cout and printf?

◮ printf is a C function

◮ cout is a stream object with ’<<’ operator to write data

◮ printf has no type checking

◮ iostreams are type safe and extensible for user-defined
types

◮ printf returns an integer which denotes the number of
characters printed, while cout does not.

Similarly, there is a cin object with operator ’>>’ for reading
from keyboard in C++:

int age;

cin >> age;

More on the Preprocessor

The C++ preprocessor is inherited from C. It runs before the
compiler, processing its directives and outputting a modified
version of the input.

So far, we have seen one example of a preprocessor directive:
#include.

There are several others:

#ifdef #ifndef

#if #elif

#else #endif

#line #undef

#error #pragma

Preprocessor - #include

The #include directive is used to incorporate another file into
the current file:

#include <iostream >

#include <stdio.h>

#include "myhdr.h"

By convention, header filenames often end in “.h”. However,
this is purely optional.

If the filename is enclosed in quotes, the preprocessor searches
the local directory, then a list of standard directories.

If the filename is enclosed in <>, the preprocessor searches
only the standard directories.

Preprocessor - #define

The #define directive is used to define textual substitution or
macro. It is often used to create constants:

#define PI 3.14159

#define ULTIMATEANSWER 42

#define NAME "Mr. Nobody"

By convention, capital letters are often used.

The construct can be used for more elaborate statements that
may accept arguments:

#define MAX(a,b) ((a < b) ? (b) : (a))

Preprocessor - #if/#ifdef

The #if, #ifdef and #ifndef directives support conditional
compilation:

#ifndef PI

#define PI 3.14159

#endif

#if (VERSION >= 2)

// code for version 2 and later

#elif (VERSION >= 1)

// code for version 1

#else

// default code

#endif

The defined operator can replace #ifdef and #ifndef:

#if !defined PI && defined USEMATH

#define PI 3.14159

#endif

Preprocessor - everything else

◮ #undef deletes a macro.

#undef PI

◮ #line overrides the line number and filename. It is
primarily used internally by the compiler.

#line 1020 "myfile.cpp"

◮ #error aborts the compilation and prints a message:

#ifndef BBQ

#error You must define BBQ

#endif

◮ #pragma is a used to implement compiler-specific
commands.

A few interesting operators

◮ sizeof expr - returns the size, in bytes, of the expression
or named type.

◮ expr1,expr2 - the comma operator evaluates both
expressions sides, returning the value of expr2.

◮ expr1?expr2:expr3 - If expr1 is non-zero (true), the value
expr2. Otherwise, the value is expr3.

x = (y > 0) ? (100 / y) : 0;

◮ Assignment - assignments return the assigned value, so
we can have odd expressions like:

x = (y = 2) * 4;

Symbol declarations and definitions

We already discussed the builtin types. Certain keywords can
modify the treatments of objects or functions we declare:

◮ auto - internal reference in temporary storage

◮ volatile - the value may changed unexpectedly

◮ register - the value is used often

◮ const - a constant value

◮ extern - external reference

◮ static - internal reference in permanent storage

Of these, only extern and static apply to function symbols.
The compiler may ignore the register keyword.

Example: The const keyword

Any data object can be specified as const. This means you
cannot modify it after initialization.

const float pi = 3.14159; // Global constant

double circle_area(const double radius) {

pi = 0; // Illegal

radius = 0; // Likewise

return (pi * radius * radius);

}

A const variable must be initialized.

const float pi; // Illegal

The extern keyword

The extern keyword declares a function or object which is
defined later in the file, or in another file. It is used to declare
variables of global scope in C++ projects. When the keyword
extern is used, the compiler will not allocate memory for the
variable.

// Use constant ’c’ and make it

// globally visible:

extern const double c; // No initializer !

double energy(double mass)

{

// Use pow () locally

extern double pow(double , double);

return mass * pow(c, 2);

}

// c is still visible , but pow () is not.

Defining and declaring arrays

Arrays are defined by specifying constant array bounds after
the variable name.

Arrays which are either global or static are implicitly initialized
to zero. Automatic arrays are not implicitly initialized.

#define N_ITEMS 10

static float vector[N_ITEMS];

const int n_rows = 10;

const int n_cols = 12;

double array[n_rows][n_cols];

If an array is initialized explicitly, or is external, the bounds
need not be specified:

const char message [] = "Hello , World!";

int table [] = {1,4,9,16,25};

extern float vector []; // Unknown size!

Using arrays

Array indices in C++ always begin at zero. The last index is
therefore one less than the declared size of that dimension.

const int n_items = 10;

float values[n_items];

int i;

for (i = 0; i < n_items; i++) {

values[i] = (i + 1)*(i + 1);

}

This loop accesses elements 0 through 9, which is correct.

More about functions: inline functions

The overhead of calling a function can be significant.

Using the inline keyword requests that the compiler expand
small functions, as by macro substitution, rather than through
an explicit procedure call:

inline double circlearea(double radius)

{

return PI * radius * radius;

}

Like the register keyword, the compiler is free to act on this
or not.

Default parameter passing

For simple types (not arrays), parameters are passed by value.

#include <iostream >

using namespace std;

void half(int a) {

a = a/2;

}

int main() {

int x = 200;

half(x);

cout << "x=" << x << endl;

}

What does this program print?
How can we fix the above so that the value of x is actually
modified?

Sneak peak at references

We can use references in order to pass-by-reference instead of by value.
This means that if the function alters the data, the original is altered.

#include <iostream >

using namespace std;

void half(int &a) { // & is known as a reference operator

a = a/2;

}

int main() {

int x = 200;

half(x);

cout << "x=" << x <<endl;

}

We will revisit references in detail in Lecture 3.

Function Prototypes

A C++ compiler processes the source code from top to bottom. If a
function has not already been seen, a compiler would not include its
signature in the list of candidates.

#include <iostream >

using namespace std;

void half(int &a); // function prototype

int main() {

int x = 200;

half(x);

cout << "x=" << x <<endl;

}

void half(int &a) {

a = a/2;

}

Header File Example

example.h

#include <iostream >

using namespace std;

void half(int &a);

example.cpp

#include "example.h"

int main() {

int x = 200;

half(x);

cout << "x=" << x <<endl;

}

void half(int &a) {

a = a/2;

}

User-defined types

C++ inherits three simple ways to create complex types.

◮ An enum defines a type with named symbolic values.

◮ A struct defines a type which consists of one or more
fields of possibly distinct subtypes. All fields coexist
simultaneously in the type.

◮ A union defines a type which consists of one or more
aliases for the same storage.

Enumerated types

An enum associates a name with an integral value.

enum color { red , blue , yellow , green };

enum color dot = red;

Implicit enum values begin at zero and increment for each item
on the list. So in the above example, “green” would have
integral value 3.

This behavior can be overridden:

enum lettergrades { A=4, B=3, C=2, D=1 };

If an explicit value is not given, implicit numbering begins at
the last value given:

enum color { red=1, blue , yellow , green };

Now “green” would have the value 4.

The struct

A C++ struct contains a list of objects, like a database
record.

struct patient {

enum bloodtype ptype;

char name [32];

int age;

};

struct patient p1;

struct patient ptable [30];

We can then access the elements using the ’.’ operator:

p1.age = 99;

strcpy(p1.name , "Joe");

The union

A union definition looks like a struct definition, but the
items all share the same storage:

union studentdata {

int idnumber;

char username [5];

};

We can store either idnumber, or username, but only one at
a time.

A practical use of union is when you would like to allow a
single type of data to be accessed in several ways. For
example, using the above, we can define and access student
data using either their student number (int) or by their
username (five chars).

Typedef statements
A type can be associated with a given symbolic name using the typedef

statement:

typedef unsigned short word;

// word is now a synonym for ’unsigned short ’

word array [100];

typedef float rgb [3];

/* rgb is now a synonym for an array with three

* floating point elements

*/

rgb pixel;

pixel [0] = 1.0;

pixel [1] = pixel [2] = 0.5;

// Define a type point to be a struct with integer members x, y

typedef struct {

int x;

int y;

} point;

point p = {1,2};

C++ String Library - Examples
See http://www.cplusplus/com/reference/string/ for more detail.

#include <iostream >

#include <string >

using namespace std;

int main (){

string str;

string str2 ("cplusplus"); // Declaration

// Read a string from keyboard

cout << "Please enter full name: ";

// getline allows you to read strings with whitespace

getline(cin ,str);

// Compare two strings

if(str.compare(str2) != 0)

cout << "Not equivalent" << endl;

// Find length of string

int n = str.length ();

// Substrings

string str3 = str2.substr (2,5);

return 0;

}

