
COMP322 - Introduction to C++

Winter 2011

Lecture 10 - Exceptions
& New Features of C++0x

School of Computer Science

McGill University

March 22, 2011



Motivation for exceptions

◮ Error handling is a difficult problem in general

◮ Organizing error codes and messages is tricky in C

◮ Error handling can lead to resource leaks and ugly code

bool f() { // true ->success , false ->failure

int *pc = malloc(sizeof(int) * 100);

if (pc == NULL) {

return false;

}

FILE *fp = fopen(outfile , "w");

if (fp == NULL) {

free(pc); // release anything allocated

return false;

}

// ...

free(pc);

fclose(fp);

return true;

}



Motivation for exceptions, continued
◮ Using the “goto” statement is tempting:

bool f() {

int *pc = NULL;

FILE *fp = NULL;

pc = malloc(sizeof(int )*100);

if (pc == NULL) {

goto error;

}

fp = fopen(outfile , "w");

if (fp == NULL) {

goto error;

}

// ...

free(pc);

fclose(fp);

return true;

error:

if (pc != NULL) free(fp);

if (fp != NULL) fclose(fp);

// ...

return false;

}



What is an exception?

◮ A mechanism for handling exceptional conditions,
including but not limited to errors.

◮ Exceptions are a mechanism for passing error information
off to the runtime system, which can then select the
appropriate handler for the error.

◮ Stroustrup: “One way of viewing exceptions is as a way
of giving control to a caller when no meaningful action
can be taken locally”.

◮ Alternative to printing messages or terminating programs
within generic libraries.

◮ For C programmers, an exception is a safer, more flexible
replacement for setjmp()/longjmp().



Exception syntax in C++

C++ exception syntax is similar to that of Java:

◮ try - a “try” block associates a list of statements with
one or more exception handlers.

◮ catch - one or more “catch” blocks follow the try block.
These define the handler for a given type.

◮ throw - a “throw” statement passes the exception to the
runtime system for delivery.

◮ Control is immediately transferred to a handler
associated with the nearest enclosing try block.

◮ If no appropriate handler is found, the program exits.
◮ The stack is “unwound” and destructors invoked as

necessary.



A basic example

void g() {

// etc.

if (/* something goes wrong */) {

throw 2;

}

}

void f() {

try {

// ...

g();

}

catch (int code) { // Handle int exceptions

cerr << "Caught exception " << code << endl;

}

catch (...) { // Default handler

cerr << "Caught unknown exception" << endl;

}

}



Some more details

The catch block must specify the type that is to be caught, it
need not specify a parameter name.

If a parameter name is not specified, we can’t examine the
value of the exception or learn anything other than the type:

void f() {

try {

// ...

}

catch (int) { // Handle int exceptions anonymously

// deal with the exception

}

catch (...) { // Always anonymous , even the type is unknown

}

}



Nested exceptions

Try blocks can be nested within one another. The exception
will be delivered to the innermost possible block:

try {

try {

// code here

}

catch (int n) {

throw;

}

}

catch (...) {

cout << "Exception occurred";

}



Exceptions in C++ vs. Java

◮ C++ has no finally block

◮ C++ exceptions can throw any type
◮ basic types (int, char, float, ...)
◮ any object derived from the standard class called

exception

◮ C++ methods are never required to specify the exceptions
they may throw



Functions throwing exceptions

When declaring a function we can limit the exception type it
might directly or indirectly throw by appending a throw suffix
to the function declaration:

void f()

// can throw any type of exception

void f() throw (int)

// throws an integer exception (catch int)

void f() throw ()

// cannot throw any type of exception



Standard exceptions

◮ The C++ Standard library provides a base class called
exception specifically designed to declare objects to be
thrown as exceptions.

◮ It is defined in the <exception> header file under the
namespace std.

◮ This class has
◮ default and copy constructors
◮ operators and destructors
◮ a virtual member function called what that returns a

null-terminated character sequence (char *) that can
be overwritten in derived classes to contain a description
of the exception.



Standard exceptions
#include <iostream >

#include <exception >

using namespace std;

class CustomException : public exception

{

virtual const char* what() const throw ()

{

return "Custom exception happened";

}

} custEx;

int main () {

try

{

throw custEx;

}

catch (exception& e) // reference to base is OK

{

cout << e.what() << endl;

}

return 0;

}



Standard Library Exceptions

exception description

bad alloc thrown by new on allocation failure

bad cast thrown by dynamic cast when fails with a referenced type

bad exception thrown when an exception type doesn’t match any catch

bad typeid thrown by typeid

ios base::failure thrown by functions in the iostream library



bad alloc Example

try

{

int * myarray= new int [1000];

}

catch (bad_alloc &)

{

cout << "Error allocating memory." << endl;

}



New Features of C++0x



C++0x

◮ C++0x is the next standard for ISO C++

◮ A subset of several C++0x features is currently supported
by the GCC version 4.5 compiler: g++ -std=c++0x

◮ High-level aims for the language are to:
◮ Make C++ a better language for systems programming

and library building
◮ Make C++ easier to teach and learn (through increased

uniformity, stronger guarantees)



Static Assertions

Issue: Integer sizes are not always the 4 bytes you assume
them to be. Code may crash on a different platform.
Solution: The static assert construct helps track these
problems, and are useful for when you need to migrate sources
to a different platform.

static_assert (sizeof(int) == 4, "Integer sizes expected to be 4");

int main()

{

return 0;

}

E.g. On a 64-bit enterprise Linux system, this assertion fails
during compilation. Here’s the log:

g++ 1.cpp --std=c++0x

1.cpp :1:1: error: static assertion failed: " Integer sizes

expected to be 4"



Initializer lists and type narrowing

Issue: Type-narrowing is allowed in C++ initializer lists.
Compiling with g++ -Wall will not warn you about the
double to integer type conversion.

int main( )

{

int nasty[ ] = {8, 99, 2.3, 4.0, 5};

// ...

return 0;

}

C++0x will not allow it. Log:

1.cpp: In function ’int main()’:

1.cpp :14:34: error: narrowing conversion of

’2.29999999999999982236431605997495353221893310547 e+0’

from ’double ’ to ’int’ inside { }

1.cpp :14:34: error: narrowing conversion of ’4.0e+0’

from ’double ’ to ’int’ inside { }



Range based for loops

◮ Languages like C# and Java have shortcuts that allow
one to write a simple “foreach” statement that
automatically walks the list from start to finish.

◮ C++0x will add a similar feature. The statement for will
allow for easy iteration over a list of elements:

int my_array [5] = {1, 2, 3, 4, 5};

for (int &x: my_array) {

x *= 2;

}

◮ The “range-based for” will work for C-style arrays,
initializer lists, and any type that has a begin() and end()
function defined for it that returns iterators.



decltype

Issue: C++has never had an easy mechanism for querying the
type of a variable or an expression.
Solution: Enter the decltype operator from C++0x, which
returns the type of a variable or expression.

Example:

T1 x;

T2 y;

typedef T3 decltype(x+y);

T3 z ;



Lambda Functions

Lambda functions are anonymous functions: you don’t have to define a
typical C/C++ function to get the job done. Example with STL sort:

#include <iostream >

#include <string >

#include <vector >

#include <algorithm >

using namespace std;

int main()

{

vector <string > vs = {"This", "is", "a", "C++0x", "exercise"};

sort(vs.begin(), vs.end(),

[ ]( const string& s1 , const string& s2) {

return s1.size() < s2.size ();})

for (auto ivs = vs.begin (); ivs != vs.end(); ++ivs)

cout << *ivs << endl;

return 0;

}



Variadic Templates

Issue: How do you define a templated class or a function with
a variable number of arguments, each with a potentially
different type?

C++0x allows you to define functions and classes with
variable numbers of arguments:

template <typename ... Types >

void f(Types ... args) // variable number of function arguments

{

}

template <typename ... Types >

class c // class with

{

// member code

};

// Usages

f(’a’, ‘‘hello ’’, 2, 3.1);

class c<int , double , std::vector <string >> c1;



Multi-threading

The C++ standard committee plans to standardize support
for multithreaded programming.

The new standard will support multithreading, with a new
thread library: std::thread

With the new standard, all compilers will have to conform to
the same memory model and provide the same facilities for
multi-threading (though implementors are still free to provide
additional extensions).

This means you’ll be able to port multi-threaded code between
compilers and platforms with much reduced cost. This will
also reduce the number of different APIs and syntaxes you’ll
have to know when writing for multiple platforms.



Concluding Remarks

◮ This is an exciting time to be a C++ developer.

◮ Better platform for template programming, increased type
safety, systems software, and library development. 1

1C++0x feature support in GCC 4.5
http://www.ibm.com/developerworks/aix/library/au-gcc/index.html


