
COMP322 - Introduction to C++

Winter 2011

Lecture 1 - Introduction

Milena Scaccia

School of Computer Science
McGill University

January 4, 2011



Course Facts

◮ 1-credit crash course in C++

◮ An overview of the fundamentals of the C++
programming language

◮ Not an introductory programming course

◮ 13 Classes, Tuesdays 14:35-15:25, ENGTR 1090

◮ Course Webpage:
http://www.cs.mcgill.ca/∼mscacc/comp322



Course Instructor

◮ Milena Scaccia

◮ Email: mscacc@cs.mcgill.ca

◮ Office: ENGMC 229

◮ Office hours: Tuesday 13:00-14:00



Teaching Assistants

◮ Sevan Hanssian
Email: shanss@cs.mcgill.ca
Office: ENGMC 229
Office hours: Wednesday 12:00 - 13:00

◮ Zineng Yuan
Email: zineng.yuan@mail.mcgill.ca
Office: ENGTR 3103
Office hours: Friday 10:00 - 11:00

◮ Yancheng Xiao
Email: TBA
Office: TBA
Office hours: TBA



Assessment

◮ Two in-class tests, 25% each

◮ Two homework assignments, 25% each
◮ Programming problems
◮ 4 weeks per assignment
◮ 10% per day late penalty, for up to three days
◮ Use GNU C++ (“g++”)
◮ Homework will be graded based on correctness, style and

comments
◮ Submitted via myCourses

http://www.mcgill.ca/mycourses

◮ Academic Integrity: See
http://www.mcgill.ca/integrity



Calendar

1. 04 Jan - Course introduction

2. 11 Jan - Basic language features (A1 out)

3. 18 Jan - Pointers and references

4. 25 Jan - Memory management

5. 01 Feb - Input/output using the Standard Library

6. 08 Feb - Classes (A1 due)

7. 15 Feb - Test 1

- 22 Feb - Study Break

8. 01 Mar - Operator and function overloading

9. 08 Mar - Inheritance (A2 out)

10. 15 Mar - Exceptions

11. 22 Mar - Templates and STL

12. 29 Mar - Test 2

13. 05 Apr - Optional Topic (A2 due)



Historical Note

http://www2.research.att.com/∼bs/homepage.html

◮ Begun in 1979 by Bjarne Stroustrup at Bell Labs

◮ Originally called “C with Classes”, but renamed C++in 1983

◮ “Middle-level” language

◮ Descendant of C, ancestor of Java



Design principles

◮ Compiles to machine (binary) code

◮ Compile-time type checking

◮ Flexible programming styles

◮ Low runtime overhead

◮ Minimal development environment

◮ Mostly compatible with C



Differences from C

◮ Classes

◮ Overloading

◮ Templates

◮ Exceptions

◮ Namespaces



Differences from Java

◮ Compiles to machine code

◮ Multiple inheritance

◮ Pointers and references

◮ Templates

◮ No garbage collection



Pros and cons

◮ Pros:
◮ Like C, C++ is useful for systems programming
◮ Commercially important!
◮ Faster; permits a lower and finer level of control (both a

pro and con)

◮ Criticisms:
◮ Allows serious errors and security problems (e.g does not

check array indices or initialization; does not check
whether a pointer points to an object that no longer
exists)

◮ Not quite as standard as either C or Java
◮ Lots of “missing features”, e.g. no multithreading

support (although there is a planned new standard for
C++ (C++0x) which will address this matter)

◮ Can seem complex and difficult



C++ Standard Library

◮ Collection of common classes and functions

◮ Includes most of the C Standard Library

◮ Derived from Standard Template Library (STL)

◮ Data types: Strings, complex numbers, etc.

◮ Containers: Lists, sets, queues, stacks, etc.

◮ Algorithms: Sorting and searching



C++ basics

◮ Statements terminated with semicolon ;

◮ Comments either between /* .. */ or after //

◮ Basic constants and types largely borrowed from C

◮ Most operators identical to those in C

◮ Parentheses are used to group expressions: a * (b + c)

◮ All identifiers must be declared before use, e.g.
int count; float average = 0.0;



C++ basics - Basic types

The sizes and specific range values are typical for 32-bit systems.
Type Bytes Min Max
bool 1 false true
signed char 1 SCHAR MIN (-128) SCHAR MAX (127)
unsigned char 1 0 UCHAR MAX (255)
char 1 CHAR MIN CHAR MAX
short [int] 2 SHRT MIN (-32768) SHRT MAX (32767)
unsigned short [int] 2 0 USHRT MAX (65535)
int 4 INT MIN INT MAX
unsigned [int] 4 0 UINT MAX
long [int] 4 LONG MIN LONG MAX
unsigned long [int] 4 0 ULONG MAX
float 4 -FLT MAX +FLT MAX
double 8 -DBL MAX +DBL MAX
long double 8 -LDBL MAX +LDBL MAX



C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world!\n";

return 0; // Return code for success

}

This text, contained in the file hello.cpp, is the canonical
trivial program, intended to print a friendly greeting.



C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world!\n";

return 0; // Return code for success

}

◮ “#include” is a preprocessor directive
◮ Preprocessor runs before the compiler
◮ The entire file “iostream” is incorporated
◮ No semicolon used in preprocessor statements
◮ Incorporates part of standard library



C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world!\n";

return 0; // Return code for success

}

◮ “main()” is a special function
◮ Control starts with this function
◮ It must be a global function returning int
◮ Must be defined only once per project
◮ Is not part of any class



C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world!\n";

return 0; // Return code for success

}

◮ std::cout refers to a global object
◮ It is an object of the class ostream
◮ It is similar to the stdout global from C
◮ The ’<<’ operator writes the object
◮ The ’::’ is the scope operator



C++ example - hello.cpp

#include <iostream >

int main()

{

std::cout << "Hello , world!\n";

return 0; // Return code for success

}

◮ return specifies value of function main()

◮ Takes an (optional) value
◮ The number zero is an integer constant
◮ In this case, zero indicates success
◮ Returns control to calling function



C++ example - Compiling and running

$ g++ -Wall -o hw hello.cpp

$ ./hw

Hello, world!

$

If you do not have a g++ compiler:

◮ Linux: Install using the command: sudo apt-get install g++

◮ Windows: Obtain a g++ compiler by installing Cygwin
http://www.cygwin.com/. Cygwin is a Linux-like environment
that runs on top of Windows, which includes the g++ compiler.

◮ Mac: http://www.edparrish.com/common/macgpp.php

◮ Note that g++ is installed on all machines in the Trottier labs.



C++ basics - Arithmetic operators

+ // Addition and unary plus

- // Subtraction and unary negation

* // Multiplication

/ // Division

% // Integer remainder

Another important operator is the assignment operator:

= // Assignment

Where possible, C++ will automatically convert among the
basic types. It is more liberal then Java in accepting code
without casting.



C++ basics - Comparison operators

The result of a comparison operator is always a value of type
’bool’:

== // equal

!= // not equal

> // greater than

< // less than

>= // greater than or equal

<= // less than or equal



C++ basics - Logical operators

The logical && and || operators use short-circuit evaluation.
They execute the right hand argument only if necessary to
determine the overall value.

&& // logical and

|| // logical or

! // logical negation



C++ basics - Bitwise operators

These operators support logical operations on bits.

& // bitwise and

| // bitwise or

^ // bitwise exclusive or

~ // bitwise complement

<< // left shift

>> // right shift

E.g. In Microcontrollers where available RAM is very limited,
we can use bitwise exclusive or to swap two variables of the
same type without using a temporary variable:

a = a^b;

b = a^b;

a = a^b;



C++ basics - if statement

// Simplest form

if (response == ’y’) return true;

// Less simple

if (result > 0.0) {

x = 1.0 / result;

y += x;

}

else {

std::cout << "Division by zero!";

}



C++ basics - switch statement

int response;

std::cin >> response; // Get input

switch (response) {

case ’y’:

return true;

case ’n’:

return false;

case ’q’:

exit (0);

default:

std::cout << "I didn’t get that , sorry\n";

break;

}



C++ basics - while statement

int i = 0;

while (i < 10) {

std::cout << "All work and no play makes

Jack a dull boy.\n";

i++;

}



C++ basics - for statement

Typically a shorthand for common forms of the while

statement.

for (int i = 0; i < 10; i++) {

std::cout << "All work and no play makes

Jack a dull boy.\n";

}



C++ basics - do while statement

int i = 0;

do {

std::cout << "All work and no play makes

Jack a dull boy.\n";

i++;

} while (i < 10);



C++ basics - Identifier scope

int v = 1; // Global scope

int main()

{

int c = 5; // Local scope

// Declare ’i’ in statement scope

for (int i = 0; i < c; i++) {

// do something

}

// ’i’ is now undefined

c = c + v;

}



C++ basics - Functions

/* Addition */

int addition(int x, int y)

{

int z;

z = x + y;

return z;

}

/* Calculate the sum of an array */

double total(double data[], int length)

{

double sum = 0.0; // Initialization

for (int i = 0; i < length; i++)

sum += data[i];

return sum;

}


