
1

COMP 322 - Introduction to C++

Winter 2011

Test 2

TA Practice Exercises

Note:

These exercises were inspired by the following textbook:

Learning C++: A Hands-On Approach

Eric Nagler, 1997

1. What is 'overloading resolution'? Briefly explain how the compiler determines which

overloaded function to call.

2. Which of the calls to f in the following code snippet are valid/invalid? Explain.

void f(int);

void f(char, int = 0);

void f(float, int);

void f(int, double);

void g()

{

 f('A');

 f(1, 'A');

 f(1, 3.4);

 f(3.4);

 f('A', 3.4);

 f(3.4, 1);

}

2

3. Which of the following code snippets works, and which doesn't? Explain.

void f(int);

void f(char*);

void g()

{

 f(0);

}

void f(long);

void f(char*);

void g()

{

 f(0);

}

4. a) Briefly explain what operator function overloading is, and give an example of how/where it

could be used.

 b) List the seven operators which cannot be overloaded.

5. a) In the code below, we are attempting to advance to the next day in foo(). Rewrite the

code using operator overloading to make it valid.

enum days

{

 Sunday, Monday, Tuesday, Wednesday, Thursday,

 Friday, Saturday

};

void foo(days& d)

{

 ++d; // Error, invalid operation

}

 b) Write a main() function that will result in the following output:

Today is Sunday

Today is Monday

Today is Tuesday

Today is Wednesday

Today is Thursday

Today is Friday

3

Today is Saturday

Today is Sunday

Today is Monday

Today is Tuesday

6. a) Define inheritance and polymorphism.

 b) Explain how you would define a singly inherited derived class.

7. Explain what happens upon compiling/running the following code snippets.

a)

class String

{

 public:

 String (const char* = "");

};

class DString : public String

{

 // Nothing new here

};

void foo()

{

 DString dtest("Test");

}

b)

class String

{

 public:

 String upper() const;

 char* ptr;

};

class DString : String

{

 public:

 DString (const String&);

};

void foo(DString& d)

4

{

 DString dtest(d.upper());

}

8. Should a base class destructor always be declared virtual? Explain.

9. a) Explain how you would write a function template. Where should it be placed in the code?

 b) Write a function max() that takes two generic types and returns the greater of its two input

values. Include a main() with examples of how max() can be called.

10. What does the following code snippet output (if anything)? Explain.

include <iostream.h>

template < class T >

inline const T& max(const T& x, const T& y)

{

 return (x > y) ? x : y;

}

int main()

{

 int a = 5;

 double b = 6.1;

 cout << max(a, b) << '\n';

 return 0;

}

11. Write a function called quadratic() that computes and returns one value of x in the

quadratic equation Ax
2
 + Bx + C = 0 (by finding the discriminant, etc.). The coefficients are its

arguments. This function must check for the denominator equal to zero, and also for a negative

discriminant, and throw exceptions when these cases occur. Also write a main() that takes in

coefficient values from the user, and attempts to call quadratic() and output its result. The

program should not crash!

